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Abstract
Objective—In this paper, we develop a novel automated method to distinguish centroblast (CB)
cells from non-centroblast (non-CB) cells in follicular lymphoma cases and measure its
performance on cases obtained by a consensus of six pathologists.

Study Design—Geometric and color texture features were used in the training and testing of the
supervised quadratic discriminant analysis (QDA) classifier. The technique was trained and tested
on a data set composed of 218 CB images and 218 non-CB images. Computer performance was
tested by measuring sensitivity and specificity among cells classified as centroblasts and non-
centroblasts by consensus of six board-certified hematopathologists.

Results and Conclusion—Automated classification distinguished centroblast cells (CB) from
non-centroblast cells (Non-CB) with a classification accuracy of 82.56% and sensitivity and
specificity were 86.67% and 86.96%, respectively, when the approach was tested. The novelty of
our approach is the identification of the CB cells with prior information, and the introduction of
the principal component analysis (PCA) in the spectral domain to extract texture color features.
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I. Introduction
In the United States, Follicular Lymphoma (FL) accounts for 20–25% of non-Hodgkin
lymphomas.1 FL affects mostly adults, particularly the middle-aged and elderly. This
disease is characterized by a partial follicular or nodular pattern and is composed of
lymphoid cells of follicular center origin, including small-cleaved cells (centrocytes), and
larger non-cleaved cells (centroblasts). Grading of FL is crucial for patient risk stratification,
prognosis and treatment and is based on the average number of centroblasts in ten
representative high power fields (40x) in representative neoplastic follicles. This method of
grading is fraught with inter- and intra-observer variability leading to poor reproducibility
and prompting the search for a more accurate and efficient method of quantifying
centroblasts and more reproducible grading schema. In this paper, pathological biopsies and
their diagnostic and prognostic indicators for follicular lymphoma are considered and the
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stand-alone accuracy of the computer was analyzed using centroblast and non-centroblast
cell images from two whole-slide H&E-stained follicular lymphoma images.

Computer applications are increasingly used in medicine to help with detection, diagnosis
and prognosis of diseases.2,3 In a Computer Aided Diagnosis (CAD) system, image
processing, image analysis, and pattern recognition techniques are applied to extract
quantitative data. Precise features extracted from these data are then used for further image
analysis and classification discriminant techniques, such as parametric and non-parametric
statistical classifiers, are employed to classify the images or objects of interest in these
images. Selection of image processing techniques and classification strategies are important
for successful implementation of any machine vision system. Several statistical, structural
and spectral texture approaches for grayscale images have been suggested. 4,5,6,7,8,9

Our goal is to develop a new method that improves pathologist accuracy when grading FL
using novel texture features, color-space decomposition, and by extracting morphological
characteristics of objects. In our previous work, we have used color and texture features and
model-based intermediate representations for the grading of follicular lymphoma.
10,11,12,13,14,15,16 A multivariate image analysis technique using principal component
analysis (PCA) in the spectral domain is investigated. Instead of gray scale images,
information from color spaces is utilized, and RGB, Lab, HSI color spaces are explored.

This paper is organized as follows. In section 2, we describe the proposed method.
Experimental results are presented in section 3. Finally, a conclusion is offered in section 4.

II. DESCRIPTION OF THE TECHNIQUE
Our method is based on a training features vector composed of a mixture of color texture
features and morphological (geometrical) features. The training and testing rules are
achieved using a supervised classifier, which is well known as a quadratic discriminate
analysis classifier (QDA). 17,18 The color features are extracted from several color spaces
namely R, G, B, H, S, I, L, a, and b respectively.

Pathologists discriminate CB cells from non-CB cells by observing specific quantifiable
cellular structures. They compare cell size and pick the cells that are larger when compared
to other cells. For example, pathologists often compare cells of interest to blood cells. Here,
we discuss the geometric characteristics of large cells when image textures are taken into
consideration. Figure 1 exhibits the different steps of our technique. Only H&E stained
images were used in this study.

II.1- Object feature extraction
To extract the geometric features of each image of the data set, we have developed a method
that takes into consideration a succession of operations such as thresholding, morphological
filtering, and area identification. Next, we give a brief overview of these steps:

1. The RGB image is converted into the Lab space. The Lab space is recognized to be
more perceptually uniform with respect to RGB space and presents a better overall
contrast. The L channel representing the luminance factor of the Lab space is kept
for further processing to extract the object.

2. The Otsu parametric thresholding technique 19 is then applied to the image
obtained from step 1.

3. Opening and closing morphology operations are used on the complement of the
binary image obtained in step 2 to recover the shape of objects. A labeling
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morphology operation is computed on the resulting binary image to identify each
object in the image. The connectivity is chosen to be equal to eight.

4. Area measurement is then calculated for each labeled object. The greatest area,
which corresponds to the largest object in the image, is then identified. Figure 2
illustrates the different steps of object extraction.

The area and the perimeter of the cell are computed and represent the geometrical features.
These are combined with the color features to form the feature vector used to train the QDA
classifier.

II.2- Texture color features extraction
Pathologists describe the CB cells as containing several dark nucleoli surrounded by bright
uniform cytoplasm and non-CB cells as homogenous, dense structure. The color is also
another pathological criteria for grading. These criteria were considered when designing our
technique. Our method is organized around analyzing the inner color texture of the cells.
Therefore, we suggest quantifying texture features extracted from several color spaces: R, G,
B, H, S, I, L, a, and b separately.

Several definitions of the image texture have been suggested in the literature. 3,4,5,6,7,8,9
Others define texture as a function of roughness, coarseness, directionality, homogeneity,
spatial frequency, etc. There is no general agreement on one definition. The best definition
depends on the particular application.

For example, in 8,9, the authors use an auto-regression function derived from the analysis of
time sequences in order to derive or create textures. A six dimensional stochastic differential
equation describes the correlation of random values (gray values), which are modified by
associated coefficients.

Our interest lies within the statistical analysis of texture in the Fourier domain. The variation
of the power spectrum along the frequency scale can be a good image textural descriptor. A
statistical analysis based on PCA is proposed to first reduce the dimensionality of the texture
features space and second to quantify the frequency variations, which characterize the
texture in the image. The variance of the first order eigenvector is calculated from the PCA
of the power spectrum. This mode is suggested to carry most of the texture variations in the
image compared to the rest of the modes. We are limiting the quantification to the first mode
in order to filter out the noise from the texture. This feature is extracted for each color of the
spaces specified above.

PCA transforms the data into a new orthogonal coordinate system such that the greatest
variance by any projection of the data comes to lie on the first coordinate axis (called the
first principal component), the second greatest variance on the second coordinate axis, and
so on. PCA is theoretically the optimum transform in least squares terms. 6

The eigenvectors ei and the corresponding eigenvalues λi are the solutions of the equation:

(1)

In our case, the covariance matrix Cx is defined in the spectral domain as follows:

(2)
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where S is the power spectrum matrix, and μp is the mean of the matrix S. S is defined as
follows:

(3)

Where F (u, v) is the Fourier transform (FFT) of the image. The variables u and v are
horizontal and vertical frequencies defined in the polar axis respectively. The functions real
and imag are the real and the imaginary parts of the FFT respectively.

We assume that the eigenvalues λi are distinct. These values can be found by solving the
following equation:

(4)

Where I is the identity matrix having the same order as Cx and |.| denotes the determinant of
the matrix.

The variance of the first component is calculated to quantify the statistical dispersion of
these variations. It is defined as follows:

(5)

Where X is the first eigenvector and μ is the mean of the same vector.

The variance is proposed as the quantification parameter of the texture color feature. This
value is calculated in each proposed space and used as a feature in the training process.
Table 1 gives a general overview of the computation of the texture for each color space:

XR, XG, XB, XL, Xa, Xb, XH, Xs, and XI are the first eigenvectors of the PCA of the power
spectrum of R, G, B, L, a, b, H, S, and I color channels respectively. Var () is the variance of
the same cited vectors.

The union of the geometrical features vector and texture color features vector defines the
final features vector and is defined as follows:

(6)

Where Vg and Vc are the geometrical features vector of the cell and the color texture features
vector.

III. Experimental Results
To classify CB versus non-CB cells, using a QDA supervised classifier; we collected a data
set of two populations. The images in the first set were graded by two board-certified
pathologists as CB and none of the images in the second set was graded by either pathologist
as CB. The final data set consisted of 218 CB and 218 non-CB H&E images coming from
two different patients. The H&E images were sectioned, stained according to the standards
of the Ohio State University Department of Pathology, and the images were digitized
according to the standard operating procedures. The quality of the images has been visually
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assessed by two pathologists and considered as very good quality images. The original slides
have been scanned using Aperio high-resolution scanner, which is one of the most
commonly used digitizers. According to the World Health Organization (WHO) criteria, the
FL grading is based on the H&E-stained tissues. While immunohistochemistry and genetic
studies have identified potential prognostic variables for FL, they are not used in clinical
practice; and this study aims at improving the current standard as accepted by the WHO. By
recognizing CB cells from non-CB cells, this method can add significant improvement to
the grading of FL. The counting of CB cells can be made more accurate and efficient,
with the potential to impact the accurate distinction between low grade and high grade FL
classification, which is the new grading system introduced by WHO in 2008. It is critical to
note that the ground truth data are not manually annotated and the contours of the cells are
not marked. Figure 3 illustrates an example of CB and non-CB images. One can notice that
the CB image contains more objects/cells and higher texture compared to the non-CB image.
The morphology of the central object and the color texture of the image are considered to
classify CB versus non-CB cells.

We randomly divided CB and non-CB data into training and testing sets using an 80%-20%
ratio (174 CB images, 174 non-CB images were used for training, and 44 CB images and 44
non-CB images were used testing). The 80% of CB and non-CB images allocated for
training were divided again into 90% for training and 10% for testing using the K fold cross-
validation15 approach (empirically, K is set to 10). This operation was repeated ten times to
select the best training set. The training set producing the best performance was picked as
the final training set. The final set from the 90%-10% split producing the best performance
was then applied to the testing set obtained from initial 80%-20% allocation. Table 2 shows
the 90%-10% training rule using the supervised QDA classifier. The same rule was used for
training and testing operations. In this example, the training set corresponding to the highest
classification rate of the classifier was identified as set 6. Its accuracy was equal to 88% in
classifying CB and non-CB images. This set was then selected as the training set for further
testing of the classifier. The QDA classifier was then applied to the 88 images in the original
testing set and the average classification rate was 82.56%. We chose the QDA classifier for
our analysis because it showed a higher classification rate compared to the classical
supervised classifiers such as linear discriminant analysis (LDA) and K-nearest neighbor
classifiers.

To analyze the performance of our system with a much more conservative ground truth
process, we enlisted six experienced board-certified hematopathologists to complete another
ground truthing experiment. In the experiment, these six board-certified hematopathologists
graded the images using the graphical user interface (GUI) we developed (see figure 4a).
The pathologists were presented with all the cell images in a random fashion and they
clicked on the images that they considered to be CBs. This information was recorded and
used in the performance analysis.

III.1 Statistical analysis
To emphasize the usefulness of the CAD grading, we performed an extensive statistical
analysis. Accuracy was quantified in terms of sensitivity and specificity. Sensitivity (Sn)
was defined as

(7)
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where TP and FN are the number of true positive and false negative results, respectively.
Specificity (Sp) was defined as

(8)

where TN and FP are the number of true negative and false positive results, respectively. In
this study, the sensitivity quantifies the proportion of actual positives correctly identified as
CB cells and the specificity measures the proportion of negatives correctly identified as non-
CB cells.

In Table 3, the sensitivity and specificity of the CAD are presented based on the ground
truth from two pathologists. The results show that the CAD system classification is sensitive
to the detection of both true negative (non-CB cells) and true positive (CB cells),
respectively.

Table 4 shows the number of cases from the 88 cases in the testing set (44 CB and 44 non-
CB) where 4 or more of the six pathologists agreed in the manual grading of the CB cells
and the non-CB cells and the computer’s diagnosis of these cases. The sensitivity and
specificity of the stand-alone computer grading are also presented. Based on the results
presented in Table 4, the stand-alone grading demonstrates very promising results in terms
of sensitivity and sensitivity with this new consensus truth. The values of these
measurements are 86.67% and 86.96%, respectively.

IV. Conclusion
In this paper, we have demonstrated a new quantitative methodology to diagnosis CB and
non-CB cells in follicular lymphoma using geometric and color texture features in the
spectral domain. A statistical analysis has been performed to evaluate the stand-alone
accuracy of a CAD system on centroblast and non-centroblast cell grading. The results of
our analysis are encouraging. Further investigation of certain parameters in the algorithm is
needed and will likely improve the system’s accuracy. Some limitations still exist in
recognizing CB cells from non-CB cells, which are caused mainly by the variation in the
morphology of the cells and the lack of contextual information. Visual evaluation of the
false-positives indicate that these are mostly large centrocytes and follicular dendric cells
while the false negatives are mainly caused by small centroblast cells. The segmentation
algorithm should be improved by taking into account the variations in staining and by using
other color/texture features to improve the overall the system accuracy. In addition, a larger
study involving more patients and pathologists is underway to improve generalizability of
the results and to assess the impact of CAD on inter- and intra-reader variability. The
biological variation between patients will be further studied to demonstrate the inter – and
intra- patient variability introduced during the readings.
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Figure 1.
Shows different steps of the proposed method
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Figure 2.
(a) original image, (b) thresholding operation of image in (a), (c) labeling operation of image
in (b), (d) identification operation
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Figure 3.
Examples of (a) a typical CB cell, and in (b) a typical non-CB cell.
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Figure 4.
The pathologists are shown the CB and non-CB images in (a), when they click on the
images that they consider as CB the boundaries of that cell turns black (b) and this
information is recorded.
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Table 2

Results from 90%-10% training methodology.

Set Accuracy (classification rate)

1 70%

2 62%

3 85%

4 71%

5 76%

6 88%

7 62%

8 71%

9 79%

10 85%
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Table 3

Overall accuracy of the CAD (44 centroblasts and non-centroblasts)

Sensitivity Specificity

81.8% 86.4%
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Table 4

Sensitivity and specificity of the CAD system on consensus (≥ 4 pathologist agreement) cases

Computer diagnosis

Consensus CB Cell Non-CB Cell Performance:

CB Cell 13 2 Sensitivity: 86.67%

Non-CB Cell 3 20 Specificity: 86.96%
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