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Tumor angiogenesis appears to be achieved by the expression of vascular endothelial growth factor (VEGF)
within solid tumors that stimulate host vascular endothelial cell mitogenesis and possibly chemotaxis. VEGF’s
angiogenic actions are mediated through its high-affinity binding to 2 endothelium-specific receptor tyrosine
kinase, Flt-1 (VEGFR1), and Flk-1/KDR (VEGFR2). RNA interference-mediated knockdown of protein expres-
sion at the messenger RNA level provides a new therapeutic strategy to overcome various diseases. To achieve
high efficacy in RNA interference-mediated therapy, it is critical to develop an efficient delivering system to
deliver small interference RNA (siRNA) into tissues or cells site-specifically. We previously reported an an-
giogenic endothelial cell-targeted polymeric gene carrier, PEI-g-PEG-RGD. This targeted carrier was developed
by the conjugation of the anb3/anb5 integrin-binding RGD peptide (ACDCRGDCFC) to the cationic polymer,
branched polyethylenimine, with a hydrophilic polyethylene glycol (PEG) spacer. In this study, we used PEI-g-
PEG-RGD to deliver siRNA against VEGFR1 into tumor site. The physicochemical properties of PEI-g-PEG-
RGD/siRNA complexes was evaluated. Further, tumor growth profile was also investigated after systemic
administration of PEI-g-PEG-RGD/siRNA complexes.

Introduction

Vascular endothelial growth factor (VEGF), a
member of the platelet-derived growth factor family, is

considered as a major inducer of angiogenesis and vessel
permeability. Tumor angiogenesis can be achieved by the
expression of VEGF within solid tumors that stimulate host
vascular endothelial cell mitogenesis and possibly chemotaxis
(Giles, 2001; Margolin, 2002). In addition, expression of the
VEGF is upregulated by hypoxia (Shweiki et al., 1992; Aiello
et al., 1995) and inflammatory mediators (Cheng et al., 1998).
VEGF’s angiogenic actions are mediated through its high-
affinity binding to 2 endothelium-specific receptor tyrosine
kinase, Flt-1 (fms-like tyrosine kinase or VEGFR1), and Flk-1/
KDR (fetal live kinase or VEGFR2). Flt-1 shows at least 10-fold
higher affinity for VEGF relative to Flk-1/KDR (Terman et al.,
1992; Millauer et al., 1993; Quinn et al., 1993). During devel-
opmental angiogenesis, VEGFR1 acts as a negative regulator
of VEGF activity, but in adult mice with Lewis lung carci-

noma, tumor angiogenesis was stimulated by VEGFR1 (Hir-
atsuka et al., 2001). In mice with ischemic retinopathy,
intravenous injection of small interference RNA (siRNA) tar-
geting VEGFR1 reduced retinal neovascularization by 32%
compared to control siRNA (Shen et al., 2006). Also, a
VEGFRs tyrosine kinase inhibitor, GW654652, significantly
decreased cell proliferation and induced apoptosis in human
umbilical vein endothelial cells and M6 mammary tumor cells
(Huh et al., 2005). Thus, silencing of VEGF and VEGFR ex-
pression or inhibition of VEGF-VEGFR interaction with in-
hibitors has a therapeutic potential for suppression of tumor
angiogenesis.

Numerous studies have been conducted via suppression of
VEGF expression using antisense oligonucleotides (Robinson
et al., 1996), soluble VEGF receptor (sFlt-1) (Kendall and
Thomas, 1993; Goldman et al., 1998), VEGF receptor chimeric
proteins (Aiello et al., 1995), and through interference
with intracellular signal transduction pathways (Ozaki et al.,
2000; Takahashi et al., 2003). More recently, siRNA has been
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used to silence the expression of VEGF (Reich et al., 2003; Kim
et al., 2006a).

RNA interference (RNAi)-mediated knockdown of protein
expression at the messenger RNA (mRNA) level provides a
new therapeutic strategy to overcome various diseases. RNAi
has been successfully utilized in various therapeutic applica-
tions such as combat against viral pathogenesis, cancer, and
inflammation by siRNA-mediated silencing of the responsible
genes (Song et al., 2003; Flynn et al., 2004; Yano et al., 2004). To
achieve high efficacy in RNAi-mediated therapy, it is crucial
to develop an efficient delivering system to deliver siRNA into
tissues or cells site-specifically (Sorensen et al., 2003).

We previously reported an angiogenic endothelial cell-
targeted polymeric gene carrier, PEI-g-PEG-RGD. This tar-
geted carrier was developed by the conjugation of the anb3/
anb5 integrin-binding RGD peptide (ACDCRGDCFC) to the
cationic polymer, namely, branched polyethylenimine (BPEI)
with a hydrophilic polyethylene glycol (PEG) spacer (Suh et al.,
2002; Kim et al., 2005b, 2006b). In vitro transfection showed that
PEI-g-PEG-RGD efficiently transferred therapeutic gene to
angiogenic endothelial cells, but not to the nonangiogenic cells
(Kim et al., 2005b). In addition, the PEI-g-PEG-RGD gene car-
rier delivered genes to tumors more efficiently than PEI-g-PEG
after systemic administration (Kim et al., 2006b).

In the present study, we introduced synthetic siRNA tar-
geting VEGFR for inhibiting tumor growth. To deliver siRNA
into tumor site, we used the targeted polymeric gene carrier,
PEI-g-PEG-RGD, which was previously developed in our
group. The physicochemical properties of PEI-g-PEG-RGD/
siRNA complexes were evaluated. Further, tumor growth
profile was also investigated after systemic administration of
PEI-g-PEG-RGD/siRNA complexes.

Materials and Methods

Materials

BPEI (average molecular weight 25 kDa; average degree of
polymerization 580) and Rosewell Park Memorial Institute
(RPMI 1640) medium were purchased from Sigma-Aldrich
(Milwaukee, WI). Dulbecco’s modified Eagle’s medium,
penicillin–streptomycin, trypsin-like enzyme (TrypLE Ex-
press), and Dulbecco’s phosphate buffered saline were
purchased from Gibco BRL (Carlsbad, CA). N-hydro-
xysuccinimide-vinyl sulfone PEG (molecular weight 3400)
was purchased from NEKTAR (Huntsville, AL). RGD pep-
tide, ACDCRGDCFC, was purchased from the Genemed
Synthesis, Inc. (San Franscisco, CA). After synthesis, peptides
were purified via reverse-phase high-performance liquid
chromatography and then analyzed by mass spectrometry
performed using matrix-assisted laser desorption/ionization
time of flight mass spectrometer. Fetal bovine serum (FBS)
was purchased from HyClone (Logan, UT). siRNAs were
purchased from IDT Tech., Inc. (Coralville, IA) and sequences
of siRNA are shown in Fig. 1B. All siRNAs were 21-nucleo-
tide-long double-stranded RNA oligos with a 2 nucleotide
overhang (TT) at the 30 end. The siRNA and scRNA stand for
mouse siRNA against VEGF receptor 1 and scrambled siRNA,
respectively. We selected siRNA sequences as reported by
Kim et al. (2004). SVR cell line and CT-26 colon adenocarci-
noma cell lines were purchased from American Type Culture
Collection (Manassas, VA).

Synthesis of PEI-g-PEG-RGD

The PEI-g-PEG-RGD conjugate (Fig. 1A) was synthesized
and purified as reported earlier (Suh et al., 2002; Kim et al.,
2005b). Briefly, in the first step, RGD peptide was conjugated
to N-hydroxysuccinimide-vinyl sulfone PEG in anhydrous
N,N-dimethylformamide (DMF) in presence of 4 molar excess
of triethylamine (TEA). In the subsequent step, 2 molar excess
of RGD-PEG-VS conjugates were mixed with BPEI solution in
pH 9.0 sodium carbonate buffer and incubated at room tem-
perature overnight. The final product, PEI-g-PEG-RGD, was
purified by dialysis and lyophilized. The composition of PEI-
g-PEG-RGD conjugates were analyzed by 1H-nuclear mag-
netic resonance (1H-NMR).1H-NMR spectra were obtained
on a Varian Inova 400 MHz NMR spectrometer (Varian, Palo
Alto, CA) using standard proton parameters. Chemical shifts
were referenced to the residual HDO resonance at *4.7 ppm.
The molar ratios of RGD to PEG and RGD to PEI of conjugates
were 1 and 1.3, respectively as determined by NMR spectrum
analysis (Kim et al., 2005b).

Polyacrylamide gel electrophoresis studies

Various amounts of PEI-g-PEG-RGD, ranging from 0 to
115 ng, were added to 7 ng of siRNA at various N/P ratios
(nitrogen of PEI-g-PEG-RGD/phosphate of siRNA) ranging
from 0 to 100 in 5% glucose solution and incubated for 30
minutes at room temperature. After incubation, each sample
was electrophoresed on a 13% polyacrylamide gel (w/v) for 1
hour at 100 V. TBE (89 mM Tris-borate, 2 mM EDTA) buffer
was used as electrophoresis buffer. After ethidium bromide
(0.1 mg/mL) staining, the gel was illuminated with a UV il-
luminator to determine the location of uncomplexed siRNA.

Stability of siRNA in serum

Stability assay of siRNA in serum was performed as de-
scribed in previous a report (Kim et al., 2007). Briefly, PEI-g-
PEG-RGD/siRNA complexes (N/P¼ 10) or free siRNA
(63 ng) were incubated at 378C in the 5% glucose solution
containing 20% FBS. At 0, 0.5, 1, 3, and 6 hour postincubation,
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siVEGFR1 (a)
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5’-AAGCAGGCCAGACUCUCUUUCTT-3’

3’-TTUUCGUCCGGUCUGAGAGAAAG-5’

siVEGFR1 (b)
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FIG. 1. Structure of PEI-g-PEG-RGD polymer (A) and se-
quences of siRNAs targeting VEGFR1 and unrelated siRNAs
(B). VEGFR, vascular endothelial growth factor receptor;
siRNA, small interference RNA.
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10 mL of samples was taken into Eppendorf tubes, and stored
at �708C. The samples were thawed and mixed with 2mL of
2% sodium dodecyl sulfate and analyzed by electrophoresis
using a 13% polyacrylamide gel. After electrophoresis, gels
were stained with ethidium bromide and observed on a UV-
transilluminator. The gel images were obtained using a Gel-
Doc system (BioRad, Hercules, CA).

Zeta potential and size distribution measurement

Surface charge and particle size distribution assay of
polymer/siRNA complexes were performed as described
previously (Kim et al., 2007). Briefly, PEI-g-PEG-RGD/siRNA
complexes were prepared at various N/P ratios ranging from
0 to 30 by adding various amounts of PEI-g-PEG-RGD into the
same volume of siRNA (1 mg in 5% glucose solution). The
mixture was then incubated for 30 minutes at room temper-
ature. Zeta potential and size distribution of each sample were
determined by 3 serial measurements using a Zetasizer
3000HSA (MALVERN Instruments, Worcestershire, United
Kingdom).

Cell culture

SVR cells (CRL-2280, ATCC) and CT-26 colon adenocarci-
noma cell line were grown and maintained in Dulbecco’s
modified Eagle’s medium and RPMI 1640 medium, respec-
tively; supplemented with 10% FBS, 100 U/mL penicillin, and
100 U/mL streptomycin; and maintained at 378C under hu-
midified atmosphere.

Reverse transcription–polymerase chain reaction

SVR cells were grown to 80% confluency in 6-well plates
and transfected with 8.73 mg of PEI-g-PEG-RGD complexed
with either siLuc or siVEGFR. After 24-hour incubation, the
cells were trypsinized from the plate and total RNA was
isolated from the transfected cells using the Qiagen RNeasy
kit according to the manufacturer’s DNase protocol (Qiagen,
Valencia, CA) to eliminate DNA contamination. The concen-
tration of RNA was estimated by measuring the absorbance at
260 nm. Equal amount of cDNAs was synthesized in 20 mL of
reaction mixtures by reverse transcription using Super-
Script� III Reverse Transcriptase (Invitrogen, Carlsbad, CA).
To this mixture, we added 100 ng of total RNA. The reaction
was allowed to proceed at 658C for 5 minutes and at 48C for 5
minutes, and subsequently heated for 50 minutes at 508C and
at 858C for 5 minutes. Specific oligonucleotide primers were
the forward primer 50-CAG GAC GAT GAA TCT GAG CTG-30

and backward primer 50-CAC TGC TCC TTC CTG TCC AG -30.
The polymerase chain reaction (PCR) reaction involved
heating at 958C for 5 minutes, 30 cycles at 948C for 15 seconds,
58.58C for 30 seconds, and 728C for 35 seconds, followed by an
extension of 5 minutes at 728C. The PCR products were sep-
arated by electrophoresis in 1% agarose gels.

Mice

Five-week-old female BALB/c mice were purchased from
Simonsen Laboratories (Gilroy, CA) and housed in the Ani-
mal Care Facility, Biomedical Polymers Research Building,
University of Utah. Mice were maintained on ad libitum ro-
dent feed and water at room temperature and 40% humidity.
All mice were acclimated for at least 1 week before tumor

implantation. All studies were performed in accordance with
the approved animal protocol.

Tumor implantation and treatment

To generate tumors, 5-week-old female BALB/c mice were
injected subcutaneously in the middle of the right flank with
100mL of a single-cell suspension containing 1�106 CT-26
cells. Tumor size was measured using a digital vernier caliper
across its longest (a) and shortest diameters (b) and its volume
was calculated using the formula V¼ 0.5ab2. Treatment of the
tumors was started after 10–15 days when the tumor size
attained a volume of *65–70 mm3.

Tumor growth inhibition studies

Mice received intravenous injections of siVEGFR or siLuc
(7mg) complexed with polymers in a 200 mL solution of 5%
glucose at N/P ratio of 10 (n¼ 5). All tumor-bearing mice
were administrated with injections at an interval of twice a
week (day 1, 4, 8, and 11). In all cases, tumors were measured
every 3 days and mice were examined for monitoring the
appearance and growth of necrosis as well as decreased
physical activity. Tumor progression was reported in terms of
tumor volume over a period of 11 days.

Statistical analysis

Results were reported as the mean� SEM. The statistical
analysis between groups was determined using a nonpaired
t-test. P< 0.05 was considered to be significant.

Results

Polyelectrolyte complex formation
of PEI-g-PEG-RGD with siRNA

To deliver siRNA into cells, polymeric carrier should form
stable polyplex with siRNA. To ascertain the formation of PEI-
g-PEG-RGD/siRNA complexes, the gel retardation assay was
performed at various N/P ratios and observed on a UV-
transilluminator. The electrophoretic mobility of the siRNA in
the gel was retarded as the amount of the PEI-g-PEG-RGD
was increased, indicating the charge neutralization due to the
effective binding between PEI-g-PEG-RGD and siRNA. As
shown in Fig. 2, when the value of N/P ratio of PEI-g-PEG-
RGD/siRNA reached 10, free siRNA could not be detected on
polyacrylamide gel electrophoresis, indicating that complete
retardation of siRNA occurred at N/P ratio 5–10.

FIG. 2. Electrophoretic mobility assay of siRNA complexes
with PEI-g-PEG-RGD. Lane 1: siRNA only; lanes 2–8, the
N/P ratio of PEI-g-PEG-RGD/siRNA¼ 0.5, 1, 2, 5, 10, 50,
and 100, respectively.
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Stability of siRNA in serum

siRNA becomes subjected to facile degradation by various
serumic enzymes such as nucleases and RNases when injected
into blood stream. This enzymatic degradation of siRNA can
be averted by the formation of compact polyelectrolyte com-
plex between siRNA and cationic polymer so that the physical
shield of cationic polymer may prevent the approach of
serumic enzymes toward the siRNA. To evaluate the protec-
tion of siRNA by PEI-g-PEG-RGD from serum enzymes, we
performed a serum stability assay. The PEI-g-PEG-RGD/
siRNA polyplex was formed by incubation of siRNA with
PEI-g-PEG-RGD for 30 minutes, and then, the polyplexes
were incubated at 378C in the presence of 20% FBS. When
incubated with 20% FBS, free siRNAs were completely de-
graded due to RNase in the FBS within 30 minutes of incu-
bation. However, the condensed siRNAs by PEI-g-PEG-RGD
were efficiently protected at N/P ratio 10 (Fig. 3). As shown in
Fig. 3, siRNA remained intact at lease for 6 hour even in the
presence of 20% FBS, which might ensure prolonged contact
between the polyplex and the target cells during circulation
when injected into the blood stream.

Physicochemical properties
of PEI-g-PEG-RGD/siRNA complex

To achieve high efficiency for siRNA delivery, it is essential
to optimize the physicochemical properties of polyplexes such
as size and surface charge. Therefore, surface charge and ef-
fective particle size of PEI-g-PEG-RGD/siRNA were studied.
Different N/P ratios of PEI-g-PEG-RGD to siRNA were in-
vestigated at constant siRNA concentration. As shown in
Table 1, the sizes of all the complexes were lying between 114
and 180 nm at various N/P ratios ranging from 5 to 30. In-
itially, the size of polyplexes decreased abruptly to 114 nm at
N/P ratio 5, and then it attained constant size of 134 nm at N/
P ratio 30. This result is in good agreement with other reports
(Shim and Kwon, 2009; Mok et al., 2010). In addition, the

relative homogenous size distributions of complexes are un-
imodal as shown in Fig. 4A. The surface charges of complexes
were also studied at various N/P ratios (Table 1). The zeta
potential for all complexes remained in the range of 0.8–
5.8 mV with the exception of N/P ratio 1, where the stable
polyplex could not be formed completely. The relative surface
charge also showed unimodal distribution of complexes as
shown in Fig. 4B. For enhanced cellular uptake of complexes,
positive surface charge of complexes is necessary for binding
to anionic cell surfaces. We believed that the nano-sized PEI-
g-PEG-RGD/siRNA complexes charged positively had a po-
tential as an efficient siRNA delivery carrier.

In vitro knockdown of VEGFR1
mRNA by PEI-g-PEG-RGD/siRNA polyplexes

The successful suppression of VEGFR expression could be
induced through the inhibition of mRNA of VEGFR by effi-
cient delivery of siRNA into cells. This reduced expression of
VEGFR on the surface of endothelial cells could inhibit an-
giogenesis that is induced by VEGF-VEGFR interaction, and
thereby could arrest the tumor growth and metastasis. To
investigate whether polyplex can suppress the amount of
mRNA of VEGFR or not, the siVEGFR was mixed with PEI-g-
PEG-RGD polymer and then transfected into SVR cells that
endogenously express the VEGFR1. As a control, unrelated
siRNA (siLuc) was also transfected separately. siVEGFR
against VEGFR1 suppressed the mRNA level as shown in
Fig. 5, whereas control siLuc did not show any inhibitory
effect even at higher amount of siRNA. These results indicated
that the designed siVEGFR against VEGFR1 in SVR cells was
able to inhibit the production of VEGFR1 mRNA in vitro and
had a potential to inhibit tumor angiogenesis in vivo.

In vivo inhibition of tumor growth
with PEI-g-PEG-RGD/siRNA polyplex

Previously, we have demonstrated that the systemic
transfection of the soluble VEGFR1 (sFlt-1) by PEI-g-PEG-
RGD polymer inhibited the tumor growth in subcutaneous
mouse tumor model (Kim et al., 2006b). Therefore, we used
this model to test whether the systemic application of PEI-
g-PEG-RGD/siVEGFR complexes results in the growth
inhibition of established subcutaneous (s.c.) tumors or not.
PEI-g-PEG-RGD/siRNA complexes were administrated to
tumor-bearing mice intravenously through the tail vein. PEI-
g-PEG-RGD-complexed siRNA (PEI-g-PEG-RGD/siVEGFR)
or PEI-g-PEG-complexed siRNA (PEI-g-PEG/siVEGFR) or
unrelated control siRNA complexed with PEI-g-PEG-RGD
(PEI-g-PEG-RGD/siLuc) as a negative control was injected
into mice every 3 days. As shown in Fig. 6, tumors in mice
treated with PEI-g-PEG/siVEGFR or PEI-g-PEG-RGD/siLuc
grew very rapidly reaching a mean size of over 570 mm3 after
11 days. The treatment with the PEI-g-PEG-RGD/siVEGFR,

FIG. 3. siRNA protection assay in serum. Degradation of
siRNA exposed to serum was measured for PEI-g-PEG-
RGD/siRNA complexes and compared with free siRNA. The
PEI-g-PEG-RGD/siRNA complexes, or free siRNA, was in-
cubated in 20% serum from 0 to 6 hour. Undegraded, intact
siRNA is detected after polyacrylamide gel electrophoresis
and ethidium bromide staining.

Table 1. Particle Characterization of PEI-g-PEG-RGD/Small Interference RNA Complex

N/P 1 5 10 20 30

Mean particle size (nm) >1000 114.3� 8.5 160.9� 5.5 180.0� 6.1 134.0� 5.7
Zeta-potential (mV) �2.9� 5.5 0.8� 2.1 4.2� 1.6 5.8� 0.8 5.8� 1.7
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however, resulted in a significantly suppressed tumor growth
(the mean tumor volume is <330 mm3 after 11 days), sug-
gesting that the RGD moiety of the carrier and therapeutic
effect of the siRNA were responsible for tumor suppression
(Fig. 6).

Discussion

In our previous reports with in vitro and in vivo experi-
ments, we have demonstrated that the employment of tumor-
targeting ligand, RGD, into nonviral polymeric gene delivery
system improved the transgene expression in tumors com-
pared with nontargeted nonviral gene delivery system (Kim
et al., 2005b, 2006b). In those studies, we have shown that
the tumor-targeted gene delivery system reduced the amount

of transgene delivered to other organs; in other words, rela-
tively high amount of accumulations in tumor site was at-
tained by targeted polymeric gene delivery system as
observed in biodistribution study. Thus, targeted system has
numerous advantages compared with nontargeted system.
Through the use of the targeted polymeric vectors, vector
wastage can be reduced, thereby enhancing the efficiency of
gene transfer in specific site and minimizing the risk of gene
transfer into nontargeted sites that can reduce cytotoxicity
and side effects. There have been numerous studies on gen-
erating nonviral targeted gene delivery system using a variety
of cell-specific ligands, some more successful than others.
These systems include glucosylated vehicle (Zanta et al., 1997;
Choi et al., 1998), folate (Kim et al., 2005a), transferrin (Ogris
et al., 2003), antibodies (O’Neill et al., 2001; Suh et al., 2001),
and growth factors (Sosnowski et al., 1996; Blessing et al.,
2001). With developing efficient delivery vectors, it is also
necessary to design and generate the powerful therapeu-
tic agents based on nucleic acids for the higher therapeu-
tic effect. Several modulating systems of gene function have
been introduced as a therapeutic strategy. Antisense and
ribozyme-based therapies provide the possibility of specific
downregulation of the expression of particular genes pre-
dominantly by interaction with mRNA (Kim et al., 1998;
Pichon et al., 2001; Kashani-Sabet, 2004). Other strategies such
as knockout gene therapy, gene replacement, and suicide
gene therapy have been performed successfully. Recently, a
newly developing approach for targeting mRNA, RNAi, has
been used successfully for gene silencing in various experi-
mental systems, specially tumor therapy, where RNAi
silences the specific mRNA and inhibits the tumor growth
and metastasis.
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In the present study, we introduced synthetic siRNA tar-
geting VEGFR for inhibiting tumor growth. VEGF is a potent
angiogenic factor that binds to VEGFR present on endothelial
cells, evoking on intracellular signaling cascade leading to a
number of physiological responses. Thus, silencing of VEGFR
with siRNA or inhibition of VEGFR function with inhibitors
has a therapeutic potential. To deliver siRNA into tumor site,
we developed the targeted polymeric gene carrier. This PEI-g-
PEG-RGD polymer formed polyelectrolyte complex with
siRNA and protected siRNA from enzymatic degradation as
shown in Figs. 2 and 3. Efficient complexation and protection
of siRNA with polymeric gene carrier are required for safe
delivery of siRNA to the target site. As measured by dynamic
light scattering, the average hydrodynamic diameter of PEI-g-
PEG-RGD/siRNA complex was estimated at about 150 nm.
Also, as shown in gel retardation and zeta-potential mea-
surements, the negative charges on siRNA at N/P ratio of 1
are neutralized and the charge of polyplexes became positive
with the increase of N/P ratios. This is relevant for enhanced
cellular uptake of complexes, increasing their absorption ef-
ficiency in the negatively charged cellular membranes. In
addition to physicochemical characterization of complexes,
this study also suggested that a viable strategy attacking
VEGFR is knockdown the mRNA of VEGFR1 with siRNA.
With the transfection of PEI-g-PEG-RGD/siRNA complex
in vitro, there was considerable reduction of VEGFR mRNA
level as confirmed by reverse transcriptase–PCR in Fig. 5.
These data suggest that the intravenous injection of PEI-g-
PEG-RGD/siRNA deserves further investigation as a poten-
tial treatment approach for inhibition of tumor growth. As
shown in Fig. 6, intravenous delivery of siRNA with targeted
polymeric gene carrier suppressed the tumor growth,
whereas there is no considerable inhibition of tumor growth
in other control groups, indicating that silencing of VEGFR1
with sequence-specific siRNA interfered with the interaction
of VEGF-VEGFR and their further signal transduction. Taking
all these results into account, we consider that this targeted
polymeric siRNA delivery system is applicable to the clinical
cancer gene therapy, whereas further improvement of this
system is necessary.

Conclusion

The present study has demonstrated that siRNA-mediated
reduction of endogenous VEGFR1 could be achieved in vitro
via the targeted polymeric gene delivery of synthetic siRNAs,
at least in terms of mRNA. This study advocates a potential
avenue for tumor gene therapy with significantly suppressed
tumor growth in vivo. Although the developed system can be
considered as an efficient means to achieve successful tumor
therapy, there remains considerable scope to improve the ef-
ficiency of delivery system to address the impediments as-
sociated with in vivo delivery of siRNA.
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