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ABSTRACT
Objective To model how individual violations in routine
clinical processes cumulatively contribute to the risk of
adverse events in hospital using an agent-based
simulation framework.
Design An agent-based simulation was designed to
model the cascade of common violations that contribute
to the risk of adverse events in routine clinical processes.
Clinicians and the information systems that support
them were represented as a group of interacting
agents using data from direct observations. The model
was calibrated using data from 101 patient transfers
observed in a hospital and results were validated for
one of two scenarios (a misidentification scenario
and an infection control scenario). Repeated simulations
using the calibrated model were undertaken to
create a distribution of possible process outcomes.
The likelihood of end-of-chain risk is the main
outcome measure, reported for each of the two
scenarios.
Results The simulations demonstrate end-of-chain risks
of 8% and 24% for the misidentification and infection
control scenarios, respectively. Over 95% of the
simulations in both scenarios are unique, indicating that
the in-patient transfer process diverges from prescribed
work practices in a variety of ways.
Conclusions The simulation allowed us to model the
risk of adverse events in a clinical process, by generating
the variety of possible work subject to violations, a novel
prospective risk analysis method. The in-patient transfer
process has a high proportion of unique trajectories,
implying that risk mitigation may benefit from focusing
on reducing complexity rather than augmenting the
process with further rule-based protocols.

BACKGROUND
Adverse events occur in 5e10% of all hospital
admissions and result in significant social
and economic costs.1e3 Hospitals are complex
systems,4 5 where care is delivered via a web
of organizational6 7 and social interactions8

supported by information systems.4 9 10 Violations
of prescribed work practices, which include delib-
erate and accidental deviations from prescribed
work practices (including communication errors),
contribute to a large proportion of adverse
events.11e13 Individual violations do not always
lead to adverse events but rather, adverse events
are often caused by a chain of violations.14e16

Given the complexity of the socio-technical
interactions in healthcare delivery, and the regu-
larity with which work activity deviates from
prescribed practice, existing methods of risk

analysis that borrow heavily from risk analysis in
engineered systems may not always be appro-
priate. Risk analysis involves identifying where
risk exists, as well as identifying the causes and
impacts of adverse events.17 Common methods of
prospective risk analysis (as opposed to retro-
spective analyses such as root cause analysis,
which is performed after an adverse event has
occurred) include failure modes and effects
analysis,18e22 and hazard analysis and critical
control points.23e25 More quantitatively focused
analyses include probabilistic risk assessment,
involving either fault tree analysis (FTA) or event
tree analysis (ETA).17 26 27

As quantitative methods, FTA and ETA may be
used to prospectively analyze the likelihood of
systemic failure given the individual likelihoods of
specific faults and events. While the methods
address multiplicative (combinations of events
that must occur together to create risk) and
additive (any one event can trigger an adverse
event risk) likelihoods, the methods have general
limitations. First, the methods rely on a linear
dependency of faults to create the structure of
static trees, whereas healthcare environments are
more dynamic than thisdactors modify their
behavior based on what they know about the
environment as it changes in timedand have non-
linear dependencies. Second, workarounds28 29

contribute to risk in the same manner as other
violations but evolve as a consequence of opti-
mizing the multiple objectives of healthcare
deliverydquality, safety, and efficiency. Existing
methods of prospective risk analysis consider
faults as binary entities26 and do not consider the
manner in which workarounds may still achieve
the intended goal after diverging from the
prescribed work practice.
Our aim was to provide an alternative approach

to this problem of risk assessment by explicitly
simulating the spread of possible trajectories
a routine process may take that deviate from
prescribed work practice. Such simulations help
determine which trajectories may lead to adverse
events, and estimate how often these risky trajec-
tories occur. We define a trajectory as a single
instance of a routine work process. A trajectory in
our simulation is characterized both by sequential
and parallel actions taken by human and informa-
tion system agents. An end-of-chain risk then
counts the proportion of trajectories in which
a specified adverse event is possible. The two
adverse events of interest in our scenarios are
misidentification of a patient and compromised
infection control.
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METHODS
We now describe the general methods for constructing an
agent-based model for prospective risk analysis and illustrate the
method using an in-patient transfer case study. We additionally
describe the simulation approach taken and validation of the
model. For the purpose of this research, a violation describes any
intended deviation from a prescribed work process (such as
a workaround), unintended deviation (such as a slip), or
a communication error (in which an information exchange does
not occur or is erroneous). Figure 1 is a schematic of a represen-
tative workflow, illustrating how violations may lead to
a divergence from the prescribed work practice, leading to risk
for a proportion of the trajectories. Each fork in the trajectory
diagram represents a violation within a specific trajectory.

To simulate work processes we used agent-based modeling to
specify and then simulate the behavior of human actors in
a clinical process, as well as the information systems the actors
use. An agent in an agent-based model may be described as any
entity that is situated in, perceives, and affects an environment
in order to achieve one or more goals.30 31 In multi-agent
systems, the agents interact with each other and their envi-
ronment to achieve individual goals. Individual goals may or
may not be in conflict with the goals of others, and may see
coordination in behavior to achieve shared goals.

In an agent-based model, agents ‘know’ how to carry out their
own roles for a given work process, including communicative
actions with other agents or interaction with the environment.
An agent is typically represented by:
1. Process knowledge: Agents do not need to know about an

entire work process but must know enough to achieve their
own goals. Process knowledge is usually represented as a plan
schematic, composed of a set of actions. In the case study
presented below, a porter agent knows about the actions it
needs to perform if the patient has an infectious status. It
does not know how to perform the patient identification
check usually performed by the ward nurse (see online
supplementary appendix). In some agent representations,
there is a further distinction between agent goals and
processes, when an agent must prioritize among goals or
craft a strategy to accomplish a goal from a set of possible
plan elements.

2. Individual beliefs: Agents store data that correspond to their
understanding about the current state of the environment.

These beliefs may be partial or incorrect. Agents update
beliefs as they engage with other agents and the world when
they detect changes to the environmental state. For example,
the porter agent may update its belief about the infectious
status of the patient by interacting with a transfer formda
digital object representing the paper form a human porter
might handle. If the information in the form is incorrect, then
the porter may, for example, erroneously believe a patient is
not infectious (see online supplementary appendix).
Agents have autonomy over their own actions. Actions can be

triggered by a change in beliefs, be part of a process plan already
underway, or be requested by another agent. When there are
multiple actions to be performed, an agent has the autonomy to
choose among them. If there is more than one way to perform
an action, agents can choose how to perform that action, or
omit the action entirely, depending on their beliefs. For example,
a porter must use adequate infection control for an infectious
patient but may choose to perform the required actions in
different orders or at different times during the work process
(see online supplementary appendix).
Brahms (Agent iSolutions, NASA Ames Research Center,

Moffett Field, California, USA) is an example of an agent-based
modeling environment.32 33 It has been used in the present work
because it can capture the fine-scale decision-making and
behavior of agents and their interactions with information
systems, other agents, and the environment. Brahms models
agents at an abstract level that does not require representation of
cognitive processes,34e38 but is more detailed than discrete event
simulations often used to simulate patient flow over much
longer time periods.39e43

Formulation process
A user of the simulation framework formulates a new model by
first translating a set of work practices and associated violations
into the design of an agent-based model. Prescribed work prac-
tices are context-specific implementations of one or more
guidelines, policies, or protocols. There may be multiple ways of
completing a task that are in accordance with a policy, so we
describe a set of prescribed work practices that lead to a safe
outcome. The requirement for modeling in an agent-based
model is that the prescribed work practices describe the process
in enough detail for actions to be represented at the same level of
abstraction as the observed violations.
Just because an action is the next stage in a formal sequence

description does not mean it will always occur in the real world.
Agents may be interrupted, distracted, or fail to undertake an
action for any number of reasons. To capture this uncertainty,
each action is assigned a probability function. These functions
are typically based on the empirical data, but in the absence of
such data may be estimated. When an agent is triggered to
undertake an action, the probability function determines
whether it actually occurs. Failure to take an action may, for
example, lead to a process violation. Thus any two simulations
starting from the same initial conditions are likely to have
different trajectories, levels of process violation, and outcomes.
Each simulation is run individually within the Brahms envi-

ronment and exported as time-stamped logs of activities and
changes in beliefs. A log of activities and changes in beliefs
describes a trajectory. The process is implemented such that if all
decisions are taken as expected (no agents ever enact a violation
of the prescribed work practice), then the agents behave
according to the prescribed work practice. When the likelihood
of violations is non-zero, the behavior of the agents may diverge
from the prescribed work practices.

Figure 1 A representative workflow. Processes are represented as
a series of trajectories, where each opportunity for violation is indicated
by a fork. A proportion of trajectories are indicated to diverge far enough
away from the prescribed work practice to create the risk of an adverse
event. Note that the likelihood of each trajectory is not indicated, and
this is the focus of the proposed method.
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By aggregating the trajectories of repeated simulations that
are instantiated consistently according to a specified scenario, it
is possible to quantify and examine the distribution of trajec-
tories and distinguish those in which a risk of an adverse event is
present. The number of simulations required to accurately map
a set of trajectories is described in table 1. While relatively few
simulations are required to identify common trajectories, rare
trajectories may require multiple simulation runs before they are
identified. Analysis involves measuring the proportion of simu-
lations that contribute to or pass on risk during the main stages
of the process.

Case studydin-patient transfers
The process of inter-ward patient transfer we chose to simulate
is an example of a process that is characterized by ad hoc
communication, inconsistency, and poor team coordination.44

Actors involved in the in-patient transfer process are expected to
conform to infection control precautions and patient identifi-
cation checks defined by policy.45 46 The aim of the process
modeled here is to safely transfer the correct patient from a ward
to the radiology department within the hospital. The process
begins when it is scheduled by the coordinator in radiology in
response to a request from a ward. The coordinator instructs
a hospital porter to transfer a patient from the ward. The porter
is given a transfer form which contains information about the
patient including multiple-redundant identification information
(including a unique identifier) and any specific requirements for
infection control associated with this patient. The coordinator
may additionally communicate these requirements verbally to
the porter. On arrival at the ward, the porter hands over the
transfer form to a ward nurse for a sign-offdthis includes
verification of the patient’s identification and the correctness of
the information on the transfer form. The ward nurse may
additionally communicate transfer requirements to the porter
verbally. If a nursing escort from the ward is required to
accompany the porter, a clinical handover will take place
between the ward and radiology nurses.

A set of violations associated with the inter-ward patient
transfer process were recorded in a separate study involving 101
transfers.47 In that study, four violations were observed in each
transfer, on average. In that study, the results suggest that
a failure to perform patient identification checks was a signifi-
cant issue (occurring in 42% of transfers) and the use of adequate
infection control precautions was used as an example for
redundancy analysis. Poor compliance rates were suggested
as the main cause of low system reliability. The data from
this observational study were used to create the prescribed
work practice in the model (the actions that conform to the
policies45 46) and to populate the model with the likelihoods of

each violation. Ethics approval for the protocol was received
from the New South Wales Department of Health Ethics
Committee (EC00290) with application number 08/019 and site
specific application 08/043.
In our model, we represent the in-patient transfer process

using four human agents, six objects, and 186 activities, of
which 31 are driven by an empirically-defined likelihood. Besides
the human agents, we also define the non-human information
systems as agents, namely the transfer form and the patient
record, since they participate in communication acts and hold
possibly erroneous information. A simplified version of the
process is represented in the Results section below. Violations
most associated with misidentification and infection control are
labeled where they occur in the process. The flow of activities is
broadly represented from top to bottom for the significant
agents in the process (including the coordinator, the radiology
nurse, the porter, the patient’s record and identification, the
transfer form, and the ward nurse), following the solid arrows.
Communications between each of the agents are illustrated as
horizontally-oriented communication channels. Although
represented simplistically in comparison to the full specification
of the behavior, the schematic captures the main interactions
that may create, pass along, or ameliorate risk.

Structural and behavioral validation
In order to demonstrate the validity of the approach, we follow
the formal process detailed by Barlas,48 which includes both
structural and behavioral validation. Structural testing was done
here via the analysis of boundary conditions, since the structure
necessarily conforms to the prescribed work practices. Therefore,
the model is checked to ensure that agents always perform the
prescribed work practice in the absence of any violations. For the
scenarios we examine, this means that a misidentified patient
will be recognized at the first identification check, and adequate
infection control is always used when a patient is recorded as
being infectious. The resulting trajectories should be the same
for every simulation and always match the prescribed work
practice. This was confirmed by repeated simulation, in which
the likelihood of all violations was set to zero. Behavioral testing
involves comparing the behavior of the model with the behavior
observed in the real world. This validation is performed for the
infection control scenario but is not performed for the
misidentification scenario because misidentified patients were
never observed in the associated observation study. Conse-
quently, we did not perform tests to determine the predictive
validity of the model and the behavior of the model is validated
by demonstrating that the model reproduces the aggregate
behavior under boundary and a sample of realistic conditions. In
the latter case, the model is calibrated by the same data against
which it is tested.

Simulation experiments
The purpose of running repeated simulations is to determine the
range of potential trajectories that evolve as a consequence of
combining individual violations within a framework that
captures the technical and social constraints associated with
interacting agents in a hospital environment. Each simulation is
instantiated by defining values for the agents and objects
(creating the scenario) and pre-defined likelihoods for each
individual violation (creating the potential for divergence from
the prescribed practice). While the violations are defined by
empirical results, the properties of the agents and objects are
instantiated to reflect a specific scenariodin the case study this
is either the misidentification scenario or the infection control

Table 1 The number of simulations required to find rare trajectories (at
least once) given a specific likelihood and assuming a binomial
distribution (across simulations) where a success is defined by the
presence of the end-of-chain risk

Likelihood of
a trajectory

Representation in
the simulation

Simulations required
to find trajectory
(95% confidence)

0.500 Reference likelihood 8

0.444 Observed level of inadequate infection
control

9

0.100 Reference likelihood 46

0.010 Reference likelihood 473

9.45310�3 Precision chosen in experiments 500

0.001 Reference likelihood 4742
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scenario. In order to produce coherent measures of risk, the
resulting trajectories (one for each simulation) are categorized as
being incomplete, completed without risk, and completed
subject to risk, where the risk is defined by the context of the
scenario.

In the misidentification scenario, a patient requires transfer
from the ward to radiology but is incorrectly identified at the
outset (the identification band does not match the patient’s
record), indicating an initial risk of 100%, which is reduced
during multiple identification checks. In this case, the risk is
ameliorated during the routine process. The purpose of the
scenario is to see if the process catches or passes along the risk of
misidentification. A completed transfer with a misidentified
patient may lead to a wrong patient/location/test adverse event.

Alternatively, in the infection control scenario, new risks
evolve as a consequence of inadequate infection control. In this
case, an infectious patient (correctly identified as infectious on
the patient record) is transferred to the radiology department.
There is no initial risk but the effects of individual violations
combine to generate the potential for inadequate infection
control and an end-of-chain risk of contagion. In this case, the

purpose of the scenario is to see if the process generates new
risks in relation to infection control. If inadequate infection
control is used during a patient transfer, the process may lead to
hospital-acquired infections, which are considered adverse
events.

RESULTS
In the misidentification scenario, the process begins with 100%
risk of misidentification because the simulation is instantiated
such that the patient’s record information does not match the
patient. Through each simulation, identification checks
involving the patient, patient identification band, patient
record, and transfer form are used to confirm the identity of the
patient and any of these checks can ameliorate the risk. The
reduction in risk is illustrated by the reduction in thickness of
the aggregated trajectories represented in figure 2. In Figure 2,
the boxes are a simplification of the policy, the vertical arrows
indicate chronology for the six agents, and the horizontal
channels indicate communication between agents. The risk of
misidentification is ameliorated partially by the ward nurse and
to a greater degree by the radiology nurse during identification

Figure 2 A distribution of trajectories
for the misidentification scenario
indicates the gradual amelioration of
risk for a patient with incorrect details.
The boxes indicate the important steps
in the policy of the patient transfer
process, vertical arrows indicate
chronology, and horizontal channels
indicate information transfer between
the six agents. The shaded trajectories
indicate the presence of risk at each
point in the process, and percentages
indicate the proportion of the completed
simulations that are associated with
risk along the given trajectory. DOB,
date of birth; ID, identification.
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checks performed with the patient (figure 2). Of the 500
simulations, 323 featured either the capture of a misidentifica-
tion or a complete transfer where the misidentification error
is never caught. The remaining simulations were halted as
a consequence of other factors including patient unavailability
and equipment failure. Of the 323 that met the criteria, 26
(8.05%) were complete transfers in which the misidentification
was not caught. In 297 (87.3%) simulations, the patient reac-
kihed the radiology department before the misidentification
error was identified. Since there were no misidentified patients
observed in the 101 observed patient transfers, we are unable to
validate the likelihoods.

In the infection control scenario, the risk begins at 0%
(an infectious patient is not an infection control risk if all actors
adhere to policy) and accumulates as a consequence of missing
information on the transfer form or in verbal exchanges, and the
porter ’s violations relating to adequate infection control
precautions. The risk of inadequate infection control is generated
as a consequence of missing or incorrect information on the
transfer form, and from violations committed by porters with
access to the correct information (figure 3). Of the 500 simula-
tions, 345 were complete (others were stopped for reasons such
as patient unavailability and equipment failure during trans-
port). For the 345 simulations that were complete, the number

of times that the agents did not ensure adequate infection
control precautions was 84 (24.3%), assuming post-completion
tasks were always completed. As a consequence of having
received misinformation, the lack of information exchange, or
the lack of response to correct information, the porter completes
the process with an infection risk in 80 (23.2%) cases. The ward
nurse completes the process with an infection risk in 37 (10.7%)
cases. The results may be interpreted to mean that, in the
presence of the workarounds observed, the process is effective in
ensuring adequate infection control 76.8% of the time.
In order to validate the results of the infection control

scenario, we compare the observed behavior of the agents in
response to an infectious patient with the simulated behavior of
the agents in response to an infectious patient. In the observa-
tions, 27 transfers involved an infectious patient. Of those, 12
transfers were completed without the porter using infection
control (which gives 95% CI 24% to 65%). In comparison, 80 of
the 345 simulated transfers were completed without the ward
nurse or the porter ensuring adequate infection control (which
gives 95% CI 19% to 28%). The results suggest that the simu-
lated results match the observed results (p¼0.0136), however,
we would be hesitant in using this to form a conclusion due to
the small number of observations and because it is only one
behavior among the multitude represented in the simulations.

Figure 3 A distribution of trajectories
for the infection control scenario
indicates the increasing risk associated
with lack of adequate infection control
in the in-patient transfer process. The
boxes indicate the important steps in
the policy of the patient transfer
process, vertical arrows indicate
chronology, and horizontal channels
indicate information transfer between
the six agents. The shaded trajectories
indicate the presence of risk at each
point in the process, and percentages
indicate the proportion of the completed
simulations that are associated with
risk along the given trajectory. IC,
infection control.
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DISCUSSION
The value of using this simulation framework is that it allows
a user to quantitatively examine how individual violations
combine along trajectories of routine work practices to create
risk. The results suggest two main conclusions. First, the
proportion of unique trajectories is very high as a consequence of
the number of redundant steps required in passing along infor-
mation about the patient’s identity and infection control
requirements. Second, chains of percolated errors that lead to
risk (or fail to ameliorate risk) are visible when the results of
many repeated simulations are aggregated.

The simulation framework presented here complements
existing prospective risk analysis methods. It requires more
detailed observation of work practices and individual violations
than with traditional prospective risk analysis such as FTA and
ETA, and consequently has some benefits over existing methods.
First, the trajectories offer more precision because the simulation
framework explicitly models the behavior of the individuals in
the scenario and the information systems with which they
interact (rather than logically combining the probabilities of
individual violations). A further benefit of this precision is that it
allows a user to uncover a fuller range of possible work activity
trajectories, of which many may not have been observed (this is
indicated by the number of unique trajectories in the simula-
tions). Finally, in traditional forms of prospective risk analysis,
the user encodes probabilities for a pre-determined risk of their
choice, whereas the simulation framework is scenario-driven. In
this case, extra information is available about the likelihood of
conforming to the prescribed practice, near misses, rare events,
and potentially unforeseen risks.

The in-patient transfer process
We confirmed the structural correctness of the implementation
by initially setting all the probability functions to not allow
violations. In simulations run under these conditions, agents
never diverge from the prescribed work practices. Consequently,
simulations always result in the mitigation of any incoming risk
of misidentification and adequate infection control is always
used. From this baseline instantiation of the model, we can
confirm that the policy is reliably implemented if the prescribed
work practices are never violated.

Regarding the misidentification scenario, the simulations
suggest that the process will capture approximately 92% of
wrong patient errors, leaving 8% in which there is the potential
for the error to persist through the entire process. The ward
nurse often defers the identification check to the later redundant
identification check performed by the radiology nurse. A great
deal of process efficiency is lost here since a misidentified patient
is more likely to be transferred before the error is caught by the
process. We might speculate that this may have evolved as
a consequence of diffusion of responsibility,26 49 where individ-
uals are unaware of whether another redundant step will or has
been taken, in this case, assuming that the check will be
performed. This issue highlights the complex nature of redun-
dancydit appears that the existence of redundant checks across
disparate locations and roles may have decreased the levels
of compliance. In line with the conclusions suggested by
Ong et al,47 we advocate increasing compliance in the existing
identification checks before introducing new ones.

Regarding the infection control scenario, the risk of infection
is generated by violations in information flow, namely omissions
and errors in the transfer form or verbal exchanges between the
coordinator, porter, and ward nurse. The results suggest that the
individuals will take enough steps to ensure adequate infection

control in three-quarters of patient transfers involving an
infectious patient. Furthermore, the results suggest that
communication errors and procedural errors are approximately
equal in their contribution to the risk (in 10.4% of cases, the
porter does not have the correct information, and in another
12.8%, the porter does not use adequate infection control despite
having correct information), so changes at either point in the
process would be appropriate. Since a substantial proportion of
risk-associated trajectories occur when the correct information is
present, we suggest that other factors such as inadequate
understanding of the risks or time pressures may also contribute
to the risk of infection.

Limitations
The model is not validated for the purpose of predictiondas
such, we would urge caution in interpreting the overall likeli-
hoods for risk as being definitive for the in-patient transfer
process in the future, or for other hospitals. We feel this is
reasonable because the purpose of the method is to analyze
the breadth of possible risks in routine processes rather than to
predict specific behaviors. A full validation of the model used in
the case study would include further calibration for a number
of scenarios (we have calibrated for only the infection control
scenario due to limitations of the observed data) and testing
against a new set of observations representing the same sce-
narios. This would demonstrate that the model is capable
of predicting behavior, and would thus provide evidence
that it could be used as a tool for testing the effects of new
organizational process interventions in silico.
When we implement the stochastic process that takes likeli-

hoods from the observed study to inform the likelihood of an
agent taking a particular action (or making a specific decision),
that stochastic process is independent of the simulation. This
means that we have not captured the potential for individual
errors to systematically occur together. For example, the
model does not take into account whether a ward nurse is more
or less likely to also check a patient’s full name if he or she
contemporaneously checks the identification band of that
patient. Similarly, we expect variability among porters, which is
not represented by the model we have constructed.
There is much in the way of contextual information that is

not captured in regard to misidentification. For example, other
information such as gender, ethnicity, other appearance-related
information, and prior contact may all be used to provide partial
visual identification of a patient, which may be an informal and
efficient method of identification that is already employed to
augment the policy. In the case of infection control, other cues
besides the information transmitted by the coordinator may
influence a porter ’s infection control choices. Given that the
simulated agents are able to perceive only the policy-based
portion of information present in the real world, the model is
likely to be a conservative estimate of the flow of risk.

General conclusions
The inter-ward patient transfer process produces a wide variety
of possible behavior trajectories. The proportion of simulations
that were unique (considering different combinations of viola-
tions that occurred) was 97.4% for the misidentification
scenario and 96.4% for the infection control scenario. This result
is significant because it suggests that the presence of violations
(in the form of workarounds, unintended violations, and
communication errors) increases the complexity of a work
process, thus creating unique scenarios for which policy based
on prescribed work practices cannot account.
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This particular process reflects a well-defined workflow with
numerous checkpoints and redundant operations that are
included with the aim of minimizing the potential for risk. Yet
despite this, the potential for risk, either risk not mitigated
by the process (in the misidentification scenario) or the risk
generated by the process (in the infection control scenario),
persists. Our analysis suggests that augmenting the formal
process with additional procedures, of the type often
suggested in the literature,50e52 may result in further unin-
tended consequences53 54 due to the increased complexity of the
procedure and the workarounds that evolve as a consequence.
The complexity is increased by increasing the number of
trajectory forks, thus increasing the number of possible trajec-
tories. We suggest an alternativedto reduce the complexity of
the task and enhance the effectiveness of the remaining steps.

Using the in-patient transfer process as an example, we have
demonstrated that an agent-based modeling approach to
prospective risk analysis may assist in targeting policy changes
according to the flow of risk in a process, complementing
existing methods. The simulation framework presented here is
likely to generalize to any work process (a) for which a set of
policies or guidelines are defined in enough detail to permit the
modeling of a prescribed work practice, (b) for which the process
is observable such that it is possible to collect information about
violations from repeated observations, and (c) involves multiple
agents in the form of humans and the information systems that
support them (be they verbal, written, or software-driven).
The method models the effect of combined violations as diver-
gences from a prescribed work practice, indicating the like-
lihood of individual trajectories that may or may not lead to
iatrogenic harm.
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