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Abstract
Tortuous or twisted veins are often seen in the retina, cerebrum, and legs (varicose veins) of one-
third of the aged population, but the underlying mechanisms are poorly understood. While the
collapse of veins under external pressure has been well documented, the bent buckling of long
vein segments has not been studied. The objectives of this study were to develop a biomechanical
model of vein buckling under internal pressure and to predict the critical pressure. Veins were
modeled as thin-walled nonlinear elastic tubes with the Fung exponential strain energy function.
Our results demonstrated that veins buckle due to high blood pressure or low axial tension. High
axial tension stabilized veins under internal pressure. Our buckling model estimated the critical
pressure accurately compared to the experimental measurements. The buckling equation provides
a useful tool for studying the development of tortuous veins.
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Introduction
Tortuous or twisted veins are found in one third of the aged population and are often seen in
the retina, cerebrum, and lower legs.3–5,16,24,26 Venous tortuosity affects blood flow and
the wall remodeling process, both of which are associated with venous diseases.15,17,20,27
It has been shown that deep vein tortuosity may lead to thrombosis.16,20,28 Tortuous or
varicose veins, which cause pain, blood clots, or ulcers, are often associated with aging,
diabetic mellitus, hypertension, or pregnancy,1,3,4,6,16,18,26 but the underlying
mechanisms are unclear. Therefore, it is of clinical interest to unveil the mechanism of vein
twisting and tortuosity.

We have previously shown that arteries buckle due to reduced axial tension or hypertensive
pressure.9,10 Our recent work demonstrated that veins buckle similarly when the lumen
pressure exceeds a critical level.21,22 In that study, the wall stiffness of the veins was
determined based on either a linear average or a one-dimensional exponential fitting of the
axial elongation of the veins under internal pressure. Using these data values, the model
overestimated the critical pressure compared to the experimental measurements. An
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improved model is needed for more accurate predictions. Since veins are thin walled
structures, it is necessary to establish a two-dimensional thin-walled model that better
represents the vein wall structure for vein buckling analysis.

The objectives of this study were to establish a biomechanics model of vein buckling under
internal pressure using the two dimensional Fung strain energy function and to test its
predictive value.

Methods
Experimental Measurements of Vein Properties and Buckling Pressure

We used a pressurized inflation test to determine the mechanical properties of porcine
jugular veins and then measured their buckling pressure under a series of axial stretch ratios.
A detailed description of the experimental methodology was published previously.22
Briefly, porcine jugular veins were pressure inflated with physiological buffered saline
(PBS) with one end of the veins left free to expand. So the veins were free to elongate while
being inflated under a slowly increasing lumen pressure. After preconditioning, the inflation
process was recorded for pressure and dimension (diameter and axial length) measurements.
These values were later used for the stress strain calculations.

For the bucking test, veins were connected to cannulae at both ends and stretched to given
stretch ratios. The cannulae were fixed to provide fixed end support for the veins during the
test. The lumen pressure was then slowly increased to generate vein buckling and continued
until a large deflection was reached. The deformation and pressure were recorded and the
pressure at which the veins started to deflect (deflection became detectable at ∼0.5 mm from
the initial baseline) was measured as the critical pressure.22

Two-Dimensional Thin-Walled Cylindrical Vein Model
Veins are considered as thin-walled cylindrical tubular vessels. The wall material is assumed
to be homogenous and orthotropic, and is characterized by a Fung two-dimensional (2D)
strain energy function.7

(1)

wherein b0, b1, b2, and b4 are material constants and Eθ and Ez are the circumferential and
longitudinal Green strains.

Let's designate the inner radius, wall thickness, and length of the vein to be R, T, and L at the
initial unloaded state (ignoring the residual stress) and r, t, and l at the loaded state,
respectively. Veins are under lumen pressure and significant axial strain in vivo.13 For veins
under lumen pressure p and axial tension N (with an axial stretch ratio  accordingly), we
have

(2)

And the incompressibility of the wall yields
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(3)

The Green strains in the circumferential and longitudinal directions are

(4)

It is seen that all strain components are axisymmetric and uniform across the vein wall.
From the Fung strain energy function, the Cauchy stresses are

(5)

On the other hand, the circumferential stress in thin-walled veins can be determined using
Laplace's law:

(6)

The axial stress is determined by

(7)

Combining Eqs. (5), (6), and (7) yields

(8)

(9)

Therefore the deformed radius r can be determined for given pressures.

Determination of Material Constants of Veins
For veins with one end free to expand under internal pressure, the axial force generated by
the internal pressure is

(10)
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Taking Eq. (10) into Eq. (7) yields

(11)

Therefore, with the experimental measurements of the vessel diameter and length at each
given pressure, the corresponding stresses and strains were determined using Eqs. (4), (6),
and (11) as reported in our previous studies.22 The material constants were then determined
by fitting the experimental data with Eq. (5) using Matlab.

Buckling Equation for Veins
The buckling equation was derived using a similar approach as described in our previous
studies.9–11 Since veins will deform into sinusoidal shapes when buckling occurs,12 we
assumed a buckling mode shape

(12)

where C is a small-value constant and z is the axial coordinate of the central axis before
buckling.

Accordingly, the deformed coordinates for a point on the vein wall are

(13)

where (r, Θ, z) are the pre-buckling coordinates of a material point (R, Θ, Z) in the no-load
state.

Thus, the circumferential and axial stretch ratios in the vessel wall of the bent buckled vessel
are:

(14)

Neglecting the high order terms of small C, the only non-zero incremental strain is

(15)

It is seen that the axial strain becomes non-axisymmetric after buckling (though symmetric
to the plane of Θ = 180°). Accordingly, the bending moment M(z) in the vessel can be
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obtained by integrating the moment generated by the incremental axial stress Δσz over the
cross-sectional area A of the arterial wall

(16)

Taking Eqs. (15) and (5) into Eq. (16) and integrating with respect to Θ leads to

(17)

where Hn is the “bending force” at buckling.

(18)

On the other hand, the internal pressure generates a lateral load q(z), in buckled vessels, due
to the uneven size on the concave and convex sides of the vessels9,11

(19)

Based on the equations of equilibrium, the bending moment M(z) generated by q(z) is

(20)

Combing Eqs. (20) and (17) gives the critical pressure

(21)

Taking Eqs. (9) and (18) into Eq. (21) yields

(22)

At a given axial stretch ratio, the circumferential strain and radius are functions of pressure.
Thus the critical pressure can be determined using Eqs. (8) and (22).

Lee and Han Page 5

Cardiovasc Eng. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Model Prediction and Simulations
For each vein tested in our previous study, the material constants in the Fung strain energy
function were determined by fitting experimental data as described above. Using these
material constants, the critical pressure of each vein was estimated using the buckling
equation for various axial stretch ratios. Specifically, for each vein at each given axial
stretch ratio, the vessel dimensions and strains were determined for each incremental radius
step. The lumen pressure was determined using Eq. (8), and the corresponding “buckling
pressure” was determined using Eq. (22). The critical pressure was determined as the
pressure that satisfies both Eqs. (8) and (22). In addition, a parametric study was performed
to investigate the effects of vessel dimensions on the critical pressure using the thin-walled
vessel buckling model.

Results
Material Constants for Porcine Jugular Veins

The circumferential and axial Green strains and Cauchy stresses were determined from the
experimental data using Eqs. (4), (6), and (11). While we previously fitted the axial stress–
strain data with a one dimensional (1D) exponential stress–strain relationship,22 here we
used the Fung two-dimensional (2D) strain energy function. For comparison, the strain
energy function was first fitted to only the axial stress–strain data and then fitted to both the
axial and circumferential stress–strain data simultaneously (Fig. 1). It is seen that the Fung
2D strain energy function achieved an accurate fitting to the experimental data (with R =
0.984 on average). The corresponding material constants b0, b1, b2, and b4 obtained from the
fittings are summarized in Table 1.

Model Predicted Critical Pressures
The critical pressures of the veins, at given axial stretch ratios, were estimated using the
buckling equation and each vein's own material constants as listed in Table 1. The results
showed that the critical pressure increased nonlinearly with an increase in the axial stretch
ratio and that the predicted critical pressures fit the experimental data well (Fig. 2). The
estimations based on the 1D stress strain relationship from our previous studies21,22 are
also given in Fig. 2 for comparison. It is seen that in all but one vein, the 2D model
generated better predictive results than the 1D model.

In addition, the effect of vein dimensions on the buckling pressure was examined through
numerical simulations (Fig. 3). The material constants of vein #1 were used in these
simulations. The range of slenderness ratio (length to radius ratio, L/ri) and wall thickness to
radius ratio (t/ri) used in the simulations were based on the range of our experimental
measurement of the jugular veins (L/ri = 7.83–14.36 and t/ri = 0.06–0.14),22 but a wider
range of variations were included for the dimensional parameters to cover different veins.
Our results showed that the vessel slenderness ratio (L/ri) and wall thickness to radius ration
(t/ri) have a significant effect on the critical pressure as previously demonstrated for linear
models.9 Specifically, an increased vessel length reduced the critical pressure and thinner
walls reduced the critical pressure as well. Thus, long, thin vein segments are more prone to
buckling than short, thick ones. This trend is similar to the results demonstrated in the linear
model for arteries.9

Discussion
In this study, we developed a buckling equation for veins using a nonlinear elastic thin-
walled cylindrical model. Our results demonstrated that veins buckle when the internal
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pressure exceeded a critical value, which depended upon the axial stretch ratio and wall
stiffness. The 2D thin-walled model predicted the critical pressure with good accuracy.

Previously, we used a simple one-dimensional (1D) model to estimate the critical pressure
and found that the 1D model largely overestimated the critical pressure of the veins.22 Our
current results showed that the 2D models yielded a much better prediction of the
experimental critical pressure than our previous 1D model. Though the 2D data did under
predict the critical pressure for two veins, it demonstrated much better predictions than the
1D model overall. This advantage may be due to the fact that while the 1D model was based
on the arterial wall properties in only one direction (the axial stress–strain data), the 2D
material model was based on the properties in two directions (both the axial and
circumferential stress and strain data), which took into account the interactions between the
axial and circumferential directions. Therefore, the 2D model provides a much better
estimation than the 1D model.

An interesting observation was that although the vein diameter initially increased with
pressure, it actually decreased slightly as the pressure increased. We have used additional
veins to measure the diameters with much higher resolution images and the results
confirmed this trend. We think there were two possible reasons for this phenomenon. First,
the pressure vs. diameter test was done with veins free to extend axially. The elongation in
the axial direction would reduce the diameter of the veins due to the incompressibility of the
wall. In contrast, the commonly observed diameter increase under increasing inflation
pressure reported in the literature was obtained with vessels fixed on both ends thus had no
axial elongation. Secondly, the measurements were of the outer diameter of the wall. The
outer diameter of the wall may decrease even if lumen diameter increases under lumen
pressure due to wall thinning.

Model Limitations and Applications
The model equations were derived for a thin-walled vein model using the adjacent
equilibrium approach.11,12 The ends of the vessel were fixed in the buckling tests and thus
in the subsequent model simulations; the effect of contiguous tissue tethering was ignored in
the current model. While the effect of tissue tethering has been discussed in one of our
previous reports,11 the rationale for this simplification was to match the conditions used in
our previous experimental study to validate the model.22 While these limitations exist, the
model generally fits well with the experimental data. The main conclusions from the current
nonlinear thin-walled model agree with our previous results for arteries.9,10 As discussed
previously, the current model equations can be easily extended to other boundary conditions
such as different end supports and surrounding tissue supports.11,12

There are multiple factors that may have contributed to the differences between the model
prediction and the experimental measurements. First, the model was based on the
assumption of an ideal cylindrical shape and homogenous wall, but the geometry of veins
demonstrated variations in the wall from the ideal model. Secondly, vein walls are very thin
and therefore the imperfections in wall dimension and material properties would have a
significant effect on the critical pressure.

Clinical Relevance
The normal physiological pressure of jugular veins is in the range of 3–13 mmHg and the
normal axial stretch ratio in jugular veins is in the range of 1.7–1.8.2,22 Thus veins are very
stable under normal venous pressure in vivo. However, buckling is possible under certain
conditions as demonstrated by our previous work22 and the current study.
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Our model equations clearly demonstrated that the axial stretch ratio in veins plays a
significant role in maintaining the stability of veins. Veins are under significant axial strain
in vivo.13 However, hypertensive venous pressure and reduced axial strain associated with
venous hypertension and aging could reduce the critical pressure and cause veins to buckle.
Pressure build-up in leg veins due to valve malfunction could lead to vein buckling in
addition to vein enlargement.

Another example is vein grafting. Veins are subject to high arterial pressures after being
grafted to blocked or damaged arteries. Vein grafts may buckle under arterial pressure when
not properly placed, especially when the vein segments are too long.13,14 The buckling
could potentially compromise the normal functioning of the vein grafts. The critical pressure
and axial tension that lead to vein buckling are thus very important parameters for surgical
consideration. The current model provides a useful tool for determining these parameters.

We have shown that veins buckle with reduced stretch ratios and increased pressure. Vein
buckling could alter the blood flow and wall stress that leads to wall remodeling.8,19,23,25
In addition to biological factors, mechanical buckling could be a possible cause of tortuous
veins, such as varicose veins, in human legs. Further studies of tortuous veins, including
varicose veins, are needed to better understand this phenomenon. The current model
provides a useful tool for experimental designs to produce or prevent tortuous veins.
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FIGURE 1.
Comparison of the experimental stress and strain data with the fitting curves obtained using
the Fung two dimensional (2D) strain energy function. The open circles and the closed
diamonds represent the experimental circumferential and axial results respectively. The solid
line (2D fit) represents the fitting curves from simultaneous fitting of the axial and
circumferential data. The dot-dashed line (2D fit, axial only) represents the fitting curves
from fitting the axial stress strain data only.
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FIGURE 2.
Comparison of experimental and model predicted buckling pressures plotted as functions of
the axial stretch ratio. The open circles represent the experimental buckling results.22 The
solid line (2D fit) represents the buckling pressure predicted using the material constants
obtained from simultaneous fitting of the circumferential and axial data. The dot-dashed line
(2D fit, axial only) represents the buckling pressure predicted using the material constants
from fitting the axial data only. These 2D material constants are listed in Table 1. The
dashed line (1D fit) represents the 1D model predictions given in our previous paper.22
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FIGURE 3.
Effect of length and wall thickness on critical pressure. Top: critical pressure vs. axial
stretch ratios at different slenderness ratios L/ri. Middle: critical pressure vs. slenderness
ratio L/ri at four axial stretch ratios. Bottom: critical pressure vs. axial stretch ratios at five
different t/ri ratios.
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