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Duchenne muscular dystrophy (DMD) is a severe neu-
romuscular disorder, and one of the most frequently
encountered, but one for which there is as yet no treat-
ment. Laminin-111 protein therapy was recently shown
to be a promising approach to prevent muscle disease
in the mdx mouse model of DMD. The present study
demonstrated that transgenic expression of laminin �1
chain in mdx animals, resulting in laminin-111 hetero-
trimer formation in mdx muscle, does not improve the
dystrophic phenotype. The mdx mice overexpressing
laminin-111 (mdxLM�1) display features of mdx litter-
mates: dystrophic pattern of muscle biopsy, elevated
creatine kinase levels, reduced muscle strength, and de-
creased sarcolemmal integrity. Increased expression of
integrin �7 is not beneficial for mdxLM�1 muscle, and
components of the dystrophin-glycoprotein complex
are not restored at the sarcolemma on laminin-111
overexpression. In summary, further studies are
needed to verify the functionality of laminin-111 pro-
tein therapy in DMD and to describe the molecular
events resulting from this approach. (Am J Pathol 2011,

178:1728–1737; DOI: 10.1016/j.ajpath.2010.12.030)

Duchenne muscular dystrophy (DMD) is a severe, inher-
ited neuromuscular disorder and the most prevalent form
of muscular dystrophy, occurring in 1 of 3500 male
births.1 DMD patients experience progressive muscle
wasting, with clinical onset at 2 to 5 years of age; they
lose the ability to walk between ages 7 to 13, and die in
their 20s because of cardiopulmonary failure.2 DMD is
caused by deletions and mutations in the dystrophin
gene (DMD)3 that lead to absence of the sarcolemma-
docked cytoskeletal protein and reduction of the dystro-
phin-glycoprotein complex (DGC), which together pro-

vide a mechanical link between the cytoskeleton and
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extracellular matrix.4,5 The mdx dystrophin-deficient
mouse is the best characterized mouse model for
DMD,6,7 although the progressive muscle wasting pres-
ents itself in a much milder form than in humans.7

Although the genetic defects underlying DMD were
identified more than 20 years ago,3 there is still no effec-
tive treatment of this devastating neuromuscular disease.
Recently, however, a remarkable protein therapy strategy
in the mdx mouse was undertaken by Rooney et al,8 who
demonstrated that systemic injections of laminin-111 de-
rived from the Engelbreth-Holm-Swarm (EHS) tumor
could ameliorate dystrophic symptoms in the mdx
mouse. Additionally, such an approach facilitated myo-
blast transplantation in this mouse model.9

Laminin-211, an extracellular matrix protein consisting
of �2, �1, and �1 chains, is the major laminin isoform in
skeletal muscle. The �2 subunit binds to �-dystroglycan
(a DGC component) and to integrin �7�1.10 Laminin-111
(consisting of �1, �1, and �1 chains) is not expressed in
skeletal muscle, but it has been shown to functionally
replace laminin-211 in laminin �2 chain-deficient muscu-
lar dystrophy upon transgenic overexpression in the neu-
romuscular system.11–13 Similarly to the laminin �2 sub-
unit, the laminin �1 chain binds to �-dystroglycan14 and
to integrin �7�1.15 Of note, integrin �7 is upregulated in
the skeletal muscle in both DMD patients and mdx
mice.16 Furthermore, integrin �7 has been proposed to
be an important modifier of dystrophic symptoms in mice
and to have roles complementary to those of the
DGC.8,17–20

Data reported by Rooney et al8 indicate that laminin-
111 is a highly effective therapeutic agent in the mdx
mouse model of DMD and could have applications in
human disease. These remarkable results show promise
for patients, and therefore the potency of laminin protein
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therapy needs to be tested in additional preclinical tests
involving different molecular approaches.

In the present study, we tested by transgenic means
the ability of murine laminin-111 to prevent dystrophin-
deficient muscular dystrophy in mice. We generated
mdxLM�1 mice, dystrophin-deficient animals that signif-
icantly overexpress laminin �1 chain (ie, the � subunit of
the laminin-111 heterotrimer) in skeletal muscle. Trans-
genic expression of laminin �1 chain resulted in laminin-
111 formation in mdxLM�1 skeletal muscle basement
membranes. Despite the substantial deposition of laminin-
111, mdxLM�1 animals exhibited the same dystrophic fea-
tures as mdx mice, with fiber size variability, central nucle-
ation, necrosis, sarcolemmal damage, decreased grip
strength, and elevated creatine kinase (CK) levels. The ex-
pression of integrin �7 was increased in mdxLM�1 muscle,
but the components of the DGC were not restored at the
sarcolemma. Taken together, the present results contradict
those of Rooney et al8 and suggest that laminin protein
therapy in mdx mice requires further verification.

Material and Methods

Transgenic Animals

C57BL/10ScSn-Dmdmdx/J (mdx) mice were obtained
from the Jackson Laboratory (Bar Harbor, ME). The trans-
genic animals overexpressing laminin �1 chain under the
control of �-actin promoter (LM�1TG) have been de-
scribed previously.11 The mdx females were bred with
LM�1TG males. All males born were mdx. These were fur-
ther genotyped for the presence of the transgene
(mdxLM�1 mice), as described previously.11 Mice were
maintained in animal facilities according to animal care
guidelines. All mouse experimentation was approved by
the local (Lund district) ethics committee.

Histology and Immunofluorescence Microscopy

Cryosections (8 �m thick) of skeletal muscle (quadriceps
femoris, gastrocnemius, soleus, tibialis anterior, triceps
brachii, and diaphragm) from 8- to 10-week-old wild-type,
mdx, mdxLM�1, and dy3KLM�1TG mice (n � 3 per group)
were either stained with hematoxylin and eosin or subjected
to immunofluorescence analysis using the following anti-
bodies: rat monoclonal mAb200 against LM�1LG4,11 rabbit
polyclonal 15277 against dystrophin (Abcam, Cambridge,
UK), rat monoclonal 4H8-2 against laminin �2 chain (Alexis
Biochemicals; Enzo Life Sciences, Plymouth Meeting, PA),
rat monoclonal MTn15 against tenascin-C,11 rat monoclonal
LT3 against laminin �1 chain (Chemicon; Millipore, Te-
mecula, CA), rabbit polyclonal 1083� against laminin �1
chain (kindly provided by Dr. T. Sasaki), rabbit polyclonal
U31 against integrin �7B subunit (kindly provided by Dr. U.
Mayer),21,22 mouse monoclonal IIH6 against �-dystrogly-
can (Upstate Biotechnology, Lake Placid, NY), rabbit poly-
clonal against �-dystroglycan,11 mouse monoclonal 5B1
against �-sarcoglycan (Novocastra, Newcastle upon Tyne,
UK), and mouse monoclonal DRP3/20C5 against utrophin
(Novocastra). Stainings were performed as described

previously.11,22,23 In addition, muscles from 5-week-old
mdx and mdxLM�1 animals were subjected to hematox-
ylin and eosin staining.

The area corresponding to tenascin-C labeling was
quantified from stitched photos of the entire area of the
diaphragm cross-section, using ImageJ software, version
143u (NIH, Bethesda, MD); five mdx and six mdxLM�1
animals were analyzed. Unpaired t-test was used for statis-
tical analysis. P � 0.05 was considered statistically differ-
ent. GraphPad Prism software, version 2.01 (La Jolla, CA)
was used for all statistical analyses.

Quantification of Fiber Size Distribution and
Central Nucleation

Diaphragm and limb muscles from three mdx and three
mdxLM�1 animals (8 to 10 weeks old) were analyzed. For
central nucleation, the tibialis anterior, triceps brachii,
and diaphragm muscles were examined. The entire area
of each muscle cross-section was considered (which
corresponds to at least 1746, 1389, and 1889 fibers for
each muscle type, respectively). For limbs, muscles from
both collateral limbs were used. Unpaired t-test was used
for statistical analysis, with significance set at P � 0.05.
Minimal Feret’s diameter of muscle fibers24 was mea-
sured for at least 1993 and 1330 fibers in diaphragm and
triceps brachii muscle, respectively. ImageJ software,
version 143u (NIH) was used for measurements. The �2

test was calculated for fiber distribution comparison, with
significance set at P � 0.05. All distributions of fiber size
compared by pairs were related to the genotype.

Treadmill Exercise and Evans Blue Dye Uptake

Eight- to 11-week-old mdx (n � 3) and mdxLM�1 mice
(n � 4) were exercised for 30 minutes on a treadmill Exer
6M (Columbus Instruments, Columbus, OH) at a downhill
angle of 15 degrees. During the first 2 minutes, the speed
was gradually increased from 7 m/min to 14–16 m/min.
Within 30 minutes after completed exercise, the mice were
injected intraperitoneally with Evans Blue dye (EBD; Sigma-
Aldrich, St. Louis, MO) dissolved in sterile saline (0.5 mg
EBD/0.05 mL saline; 50 �L/10 g body weight). After approx-
imately 16 hours, muscles (quadriceps femoris, tibialis an-
terior, posterior compartment of calf, and triceps brachii)
were collected and quickly frozen in liquid nitrogen. Unex-
ercised mice were injected with EBD and used as controls.
Cryosections (8 �m) of the muscles were fixed in ice-cold
acetone at �20°C for 10 minutes and then were stained with
laminin �1 antibody. Under fluorescence microscopy anal-
ysis, the muscle fiber EBD uptake was visualized by red
emission. Total muscle area and area of EBD-positive fibers
(red staining) in each muscle were quantified using ImageJ
software, version 143u (NIH). Muscles from both collateral
limbs were used for quantification. Mann-Whitney U-test
was used for statistical analysis, with significance set at P �

0.05.
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Grip Strength Analyses

Forelimb grip strength was measured on a grip strength
meter (Columbus Instruments). Wild-type (n � 8), mdx
(n � 13), and mdxLM�1 (n � 15) males, 2 to 3 months
old, were analyzed. Mice were pulling the metal bar five
times. The two lowest values were rejected, and the mean
of the three remaining values was counted. One-way
analysis of variance followed by Bonferroni’s multiple
comparison test was used for statistical analysis, with
significance set at P � 0.05.
Creatine Kinase Quantification

Blood was collected from the tail vein of 2- to 3-month-old
control (mdx/�), mdx, and mdxLM�1 mice (n � 8; n � 16
and n � 16, respectively) into EDTA tubes and was
centrifuged two times for 5 minutes at 1100 x g. Plasma
was sent to the Clinical Chemistry Laboratory at Skåne
University Hospital. The CK_P_S Cobas method was
used to quantify enzyme activity. Kruskal–Wallis one-way
analysis of variance followed by Dunn’s test was used for
statistical analysis, with significance set at P � 0.05.

Immunoblotting

For laminin and integrin detection, proteins were isolated
from 100 mg of wild-type, mdx, mdxLM�1, and dy3KLM�1
muscles (n � 3 per group) as described previously.23

The supernatants were collected and the protein concen-
tration was determined using a Pierce BCA assay
(Thermo Fisher Scientific, Rockford, IL). The SDS-poly-
acrylamide gel electrophoresis and immunoblotting were
performed as described previously.23 Integrin-containing
samples were run under nonreducing conditions, and
laminin-containing samples were run under both reduc-
ing and nonreducing conditions. Membranes were incu-
bated overnight at 4°C with rabbit polyclonal antibody
detecting laminin �1 chain, LG1-3 domains (1:500)23

(kindly provided by Dr. T. Sasaki); rabbit polyclonal anti-
body recognizing both laminin �1 and �1 chain (1:1000;
Sigma-Aldrich); and rabbit polyclonal antibody against
integrin �7B (1:1500) (kindly provided by Dr. U. Mayer).
Laminin �1 and �1/�1 chain expression was normalized
to �-actinin expression (detected with mouse monoclonal
antibody DM1A, 1:3000; Sigma-Aldrich). One-way anal-
ysis of variance followed by Bonferroni’s multiple com-
parison test was used for statistical analysis, except that
for laminin �1 chain immunoblotting the Mann-Whitney
U-test was applied, with significance set at P � 0.05.

Figure 1. Laminin-111 expression in mdxLM�1 mice. A: Dystrophin immu-
nostaining in mdx, mdxLM�1, and wild-type (WT) skeletal muscle confirms
dystrophin absence from mdxLM�1 muscle. B: Laminin �1 chain immuno-
staining demonstrates uniform expression of laminin �1 subunit in basement
membranes of mdxLM�1 skeletal muscle. It is expressed in a similar manner
as in laminin �2 chain-deficient mice overexpressing laminin �1 chain
(dy3KLM�1). As expected, it is absent from mdx muscle. Quadriceps (Quad),
gastrocnemius (Gast), and diaphragm (Dia) muscles are shown. C: Laminin
�1 chain is not expressed in wild-type muscle of newborn mice at postnatal
day 1 (P1), but is present in muscle from littermates overexpressing trans-
genic laminin �1 chain. Scale bars � 50 �m (A–C, all images). D: Immuno-
blotting of skeletal muscle tissue extracts from mdxLM�1 and dy3KLM�1 mice
and EHS laminin extract with a rabbit polyclonal antibody against laminin �1
LG3 domain under nonreducing conditions. The laminin-111 (LM-111) het-
erotrimer is present in mdxLM�1 muscle (900-kDa band). E: Immunoblotting
with the same antibody against laminin �1 chain and �-actinin under reduc-
ing conditions. A 400-kDa band corresponding to laminin �1 chain is absent
from mdx skeletal muscle extract, but is present in mdxLM�1 (n � 3) and
dy3KLM�1 (n � 3) muscles. EHS laminin was used as a positive control.
F: Quantification of laminin �1 chain signals revealed no significant differ-
ence in expression between mdxLM�1 and dy3KLM�1 muscles (P � 0.4000).
Laminin �1 chain expression was normalized to �-actinin expression. Mann-

Whitney U-test was used for statistical analysis, with significance set at P �
0.05. Results are reported as means � SD.
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Results

Generation of mdx Mice Overexpressing
Laminin �1 Chain

Transgenic mice overexpressing laminin �1 chain
(LM�1TG) and producing laminin-111 in the neuromus-
cular system were shown to substantially alleviate con-
genital muscular dystrophy in laminin �2 chain-deficient
mice.11–13 To test the ability of transgenically expressed
laminin �1 chain to rescue the phenotype of mdx mice,
we crossed both strains to obtain dystrophin-deficient
mdx animals overexpressing laminin �1 subunit; these
progeny are hereafter referred to as mdxLM�1 mice)
(Figure 1, A and B). We next determined the expres-
sion of laminin �1 chain in mdxLM�1 skeletal muscle
(Figure 1B). Laminin �1 chain is absent from basement
membranes in mdx muscle tissue; however, immuno-
fluorescence staining in mdxLM�1 muscle showed
continuous deposition of laminin �1 subunit alongside
sarcolemma, in a similar manner as in laminin �2 chain-
deficient mice overexpressing laminin �1 chain
(dy3KLM�1). Importantly, transgenic expression of
laminin �1 in skeletal muscle is secured already at
postnatal day 1 (Figure 1C) and even at embryonic
stages (data not shown). We further investigated the
expression of laminin �1 subunit by Western blot anal-
yses. Similarly to dy3KLM�1 muscle and EHS laminin
extracts, laminin �1 chain is assembled into a laminin-
111 heterotrimer with laminin �1 and �1 subunits (900
kDa) in mdxLM�1 skeletal muscle (analysis run under
nonreduced conditions and probed with a laminin �1
chain antibody) (Figure 1D).

We also compared expression levels of laminin �1
subunit between mdxLM�1 and dy3KLM�1 muscle (Fig-
ure 1, E and F). Laminin �1 chain expression levels were
not significantly different between two mouse strains, but
there was a trend toward decreased production of
laminin �1 subunit in mdxLM�1 muscle, compared with
dy3KLM�1 muscle (Figure 1, E and F). It is possible,
however, that production of laminin �1 chain could be
influenced by the normal expression of laminin �2 chain
in mdxLM�1 muscle (Figure 2A). Production of laminin �2
subunit also seemed unchanged in mdx muscle (Figure
2A). Because laminin � chains can be secreted indepen-
dently as monomers,25 we also analyzed whether suffi-
cient amounts of laminin �1 and �1 chains were available
for the two major laminin � chains present in mdxLM�1
muscle basement membranes. Western blot analysis re-
vealed substantial (5-fold) upregulation of laminin �1 and
�1 subunits in mdxLM�1 muscle, compared with wild-
type and mdx muscle (Figure 2, B and C). Immunofluo-
rescent labeling with antibodies against laminin �1 and
�1 chains showed stronger signals in mdxLM�1 muscle
and revealed the deposition of �1 and �1 subunits in
muscle basement membranes (Figure 2D), to which they
are secreted together with laminin �2 and �1 chains
(forming laminin-211 and laminin-111 heterotrimers, re-

spectively).
The mdxLM�1 Mice Are as Dystrophic as
mdx Mice

Despite high expression of laminin-111 in basement
membranes of mdx muscles, none of the dystrophic fea-
tures were improved in mdxLM�1 animals. The mdx limb
muscles undergo an early phase of degeneration with
widespread necrosis, followed by a regenerative phase
that is initiated at approximately week 6.26 Diaphragm
and limb muscles (quadriceps femoris, tibialis anterior,
gastrocnemius, and triceps brachii) from 5-week-old mdx
and mdxLM�1 mice displayed similar extensive areas of
acute necrosis (Figure 3) (tibialis anterior least affected).
Analyses of 8- to 10-week-old mdx and mdxLM�1 litter-

Figure 2. Expression of other laminin chains in mdxLM�1 and mdx mice.
A: Immunostaining with laminin �2 chain antibody reveals no reduction in
laminin �2 chain expression in mdx and mdxLM�1 muscles, compared with
the wild type. B and C: Immunoblotting of skeletal muscle tissue extracts
from wild-type (n � 3), mdx (n � 3), and mdxLM�1 mice (n � 3) reveals
significant 5-fold upregulation of laminin �1 and �1 subunits (both at ap-
proximately 200 kDa) in mdxLM�1 muscles, compared with both wild-type
muscle (**P � 0001) and mdx muscle (**P � 0001). One-way analysis of
variance followed by Bonferroni’s multiple comparison test was used for
statistical analysis. Results are reported as means � SD. D: Increased immu-
nofluorescent signals for laminin �1 and �1 chains in mdxLM�1 muscle
basement membranes, compared with wild-type and mdx basement mem-
branes. They form heterotrimers with � subunits. Scale bars: 50 �m (A, all
images in the same row, and D, all images).
mates revealed degenerating/regenerating and necrotic
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regions with mononuclear cell infiltrates in all muscles
(quadriceps, triceps brachii, soleus, and diaphragm are
shown in Figure 4A; gastrocnemius and tibialis anterior
are not shown). Fiber splitting and endomysial fibrosis
(Figure 4A) were also evident, especially in diaphragm
muscle. Detailed comparative analyses of central nucle-
ation between mdx and mdxLM�1 mice showed no sig-
nificant difference in the amount of regenerating fibers
(tibialis anterior, triceps brachii, and diaphragm), reveal-
ing robust muscle damage and degeneration/regenera-
tion cycles in both genotypes (Figure 4B). Likewise, fiber
size distribution was not significantly different between
mdx and mdxLM�1 diaphragm and triceps brachii mus-
cles (Figure 4C).

Fibrosis is 10 times more pronounced in mdx dia-
phragm than in mdx hindlimb muscles.27 We observed
the same trend using antibodies against collagen III (data
not shown) and tenascin-C. Hence, we quantified the
expression of tenascin-C in diaphragm muscle from mdx

Figure 3. Histological analyses of 5-week-old mdx and mdxLM�1 muscles.
gastrocnemius (Gast), triceps brachii (Tri), and diaphragm (Dia) muscles reve
large areas of muscle. The TA muscle was least affected by necrosis; only s
and mdxLM�1 mice (Figure 4D). Tenascin-C was depos-
ited mostly focally in large patches in both genotypes,
and fibrotic areas were not smaller in mdxLM�1 dia-
phragm muscle (Figure 4D).

The mdx mice are also characterized with contraction-
induced damage of sarcolemma,28,29 decreased grip
strength,30 and drastically elevated CK levels.31 Notably,
sarcolemmal integrity was not increased in mdx mice
upon laminin �1 chain overexpression. Nonexercised 2-
to 3-month-old mdxLM�1 animals displayed substantial
Evans Blue dye uptake in different muscles (Figure 5A).
Treadmill exercise further enhanced muscle fiber dam-
age in mdxLM�1, as well as in mdx littermates (Figure
5A), and EBD-uptake did not differ significantly between
the genotypes (Figure 5B).

Additionally, 2- to 3-month-old mdxLM�1 mice re-
mained as weak as mdx animals, as revealed by grip
strength testing of forelimbs (Figure 5C). Finally, CK lev-
els were substantially elevated in 2- to 3-month-old
mdxLM�1 mice, compared with control mice, and re-

xylin and eosin staining of quadriceps femoris (Quad), tibialis anterior (TA),
atic focal necrosis in both mdx and mdxLM�1 muscles, often covering very
all necrotic patches were found. Scale bars: 50 �m.
Hemato
mained not significantly different from mdx animals (Fig-
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ure 5D), emphasizing the poor overall condition of
mdxLM�1 muscle and mirroring all of the dystrophic
changes described here.

All these data confirm advanced muscular dystrophy
in mdx mice producing laminin-111 in skeletal muscle.
Their dystrophic phenotype was not improved in any way,
compared with mdx littermates.

Laminin �1 Chain Overexpression Additionally
Increases the Expression of Integrin �7 but
Does Not Restore DGC in the mdx Muscle

It has been reported that expression of integrin �7 is

increased in mdx mice8,16 and in mdx mice injected with
laminin-111.8 In agreement with these reports, we de-
tected an increase in expression of integrin �7B (the
major cytoplasmic splice variant produced in muscle32)
in mdx and mdxLM�1 muscle, compared with wild-type
muscle (Figure 6A). This was especially evident in limb
muscles, and to a lesser extent in diaphragm muscle.
Western blot analyses confirmed the upregulation of in-
tegrin �7B in mdx animals (1.8 fold) and revealed further
moderate increase in integrin �7B expression in
mdxLM�1 limb muscle, compared with mdx limb muscle,
to the same degree as detected by Rooney et al8 (1.4
fold) (Figure 6, B and C).

The injection of laminin-111 also resulted in enhanced

Figure 4. Analyses of mdxLM�1 and mdx mus-
cle morphology. A: Hematoxylin and eosin
staining of quadriceps femoris (Quad), soleus
(Sol), triceps brachii (Tri), and diaphragm (Dia)
muscles from 2-month-old mdxLM�1 (n � 3)
and mdx (n � 3) mice reveals advanced mus-
cular dystrophy in both genotypes. Images in
columns 2 and 4 (magn) were taken at higher
magnification than in columns 1 and 3, and are
from a different individual. Robust muscle de-
generation/regeneration is evident as fibers con-
tain centrally located nucleus. Necrotic areas and
fibrotic lesions are indicated by arrows and ar-
rowheads, respectively. The two separate mag-
nified images for mdx diaphragm muscle show
presence of adipose tissue (top) and splitting
fibers (bottom). B: Detailed analyses of central
nucleation of muscle fibers show no significant
differences between mdx (n � 3) and mdxLM�1
(n � 3) mice in all analyzed muscles (tibialis
anterior, P � 0.0792; triceps brachii, P � 0.4470;
and diaphragm, P � 0.5365). Unpaired t-test was
used for statistical analysis. Results are reported
as means � SD. C: Fiber size distribution from
mdxLM�1 and mdx triceps brachii (n � 3 for
both genotypes) and diaphragm muscle (n � 3
for both genotypes). There is no shift toward
bigger muscle fibers in mdxLM�1 muscles (tri-
ceps brachii, P � 0.9999; diaphragm, P �
0.9997). The �2 test was used for statistical anal-
ysis. D: Tenascin-C labeling reveals fibrosis of
diaphragm muscle from mdxLM�1 animals (n �
6). The area of fibrotic lesions is not reduced,
compared with diaphragm muscle from mdx
mice (n � 5) (P � 0.7527). Unpaired t-test was
used for statistical analysis. Results are shown as
means � SD. Large patches of tenascin-C stained
areas are shown in the micrographs, whereas the
graphs represent the ratio of fibrotic lesion area
to total area. The entire area of the diaphragm
cross-section was used for quantification of te-
nascin-C staining. Scale bars: 50 �m.
expression of utrophin,8 which is the dystrophin homolog



1734 Gawlik et al
AJP April 2011, Vol. 178, No. 4
Figure 5. Examination of muscle function in mdxLM�1 mice. A: Analyses of sarcolemmal integrity. Untrained mdxLM�1 mice (n � 3) display damaged muscle
fibers, as demonstrated by EBD uptake (fibers stained in red, top row). Treadmill exercise (trained) further enhances muscle injury in mdxLM�1 mice (n � 4)
(middle row). The mdx mice subjected to training (n � 3) show a similar pattern of sarcolemmal disruption and EBD uptake as the mdxLM�1 mice (bottom
row). Quadriceps femoris (Quad), tibialis anterior (TA), calf, and triceps brachii (Tri) muscles from both legs were analyzed. Laminin �1 immunostaining (green)
was used to covisualize muscle fibers. Moderately affected muscles were chosen for illustration. Scale bar � 100 �m for all images. B: Quantification of EBD uptake
in exercised mdx and mdxLM�1 mice. Sarcolemmal damage is not reduced in mdxLM�1 muscles (quadriceps femoris, P � 0.4000; tibialis anterior P � 0.6286;
calf, P � 0.7213; triceps brachii, P � 0.2286). There is considerable variability of EBD uptake in mdx and mdxLM�1 mice between animals from the same group
and even between opposing limbs from the same individual. Mann-Whitney U-test was used for statistical analysis. Results are reported as means � SD. C: Grip
strength testing reveals no increase in forelimb muscle strength of mdxLM�1 mice (n � 6), compared with mdx animals (n � 7) (P � 0.05). Both mouse genotypes
remained significantly weaker than age-matched wild-type mice (n � 5) (***P � 0.0001 for both mdx and mdxLM�1). One-way analysis of variance followed by
Bonferroni’s test was used for statistical analysis. Results are reported as means � SD. D: Serum CK activity in mdx/� control (n � 8), mdx (n � 10), and mdxLM�1
(n � 7) mice. There was no difference in CK activity between mdx and mdxLM�1 animals (P � 0.05), but for both genotypes the CK level was significantly

elevated compared with the mdx/� control (***P � 0.0001 for both mdx and mdxLM�1). Kruskal–Wallis one-way analysis of variance followed by Dunn’s test
was used for statistical analysis. Results are reported as means � SD.
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upregulated in mdx animals.33 Additionally, utrophin was
shown to functionally replace dystrophin upon transgenic
overexpression in this mouse model.34 We therefore an-
alyzed the expression of utrophin in mdx mice overex-
pressing laminin �1 chain. Immunostaining revealed sub-
stantial upregulation of utrophin alongside sarcolemma in
mdx and mdxLM�1 limb muscles, compared with wild-
type muscles, where it is expressed only in the neuro-
muscular junctions (Figure 7, arrows). The immunofluo-
rescent signal did not differ appreciably between mdx
and mdxLM�1 muscle; that a moderate utrophin upregu-
lation upon laminin �1 chain overexpression cannot be

Figure 6. Analyses of integrin �7B expression in wild-type, mdx, and
mdxLM�1 mice. A: Immunostaining reveals upregulation of integrin �7B in
mdx and mdxLM�1 muscles. Quadriceps, triceps brachii, and diaphragm are
shown. Scale bar � 100 �m for all images. B and C: Immunoblotting of
skeletal muscle tissue extracts (nonreducing conditions) from wild-type (n �
3), mdx (n � 3), and mdxLM�1 mice (n � 3) using integrin �7B antibody.
Densitometric analysis confirms significant upregulation of integrin �7B in
mdx and mdxLM�1 vs wild-type mice (1.8 fold, *P � 0.05; 2.5-fold, ***P �
0.0001, respectively). Additionally, moderate increase of integrin �7B was
noted in mdxLM�1 limb muscles, compared with mdx muscles (1.4 fold,
*P � 0.05). Coomassie Blue staining was shown to demonstrate equal loading.
One-way analysis of variance followed by Bonferroni’s multiple comparison test
was used for statistical analysis. Results are reported as means � SD.
distinguished by immunohistochemical means.
The effect of laminin-111 injections on expression of
dystrophin-associated proteins is unknown, but laminin
�1 chain overexpression could influence the expression
of DGC components. We therefore analyzed the expres-
sion of �-dystroglycan, �-dystroglycan, and �-sarcogly-
can in wild-type, mdx, and mdxLM�1 muscles. All three
DGC components are severely reduced in mdx muscle5

(Figure 7). Laminin-111 is a strong ligand for �-dystrogly-
can,14 but none of the dystroglycan subunits (which
link dystrophin/utrophin to the cell membrane and ex-
tracellular matrix) were restored at the sarcolemma
upon laminin �1 chain overexpression in mdx mice
(Figure 7). Similarly, �-sarcoglycan expression was not
normalized either (Figure 7). Lack of DGC restoration
might be associated with failure of improvement of the
dystrophic phenotype in mdxLM�1 mice, which further
indicates that integrin �7 alone is not sufficient for ame-
lioration of disease symptoms.

Discussion

To date, the laminin-111 protein therapy approach seems
to bypass several major obstacles that hinder various
genetic strategies for curing DMD. The results presented
by Rooney et al8 are striking, considering that the in-
jected 900-kDa protein must traverse many barriers be-
fore it reaches skeletal muscle. It is debatable, however,
whether laminin-111 would be beneficial for dystrophin-
deficient muscle, which already expresses normal levels
of laminin-211, as well as elevated levels of integrin �7
and utrophin. Furthermore, it is remarkable that laminin-
111 could functionally replace dystrophin, a protein that

Figure 7. Expression of dystrophin-glycoprotein complex components in
wild-type, mdx, and mdxLM�1 limb muscles. In wild-type muscle, utrophin
(UTR) is expressed at the neuromuscular junction (arrows). In mdx and
mdxLM�1 muscle, it is abundantly present along the sarcolemma. On the
other hand, �-dystroglycan and �-dystroglycan (DG) and �-sarcoglycan (SG)

are severely reduced in both mdx and mdxLM�1 muscle cell membranes.
Scale bars: 100 �m for all images.
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displays completely different structure, function, and
subcellular localization. Hence, additional preclinical
studies are needed to verify its functionality and safety
and to describe the molecular events resulting from such
intervention. In the present study, we tested by trans-
genic means the efficacy of laminin-111 in preventing
dystrophin-deficient muscular dystrophy in mice. Al-
though laminin �1 chain overexpression resulted in
laminin-111 deposition in muscle basement membranes,
its expression did not prevent the muscular dystrophy in
mdx animals.

Even allowing that our transgenic method is obviously
different from the protein therapy introduced by Rooney
et al,8 there is an evident discrepancy in the results
obtained. One possibility is that injected EHS laminin
undergoes fragmentation, which might facilitate the inter-
action of some laminin epitopes with their receptors.
Hence, it is not excluded that smaller laminin molecules
could be more effective in preventing the development of
muscular dystrophy than a full-length laminin particle.

Another possible explanation for the discrepancies ob-
served is that EHS laminin might be slightly different from
endogenous35 or transgenic laminin-111, although it has
also been shown that EHS laminin-111 is chemically,
structurally, and immunologically identical to that ob-
tained from nontumorigenic tissues.36 Additionally, com-
mercial EHS laminin might contain other components that
influence the outcome of laminin-111 protein therapy.
Finally, although laminin �1 chain cDNA stays under the
control of the �-actin promoter and in theory should be
ubiquitously expressed, it is overexpressed primarily in
the neuromuscular system.11,12 Injected EHS laminin
might have a more systemic effect, and muscle pheno-
type improvement might result from global molecular
events triggered by EHS laminin in different tissues.

Integrin �7 has been suggested to be one of the key
molecules modifying disease progression in mdx mice
treated with EHS laminin.8 In our mdxLM�1 mouse model,
we also detected significant upregulation of integrin �7B,
but this event might not be sufficient to secure the reduc-
tion of dystrophic symptoms by laminin-111 in mdx mice.
We have previously shown that laminin �1 chain overex-
pression regulates the expression of integrin �7 in laminin
�2 chain-deficient mice, and that this positive regulation
is beneficial for muscle tissue.22 In those animals, how-
ever, the entire DGC complex remains intact and avail-
able for interaction with laminin-111, certainly contribut-
ing to the rescue of dystrophic phenotype. This is further
confirmed by our more recent data: when laminin-111
binding to integrin �7 is maintained, but simultaneously
the link between laminin-111 and DGC is disrupted, limb
muscles are not spared from laminin �2 chain-deficient
muscular dystrophy.23 Thus, upregulation of integrin �7
alone, without concomitant complete restoration of DGC,
might not lead to alleviation of the muscle phenotype in
mdx mice.

In summary, further steps are needed to verify the
efficacy of laminin-111 injections into mice. Additionally,
the molecular mechanisms triggered by systemic intro-

duction of laminin-111 in muscle and other tissues must
be characterized in more detail before bringing laminin-
111 protein therapy to clinical trials.
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