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Abstract
Background—Identifying viral and host determinants of HIV-1 elite control may help inform
novel therapeutic and/or vaccination strategies. Previously, we observed decreased replication
capacity in controller-derived viruses suggesting that fitness consequences of HLA class I-
associated escape mutations in Gag may contribute to this phenotype. This study examines
whether similar functional defects occur in Pol proteins of elite controllers.

Methods—Recombinant NL4-3 viruses encoding plasma RNA-derived Reverse Transcriptase
(RT)-Integrase sequences from 58 elite controllers and 50 untreated chronic progressors were
constructed and replication capacity measured in vitro using a GFP reporter T-cell assay.
Sequences were analyzed for drug resistance and HLA-associated viral polymorphisms.

Results—Controller-derived viruses displayed significantly lower replication capacity compared
to those from progressors (p<0.0001). Among controllers, the most attenuated viruses were
generated from individuals expressing HLA-B*57 or B*51. In viruses from B*57+ progressors
(N=8), a significant inverse correlation was observed between B*57-associated RT-Integrase
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escape mutations and replication capacity (R=−0.89; p=0.003); a similar trend was observed in
B*57+ controller-derived viruses (N=20, R=−0.36; p=0.08).

Conclusions—HIV-1 Pol function appeared to be compromised in elite controllers. As observed
previously for Gag, HLA-associated immune pressure in Pol may contribute to viral attenuation
and subsequent control of viremia.

Keywords
HIV-1; elite controller; viral replication capacity; HLA class I; Pol; Cytotoxic T-lymphocyte
(CTL); immune escape

Introduction
Elite controllers are a rare group of HIV-1 infected individuals who spontaneously maintain
plasma viremia below the limit of standard clinical detection (< 50 viral RNA copies/ml)
without antiviral therapy1. Elucidating the mechanisms responsible for this phenotype may
reveal host and viral factors that may be modulated for prophylactic or therapeutic
intervention.

HIV-1 replication capacity (RC) likely plays an important role in pathogenesis2, 3, but its
relevance to the elite controller phenotype remains unclear. Although a recent examination
of a large number of elite controller-derived HIV sequences revealed no evidence of gross
mutational defects, large insertions or deletions, nor shared ancestry4, virus function may
nevertheless be compromised. Indeed, previous studies have reported lower RC in viruses
isolated from viremic long-term non-progressors compared to those from chronic infected
individuals2, 3, 5, and reduced entry efficiency has been observed for elite controller-
derived envelopes compared to those from chronic infected individuals6.

Although RC is determined in large part by the founder virus acquired at transmission7, 8, it
can change over time as host and other selective pressures drive intra-host HIV-1
evolution9–11. In vitro fitness costs of HLA-restricted cytotoxic T-lymphocyte (CTL)
escape mutations in Gag12–17 and Nef18 have been demonstrated, and evidence suggests
that immune-mediated fitness defects may be relevant to the controller phenotype19, 20. A
recent case report described reduced RC of virus isolated from a B*27/B*57-expressing elite
controller compared to the transmitted donor virus19. Furthermore, we have previously
described reduced in vitro RC of recombinant viruses expressing Gag-Protease from elite
controllers compared to progressors in chronic20 and acute/early21 infection, an observation
attributable at least in part to immune selection20, 22. A biologically relevant role for
immune-mediated fitness defects is supported by relative early viremia control in individuals
who acquire HIV-1 harboring escape mutations from donors expressing protective HLA
alleles7, 8. Moreover, evidence for sequential reductions in RC as a result of the
accumulation of HLA-restricted CTL escape mutations has been reported in Gag16, 23.

However, comparably little is known about the consequence of mutations outside of the Gag
gene on viral RC in elite controllers, and what relevance this may have to the controller
phenotype. Since mutations in the Pol gene that emerge under antiretroviral drug selection
pressures can affect fitness24–28, we therefore examined whether elite controller viruses
exhibited functional defects in this gene. To do this, recombinant viruses encoding plasma
RNA-derived Reverse Transcriptase (RT)-Integrase sequences were generated in an NL4-3
virus backbone from 58 elite controllers and 50 untreated chronic progressors and their in
vitro RC was examined using a GFP reporter T-cell assay20, 29. Similar to previous
observations for Gag-Protease20, 21 and Envelope6, we observed reduced function of
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controller-derived RT-Integrase, indicating that differences in Pol activity may contribute to
HIV-1 control.

Methods
Study participants

Fifty-eight elite controllers (all <50 copies RNA/ml; median CD4 = 799 [IQR 593–1037]
cells/mm3) and 50 untreated chronic progressors (median viral load 4.98 [IQR 4.51–5.35]
log10 copies RNA/ml; median CD4 = 318 [IQR 61–476] cells/mm3) were included.
Characteristics of this elite controller cohort have been described previously30. In addition,
76 of these 108 (70%) patients were previously evaluated for Gag-Protease function20. HLA
class I typing was performed using standard sequence-based methods. This study was
approved by the institutional review board at Massachusetts General Hospital; written
informed consent was obtained from all participants.

Generation of recombinant RT-Integrase viruses
a) Bulk (quasispecies) method—For elite controllers, RT-PCR products spanning Pol
were generated as described4. For progressors, HIV-1 Pol was RT-PCR amplified from
extracted plasma RNA using sequence-specific primers. Second round PCR was performed
using PAGE-purified “recombination primers” designed to match the NL4-3 sequence
directly upstream of RT (forward; 100bp) and downstream of Integrase (reverse; 98bp).
Primer sequences are available upon request.

Plasmid pNL4-3DRT-Integrase was developed by inserting unique restriction enzyme sites
for BstEII at the 5’ end of RT and the 3’ end of Integrase using the QuikChange XL kit
(Stratagene) followed by deletion of the intervening region by BstEII digestion (New
England Biolabs). This plasmid was maintained using Stbl3 E. coli cells (Invitrogen). To
generate recombinant viruses, 10µg of BstEII-linearized plasmid plus 50µl of 2nd round
amplicon (approximately 5µg) were mixed with 2.0×106 cells of a Tat-driven GFP reporter
T-cell line (GXR 25 cells29) in 800µl of R10+ medium (RPMI 1640 containing 10% FCS,
2mM L-glutamine, 100 units/mL penicillin, and 100µg/mL streptomycin), and transfected
by electroporation using a BioRad GenePulser Xcell (exponential protocol: 300V, 500µF).
Following transfection, cells were rested for 45 min at room temperature, transferred to 25
cm2 flasks in 5 mL of R10+ medium, and fed with 5 mL R10+ medium on day 5. GFP
expression was monitored daily by flow cytometry (FACScalibur, BD Biosciences) starting
on day 10. Once GFP+ expression reached ~15% among viable cells, representing the early
phase of exponential spread, culture supernatants containing the recombinant viruses were
harvested and aliquots stored at −80°C.

b) Clonal method—In addition, RT-integrase sequences from a random subset of 14
controllers and 10 progressors were cloned (TOPO-TA cloning kit; Invitrogen), purified and
used as starting material to generate recombinant viruses as described above. All clones
were resequenced to confirm patient origin.

Replication capacity assays
Virus titers and replication assays were performed as described12, 20, 29. Replication assays
were initiated at MOI=0.003, and included six negative (uninfected cells only) and six
NL4-3 controls. For each virus, the natural log slope of the percent (%) of GFP+ cells was
calculated during the exponential phase of spread (days 3–6). This value was divided by the
mean rate of spread of NL4-3 to generate a normalized, quantitative measure of replication
capacity (RC). An RC of 1.0 indicates a rate of spread equal to NL4-3, while RC <1.0 and
>1.0 indicate rates of spread that are slower than or faster than NL4-3, respectively. All
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assays were performed in triplicate in independent experiments and replication rates were
averaged. The experimental procedure is illustrated in Supplemental Figure 1.

Re-sequencing of recombinant viral stocks
For all bulk (quasispecies-containing) recombinant viruses, HIV-1 RNA was extracted from
viral culture supernatant (QIAamp viral RNA kit; Qiagen), amplified and sequenced as
described in4, and compared to the original plasma HIV-1 RNA sequences (Figure 1). All
viruses were confirmed as subtype B using RIP (http://www.hiv.lanl.gov). Nucleotide
alignments were performed using GeneCutter and maximum-likelihood phylogenetic trees
were generated using PHYml31; both available at http://www.hiv.lanl.gov. Trees were
visualized using Figtree v.1.2.2 (http://tree.bio.ed.ac.uk/software/figtree/). Resistance
mutations were identified using the Stanford HIV Drug Resistance Database (http://
hivdb.stanford.edu/). Most controller-derived RT-Integrase sequences were previously
deposited in Genbank4. Accession numbers for the remaining sequences from controllers
and progressors are GQ284657-GQ284730.

Statistical analysis
Student’s T-test was used to compare differences in RC between groups (e.g. controllers/
progressors; presence/absence of HLA alleles, etc). Spearman’s and Pearson’s correlation
was used to investigate the relationship between clinical parameters (CD4/pVL) and the
presence of HLA-associated escape mutations, respectively, and viral RC. In an exploratory
analysis, the Mann-Whitney U-Test was used to identify specific amino acids in RT-
Integrase associated with RC; here, q-values were used to address multiple tests32.

Results
Generation of recombinant viruses expressing RT-Integrase sequences from controllers
and progressors

Recombinant viruses were generated using bulk patient plasma-derived PCR amplicons
containing Reverse Transcriptase (RT) and Integrase sequences as described in Methods,
and stocks harvested during the early phase of exponential viral spread. For elite controllers
(N=58), the median time to harvest was 25 days (Interquartile Range [IQR] 21–28) while for
progressors (N=50) it was 19 days [IQR 15–21]. This difference was statistically significant
(p<0.0001). The RT-Integrase sequences of the recombinant virus and the original plasma
HIV RNA were highly concordant (Figure 1). The median number of full amino acid
differences between these sequences was 1 [IQR 0–2] out of a total of 849 codons spanning
RT-Integrase, a similarity of 99.9%. In a more conservative analysis where amino acid
mixtures were considered full differences, the median number of differences was 6 [IQR 3–
9] (99.3% similarity); values that are comparable to the average inter-laboratory nucleotide
concordance of sequence-based genotypic drug resistance assays (99.4%)33. These data
indicate that our approach did not result in substantial in vitro selection and that at least
some quasi-species diversity was maintained in the recombinant viral stocks.

Reduced RC of RT-Integrase viruses derived from elite controllers
RC of bulk (quasispecies-containing) recombinants was assayed in three independent
experiments and results reported as the mean. Concordance between replicates was high
(R=0.77, p<0.0001; with a median difference between replicates of 8.03% [IQR 3.76–
16.4%]).

Controller-derived RT-Integrase recombinant viruses constructed using bulk (quasispecies-
containing) methods displayed significantly reduced RC compared to those derived from
progressors (Figures 2A and 2B). The median RC of controller viruses was 0.83 [IQR 0.63–
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0.96] compared to 0.98 [0.89–1.07] for progressor viruses (p<0.0001). To assess whether
this result may be affected by the diversity of the recombinant quasispecies, we stratified
recombinant virus sequences based on the presence or absence of amino acid mixtures in the
RT-Integrase region, but observed no significant differences in RC between the two in either
controllers or progressors (Figure 2C). However, the overall differences in RC between
controllers and progressors remained highly statistically significant regardless of the
presence or absence of amino acid mixtures (ANOVA p<0.0001).

In order to further rule out potential bias due to the quantity and/or diversity of the initial
bulk PCR inoculum between controllers and progressors, and the potential existence of
minority quasispecies in the recombinant virus stocks, we generated clonal recombinant
viruses from a randomly-selected subset of 14 controllers and 10 progressors. Consistent
with the original findings, median RC of clonal controller viruses was 0.73 [IQR 0.61–0.98]
compared to 0.97 [0.86–1.08] for clonal progressor viruses in this subset (p=0.028;
Supplementary Figure 2A). In addition, robust concordance was observed between RC of
independently constructed clones (N=10 pairs, R=0.84, p=0.002, not shown) as well as
between the RC of quasispecies-containing versus clonal recombinant viruses (R=0.7,
p=0.0003, Supplementary Figure 2B).

Taken together, the RT-Integrase region from most controllers exhibited reduced function
compared to progressors, regardless of whether quasispecies-containing or clonal
recombinants were evaluated.

Reduced RC is not due to resistance mutations and does not correlate with Gag-Protease
function

Resistance mutations can affect viral RC24–28. Although all patients were untreated at the
time of sample collection, 8 of 58 (14%) controller-derived and 8 of 50 (16%) progressor-
derived viruses harbored at least one major resistance mutation in RT (p=0.8), most
frequently at codons 215 (N=9) and 219 (N=6), K70R (N=5), D67N (N=4), and others. Of
these 16 sequences, 10 encoded ≥2 resistance mutations. After exclusion of the 16 resistant
viruses from analysis, the difference in RC between controller and progressor-derived
viruses remained statistically significant (p<0.0001, not shown). Furthermore, no significant
differences were observed between resistant and nonresistant viruses within each patient
group (p>0.05), suggesting that decreased RC in controllers is not due to drug resistance
mutations.

Reduced RC does not correlate with clinical parameters, or Gag/protease function, in
controllers or progressors

We next addressed whether RT-Integrase function correlated with clinical parameters.
Among controllers, all pVL were <50 copies/ml and the median CD4 count was 799 [IQR
593–1037] cells/mm3. Among progressors, the median pVL was 4.98 [IQR 4.51–5.35] log10
HIV RNA copies/ml and the median CD4 count was 318 [IQR 61–476] cells/mm3. In an
analysis stratified by patient group, we observed no correlation between RC and CD4 count
in controllers (Spearman R=−0.03, p=0.8) or progressors (R=0.06, p=0.7), nor between
replication and pVL in progressors (R=0.05, p=0.7) (not shown).

We also evaluated whether RT-Integrase RC correlated with functional RC data for Gag-
Protease previously obtained on a subset of these individuals (reported in20). Although both
the previous and present study report reduced RC among controller-derived viruses, we
observed no correlation between RC of Gag-Protease viruses and RT-Integrase viruses in an
analysis stratified by patient group (controllers [N=38, R=−0.09, p=0.6]; progressors [N=38,
R=0.13, p=0.4]), suggesting that these observations are largely independent.
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Associations between RC and HLA class I expression
We next investigated associations between RC and HLA class I allele expression, stratified
by patient group (Figure 3). In controllers, no statistically significant associations were
observed, however the poorest replicating viruses originated from HLA-B*51- and B*57-
expressing individuals (p=0.09 and p=0.08, respectively). Among progressors, viruses from
A*01- and C*02-expressing individuals displayed significantly lower RC (p=0.016 and
p=0.02, respectively).

Correlation between replication and HLA-associated sequence polymorphisms
To further assess the impact of immune selection pressure on RT-Integrase function, we
investigated potential correlations between the presence of HLA-associated polymorphisms
(defined according to a population-based analysis of >1500 subtype-B infected individuals
worldwide34) and RC. For each patient, we determined the total possible number of HLA-
associated polymorphic sites in RT-Integrase according to their HLA class I profile, as well
as the number of these sites that exhibited a known HLA-associated polymorphism in the
recombinant virus sequence. No significant correlation was observed between RC and the
overall burden of HLA-A, B and C-associated polymorphisms in RT-Integrase, assessed in
absolute terms (“number of escaped sites”) or relative terms (“proportion of escaped sites”)
in either controllers or progressors (all p>0.05, not shown).

We next investigated the relationship between HLA-associated polymorphisms and RC in an
allele-specific manner, for all alleles with frequencies ≥5. Although no correlations achieved
statistical significance in controllers, an inverse relationship was observed between the
number of B*57-associated polymorphisms and lower RC in B*57-expressing controllers
(N=20; R=−0.36, p=0.1) (Figure 4A). In B*57-expressing progressors, a strong inverse
relationship was observed between the number of B*57-associated RT-Integrase
polymorphisms and RC (N=8, R=−0.89, p=0.003); no other significant correlations were
observed (Figure 4B). Therefore, although the average RC of viruses derived from B*57-
expressing progressors did not significantly differ from the population average, the strong
dose-dependent relationship between B*57-associated polymorphisms and decreasing RC
suggests that these polymorphisms negatively influence RT-Integrase function in a
cumulative manner.

No association between replication and transmitted HLA-associated polymorphisms
Immune-mediated fitness defects have been reported in individuals acquiring HIV-1 from
donors who express protective HLA alleles7, 8. Therefore, we investigated whether RC
correlated with protective allele-associated viral polymorphisms in individuals not
expressing these alleles. No significant difference was observed in the average number of
polymorphisms associated with protective HLA alleles (defined as HLA-B*13, B*27, B*51,
B*57, B*5801 and B*8135–40) in controllers (N=19; mean protective allele-associated
polymorphisms/sequence=8.6) versus progressors (N=22; mean polymorphisms/
sequence=7.6; p=0.25) not expressing these alleles. Moreover, no correlation was observed
between the number of protective HLA-associated polymorphisms and RC in controllers
(R=0.23, p=0.34) or progressors (R=0.34, p=0.13) not expressing these alleles. An analysis
restricted to B*57-associated mutations in controllers and progressors not expressing this
allele also failed to demonstrate significant differences in polymorphism frequency between
groups, nor correlations with RC (all p>0.1, not shown). Altogether, these results suggest
that the observed reductions in RC seen in controllers were not likely due to transmitted
immune escape mutations.

Brumme et al. Page 6

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2011 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Associations between RC and specific amino acid residues in RT-Integrase
In an exploratory analysis, the Mann-Whitney U-test was used to examine associations
between RT-Integrase amino acid variation and RC. This analysis was performed on the
entire dataset, as well as stratified by patient group. In the combined analysis of all
polymorphisms occurring at frequencies ≥5, 28 residues (20 in RT, 8 in Integrase) were
associated with RC at p<0.05 (corresponding q-values 0 to 0.77; Table 1). The strongest
association was observed for Integrase codon 265, where the consensus Alanine was
associated with significantly higher RC than the polymorphism Valine (p<0.0001, q=0).
Stratification by patient group also identified the codon 265 association as significant in
controllers (p<0.01, q=0.4) but not in progressors (not shown).

Discussion
We recently reported that elite controllers display defects in Gag-Protease function due in
part to immune selection by protective HLA alleles, most notably B*5720, thus further
supporting an impact of Gag escape mutations on viral fitness and HIV disease12–17, 19,
23. However, comparatively little is known about potential immune-mediated attenuation of
other HIV-1 proteins and whether this might be relevant to the controller phenotype.

Here, we extend our previous findings and demonstrate that recombinant viruses encoding
RT-Integrase sequences derived from elite controllers displayed significantly reduced RC
compared to viruses derived from untreated chronic progressors. This was true regardless of
whether recombinant viruses contained quasispecies diversity, or whether they were
generated from cloned sequences. The observed defects in controller-derived viruses were
not likely due to the presence of drug-resistance mutations24–28 or the presence of putative
transmitted immune escape mutations7, 8, although the possibility that such mutations were
transmitted but then subsequently reverted cannot be ruled out. The presence of RT drug
resistance mutations in a minority of elite controller samples merits mention: previous
treatment is not an exclusion criterion for the International HIV controllers study (http://
www.hivcontrollers.org/). Alternatively, these mutations may represent transmitted
resistance mutations.

Instead, reduced RC of controller-derived recombinant RT-Integrase viruses may be
explained, at least in part, by the selection of fitness-attenuating mutations that result from
effective HLA-restricted CTL responses to the incoming virus. We observed that viruses
generated from B*51 and B*57-expressing controllers exhibited the most profound RC
defects. Both of these alleles restrict strong CTL responses against epitopes in Pol41, 42 and
have been identified as “protective” with respect to HIV disease progression36, 43–45.
Furthermore, among B*57-expressing individuals, the number of B*57-associated
polymorphisms correlated inversely with RC, suggesting that the accumulation of B*57-
associated mutations in Pol can negatively impact viral RC in a dose-dependent manner.
Similar results have been reported previously for HLA-B*5703-selected mutations in the
Gag p24/capsid protein16. Notably, although both B*57+ controllers and progressors
harbored B*57-associated escape mutations, viruses from B*57-expressing controllers
displayed further reduced RC than their progressor counterparts, suggesting the presence of
additional functional defects in controller sequences beyond those associated with
commonly-observed primary escape mutations. Previous studies have described rare and/or
unique Gag escape mutations associated with fitness costs in controllers22, although non-
immune mechanisms cannot be ruled out. The selection of compensatory mutations in
progressors could also contribute to observed differences, as has been reported in Gag13.
Observed associations between HLA-A*01 and C*02 and viral RC are also notable and
merit further study.
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Substantial overlap in the RC distribution of controller- and progressor-derived viruses
indicates that reduced RT-Integrase function is not common to all controllers. Similarly,
viruses generated from B*51 and B*57-expressing progressors did not exhibit significantly
reduced RC compared to their non-B*51/B*57-derived counterparts. This underscores the
observation that expression of a protective allele does not guarantee viral attenuation, and
that analysis at the individual sequence level is necessary to elucidate relationships between
viral polymorphisms and fitness (indeed, analysis at the sequence-level revealed a
significant dose-dependent relationship between the B*57-associaed escape mutations and
RC in viruses from these individuals). Furthermore, more than half of controllers expressed
neither B*51 nor B*57, yet they still harbored viruses with reduced RC compared to
progressors, indicating that immune selection pressure by these two alleles does not solely
account for the observed effects. We cannot rule out transmission of attenuated viruses in at
least some controllers, nor the selection of unique mutations, immune-mediated or
otherwise, that incur fitness costs.

The inherent challenges associated with identifying elite controllers and extracting HIV
RNA from individuals with undetectable plasma viral loads limit the size and thus the power
to comprehensively evaluate associations between RC and specific HLA alleles or viral
polymorphisms. Despite this, we were able to identify a number of Pol codons that may be
associated with reduced RC, including, among others, the B*57-associated V245E mutation
in RT (residue 2 of B*57 ISW9 epitope46, 47) that is selected relatively rapidly following
infection in B*57 (and B*58)-expressing individuals48. The observation that V245E reverts
following transmission to non-B*57/B*58-expressing individuals48, 49 also supports a
fitness cost. Integrase 265V was identified as the strongest correlate of lower RC, but
mechanisms for this are unclear. This residue lies within described B*15 and B*42 epitopes;
however, to our knowledge no HLA-associated polymorphisms have been reported.
Although candidate residues were identified in this exploratory analysis, a comprehensive
identification of codons associated with Pol RC will require a larger dataset followed by in
vitro validation.

In summary, we observed significantly reduced RC of recombinant NL4-3 viruses encoding
RT-Integrase from elite controllers compared to those from untreated chronic progressors,
regardless of whether recombinant viruses contained quasispecies mixtures or were
generated from cloned sequences. Controller-derived viruses from individuals expressing
“protective” HLA-B*51 and B*57 alleles exhibited the lowest overall RC, and a dose-
dependent inverse relationship was observed between the number of B*57-associated
mutations and viral replication in both controllers and progressors. Although it is well-
established that envelope is a major determinant of fitness2, 50, a growing body of evidence
indicates that mutations outside envelope mediated by immune14, 16, 20, 23 or other27
selective pressures may also result in fitness defects. Results are consistent with functional
defects in viruses isolated from HIV-1 elite controllers6, 20, 21, which may arise as a result
of immune selection pressures that reduce viral replication capacity20.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phylogenetic tree illustrating the relationship between HIV-1 RT-Integrase sequences
from plasma and recombinant viruses from study subjects
Prefixes “BEC” and “CP” discriminate sequences from controllers and progressors,
respectively. Red (suffix “p”) Blue (suffix “v”) and Green (suffix “c”) sequences indicate
bulk plasma, bulk recombinant and clonal recombinant virus sequences, respectively. The
sequences of HIV-1 subtype B reference strains HXB2 and NL43 are included for
comparison.
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Figure 2. Replication Capacities of bulk RT-Integrase recombinant viruses derived from elite
controller and chronic progressor sequences
Panel A: RC of bulk RT-Integrase recombinant viruses from controllers (EC) and
Progressors (Prog) are shown. RC values are normalized to the mean RC of NL4-3, such
that an RC of 1.0 indicates equivalent growth to NL4-3, while RC >1 and RC <1 indicate
faster or slower growth compared to NL4-3, respectively. Results represent the average of
three independent experiments. Horizontal bars indicate median values for each group.
Panel B: The rate of viral spread in culture (expressed as fold-increase in % GFP+ cells over
the assay period) is shown for controller-derived (red lines) vs. progressor-derived (black
lines) viruses. Panel C: RC results of bulk RT-Integrase recombinant viruses are stratified
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by the absence or presence of amino acid mixtures in the chimeric viral stocks. No
significant difference in RC was observed between non-mixture-containng vs. mixture
containing recombinant viruses derived from controllers or progressors.
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Figure 3. Associations between HLA class I allele expression and Replication Capacities of RT-
Integrase recombinant viruses
Box and whisker plots indicate the median (line), interquartile range (box) and range
(whiskers) of viral RC, stratified by HLA class I alleles expressed. Asterisks indicate
observations that trend higher or lower than the population mean, with p<0.1 (Wilcoxon
Rank-sum test). Dotted vertical line indicates median replication capacity for each patient
group. HLA class I alleles with a minimum of N=4 observations are shown.
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Figure 4. Relationship between the number of HLA-B*57-associated escape mutations in RT-
Integrase and viral Replication Capacity
In viruses from the 20 elite controllers (panel A) and 8 progressors who expressed HLA-
B*57 (panel B), the relationship between the number of HLA-B*57-associated
polymorphisms in RT-Integrase and viral RC was characterized using Pearson’s correlation.
A regression line is drawn to highlight the trend.
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