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Evaluation of quantitative variation in gene expression
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ABSTRACT

We investigate the behaviour of the gene-expression
rate as a statistical variable using autoradiographic data
for 39 transcripts from a heterogeneous set of 80
breast-tissue cultures. Despite standardization, the data
distributions of all transcripts showed intervals of
normality and intervals of systematic departure from
normality which most frequently resulted in a
significant skewness and/or kurtosis. Non-normal
shapes are attributed to modulation of gene
expression. This statistical particularity creates
difficulties in the evaluation of differences among
specimens. Using classical parametric and non-
parametric procedures for normal and non-normal
variation, respectively, we demonstrate that large
differences in optical density are neither necessary nor
sufficient for associating expression rates with
biological factors. The transcripts coding for the
metalloprotease stromelysin-3 (ST3) and for the
receptor to insulin-like growth factors (IGFR) are used
as examples and their variation is presented in detail.
ST3 expression appeared to be specifically associated
with mammary stroma fibroblasts derived from post-
radiation fibrosis lesions. IGFR was expressed at higher
rates in mammary gland and skin fibroblasts than in
mammary epithelial cells and was subject to frequent
and strong modulation.

INTRODUCTION

The identification of causes and effects of modulation of gene

expression is a common task in diverse fields of biological
research. In any field of research, progress depends not only on
the quantity and quality of available data and but also on adequate
evaluation. By 'evaluation' we mean an estimation of the
probability that an observation is due to chance. The sequence-
specificity of transcript detection techniques (1) has been a major
concern of molecular biologists. The most primitive technique,
a 'dot' or 'slot' blot analysis, is to load a certain amount of an

RNA extract on a filter and allow a probe to hybridize with, or

attach to, anything it can, i.e. exactly homologous transcripts,
other partially homologous transcripts, contaminant DNA and
other impurities. In northern blot analysis, the sequence-
specificity problem is solved by an electrophoresis prior to
blotting. The transcript of interest migrates away from any related
transcripts and any impurities and only signals that correspond

to molecules of a recognized size are considered. But partially
homologous transcripts may also have very similar sizes. So,
technical development towards increased specificity has always
been welcomed. However, in transcript detection technology
specificity increases at the expense of sensitivity. The sensitivity
of a northern blot is practically lower than that of a slot blot
because some molecules are not intact or are differently spliced
and are not taken into account. Also, because some molecules
are not successfully charged on the filter but remain in the gel.
For this reason, a northern analysis requires larger specimen
volumes than a dot analysis. Every step introduced between RNA
extraction and autoradiography (mRNA purification, RNase
treatment, and so on) yields less than 100% of the 'true' transcript
and may so reduce the sensitivity of detection as well as add
artificial variation between specimens. Losses may add up to a

false negative result. The probability that a negative score is
artificial increases with the complexity of the protocol. Of course,
techniques that employ sequence-specific amplification by
polymerase chain reaction are very specific and extremely
sensitive, but are of little use for quantification. Firstly, because
amplification introduces enormous artificial variation between
specimens and, secondly, because the minute concentrations of
transcripts that can be so detected (few molecules in a whole
population of cells) probably have analogous, minor phenotypic
importance. Complex methods are also less efficient with respect
to the number of specimens one can process at a time. As for
the quality of the data, it would seem that we have to deal with
false positive or negative scores anyway; or have we?
The idea behind a recently proposed method (2) is to keep the

power and the simplicity of a slot blot and to solve the specificity
problem mathematically. A multi-gene slot blot analysis combined
with a principal components analysis is not merely a very
productive method but is, also, a very sensitive and an extremely
specific one. The total signal (of optical nature, or of any nature)
is considered as the sum of a gene-specific part and a non-specific
part. The non-specific signal is, by definition, independent of
the sequence of the probe. Whether this signal is due to non-

specific attachment of the probes to the loaded material or to
variation in the overall transcription rate, it may be accurately
calculated and removed from the data using simple arithmetics.
The returned values, referred to as specific signals, are

standardized measures of gene-, and cell-type-specific
modulation.

Like any measure of gene expression, and any measurable
variable, specific-modulation estimates are subject to experimental

*To whom correspondence should be addressed

k./ 1994 Oxford University Press



800 Nucleic Acids Research, 1994, Vol. 22, No. 5

error. There are, now, statistical procedures for evaluating
practically any type of data but statistics are desperately missing
from gene expression literature. Quantitative differences in the
intensity of autoradiographic signals between specimens are
almost always evaluated by magnitude and intuition, and
explanatory models are too often based on single observations.
References 3 through 6 provide some examples of this serious
methodological negligence; by glancing through any journal
reporting quantitative autoradiographs the reader will find many
more examples from his/her own field. Estimation, comparison
and explanation of gene-expression rates are particularly liable
to experimental error not only because they rely upon complex
measuring techniques but also because gene expression is by
nature a complex phenomenon. There are several possible
hypotheses about gene expression rates. (i) A gene is expressed
at a constant rate; any variation of the experimental estimates
of this rate is artificial and such estimates should be randomly
distributed around one theoretical mean. (ii) A gene is essential,
or non-essential, but is modulated and can have two possible states
(expression / stimulation, or expression / inhibition), (iii) three
states (inhibition, normal expression, stimulation) or (iv) a
continuously variable rate of expression, between zero and a
maximum. According to each hypothesis there should be one,
two, three or an infinite number of theoretical mean expression-
rates. Although the last hypothesis would seem, today, to be
generally valid for most genes in nature, for a particular gene
in a particular biological sample all the four hypotheses have equal
chances to be rejected and what is true for one gene may not
be true for another. Testing these hypotheses is, in principle,
simple. One may count the number of significantly different
group-means in the sample. However, before computing means
and standard errors on everything in sight one must examine how
the data are distributed. The validity of any statistical comparison
depends primarily on the validity of the assumptions about the
distributions being compared. The aim of this article is to
demonstrate potential artifacts associated with the method of
evaluation of quantitative autoradiographic data and to point out
the necessity for a statistical theory of gene expression. The
examples are drawn from our own field of research, i.e. breast
cancer.

Breast cancer is a complex disease, one of the best studied
cancers and, still, a very poorly understood one. Abnormal
growth of tumoral epithelial cells is apparently supported by an
also abnormal micro-environment (stroma) consisting of
fibroblasts, vascular elements and extracellular matrix. There is
substantial evidence (7-11), and good theoretical reason to
believe, that epithelial and fibroblastic cells communicate by
means of differential gene expression in order to establish normal
function of the mammary gland or to grow into a tumour. We
are, therefore, studying the expression of genes that are generally
related to cell growth, differentiation and cancer in epithelial cells
and stromal fibroblasts with various pathological backgrounds,
under various physiological conditions, in order to select those
genes that would show significant cell-, and gene-specific
modulation. Out of 39 sequences, probed in 80 cell cultures, the
transcript coding for the metalloprotease stromelysin-3 (ST3; 12)
presented the smallest specific variation, and the transcript coding
for the receptor to insulin-like growth factors (IGFR) varied very
widely (2). We demonstrate that detection of a 'strong signal',
even if this is proved to be gene-specific, is neither sufficient
nor necessary for associating a gene with a phenotype. It all

MATERIALS AND METHODS
Cells and transcript detection
The cells, the culture treatment with cholera toxin (CT) and/or
12-O-tetradecanoylphorbol-13-acetate (TPA) as well as the RNA
quantification method, from extraction to densitometry, have been
described (2). The specific signal of transcript i in specimenj
(SSij) was calculated as

SSij = [(dij - mi) / si] - PCj (equation 1)

where d is the optical density of the transcript in the specimen,
m and s are, respectively, the mean and the standard deviation
of the optical densities of the transcript in 80 specimens, and PC
is the first-principal-component score of the specimen, calculated
by principal components analysis of 39 transcripts (2). The term
in brackets is the z-value of the observed optical density of probe
i in specimenj whereas the PCj is the z-value of the expected
non-specific signal. The latter represents the cumulative effects
of variation in the amount and purity of the loaded material, in
the transcriptional activity of the cells and in any conceivable
factor that may influence densities non-specifically. The unit of
the specific signal scale is the standard deviation of raw optical
densities. ST3 was probed with the e EcoRl 1.7kb fragment of
the pBSIISKZIV plasmid (13) kindly provided by Dr P Basset.
The EcoRI 0.7kb fragment of the pIGF-I-R.8 plasmid was used
for IGFR detection; this, and all other probes used in this study
were obtained from the American Tissue Culture Collection
(Rockville, Maryland, USA).

Statistics
The Kolmogorov - Smirnov one-sample, two-tail test was

employed for comparing the specific-signal distributions to a

standard normal distribution; the reported Lilliefors probabilities
refer to the shape of a distribution and are independent of its
location or scale. The difference of a mean from zero was

evaluated by the one-sample, two-tail t-test. Stepwise analysis
of variance, without covariates, was performed as described (2).
Differences between group means were evaluated by the
Bonferroni pairwise comparison procedure (particularly
recommended for comparisons among few groups) when the
analysis of variance resulted in a significant (P< 0.05) F statistic.
Commercial statistical software (SYSTAT version 5.2; SYSTAT
Inc, Evanston IL, USA) was used for all computations.

RESULTS
Normal and non-normal distributions of specific signals
The statistical procedures for evaluating differences between
means, and the mean itself as a descriptive statistic, are

appropriate only to normal distributions. The assumption of
normality can be tested by fitting a normal-distribution function
to the data and examining the linearity of the observed values
with the expected values in a so-called normal probability plot.
If the data are normally distributed, then the plotted values should
fall on an approximately straight line. The skewness and kurtosis
values provide additional, quantitative information about the
departure of the distribution from normality. Figure 1 shows
normal probability plots for the observed ST3 and IGFR specific
signals. The distribution of ST3-specific signals in 74 out of 80
specimens was almost perfectly normal. The three highest values
were abnormally high and the three lowest values were

depends on data distributions. Uabnormally low (Figure I a). It should be pointed out that the
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Figure 1. Normal probability plots and descriptive statistics of (a) ST3-specific
signals, (b) ST3 optical densities, (c) IGFR-specific signals including or (d)
excluding an extreme positive value. n = number of observations; s = skewness
with <(6/n) standard error; k = kurtosis with J(24/n) standard error; P is the
two-tail probability that the observed distribution, after LilHiefors standardization,
is a normal one calculated by the Kolmogorov - Smirnov one-sample procedure
using a standard normal distribution. The statistics on the left side of curve a

refer to the entire sample, and those on the right, to the values in the interval
of 0.5.

specific-signal transformation always improved normality; optical
densities were a lot less normally distributed (Figure lb). This
is to say that departure from normality was not at all an artefact
of equation 1 but seems to be a real problem associated with any

autoradiographic data and, as we argue, with the very nature of
gene expression. The distribution of IGFR presented severe

departure from normality. This was mainly due to an extremely
abnormal positive value (Figure Ic) and also to a considerable
irregularity in the distribution's main body (Figure Id). Typically,
the distributions of all the 39 examined sequences presented
intervals of normality and intervals of departure from normality
which most frequently resulted in a significant value for total
skewness and/or kurtosis and in a Lilliefors probability below
0.05. Examples of spectacular systematic departures from
normality are shown in Figure 2.

Evaluation of normal variation
The variance may be partitioned and group means may safely
be compared if the distributions remain normal within groups.
Concerning the ST3 distribution in mammary tissues, these
conditions were met when the 6 extreme values were excluded
and the data were split by tissue and pathology. Analysis of
variance showed no significant differences between skin and
mammary gland, nor between mammary epithelial and stromal
cells. The only significant difference was between the non-

pathological stroma and the post-radiation fibrosis groups
(P=0.002). This difference corresponded to some 20% of the
total variance (R2=0.196). As shown in Figure 3, only the

Figure 2. Examples of transcript distributions presenting systematic departure
from normality in 80 specimens (FES, TGFA, PDGFRB) or in 39 specimens
(KIT). P is the Lilliefors probability that the observed distribution is normal (as
in Figure 1). The distribution of PDGFRB values around zero (magnified in the
window) shows significant negative kurtosis.
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Figure 3. Box-plots describing the distributions of ST3-specific signals between
0.5 and -0.5 in epithelial cells (epi), non-pathological stromal fibroblasts including
fibroblasts from tissues adjacent to tumours (nst), in fibroblasts from post-radiation
fibrosis lesions (prf), in fibroblasts from benign or malignant tumours (bmt) and
in skin fibroblasts (skn). Sub-groups were pooled only if their distributions were

normal and their means not significantly different. The plots show the median
(central horizontal line in the box), the upper and lower quartiles (the box), the
10th and 90th percentiles (the bars) and extreme values. The number of
observations (n) and the skewness (s) and kurtosis (k) of the distributions within
groups are also shown. P is the two-tail probability that the group's mean is zero,
calculated by the one-sample t-test. A specimen of doubtful histopathology was

excluded from this analysis.

fibrosis group mean departed significanfly from 0. In skin
fibroblasts, however, the ST3 data presented a significant
departure from normality even when an extreme negative value
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Figure 4. Box plots describing the distributions of IGFR-specific signals (a)
between 1 and -1, (b) excluding only one extreme positive observation or (c)
without range restriction, in mammary epithelial (epi) and stromal cells (mst;
all pathology groups pooled) and in skin fibroblasts (skn). The box-plot
presentation, the descriptive statistics and the probability that the group-mean is
zero are as in the legend of Figure 3; standard errors for skewness and kurtosis
are calculated as </(6/n) and </(24/n), respectively.

was removed. For this reason, the above comparisons of the skin-
group mean to other group means, or to zero, are suspect.
The distribution of IGFR is split by tissue in Figure 4. In the

interval of 1 (Figure 4a) the data remained normal within each
tissue-group and all the three means were significantly different
from zero. Therefore, the usual densities of IGFR were higher
in the fibroblasts, and lower in epithelial cells, than 38 control
genes, together, would predict. The difference btween fibroblasts
and epithelial cells was significant (P<0.001, R2=0.502) but
that between skin and stromal fibroblasts was not significant.

Table 1. Specifications of cultures presenting extreme modulation of ST3

Value Group Treatment

1.0 n none
0.9 b none
0.7 n TPA

-0.7 c CT+TPA
-0.8 c TPA
-1.4 s CT+TPA

The groups (with the number of cultures in the group) are n=non-pathological
stroma (13), b=benign tumour (10), c=carcinoma (4) and s=skin (7).

Statistical effects of non-normal values
When 8 extreme negative IGFR values were considered, the
skewness of the distribution in the fibrosis group increased in
absolute value and the mean was no longer significantly greater
than zero (Figure 4b). Expression still appeared to be specifically
stimulated in the skin-cell cultures and inhibited in the epithelial
lines. The difference between epithelial cells and fibroblasts was
still significant (P<0.001), and that between skin and gland
fibroblasts, non-significant. The reduction of a positive mean to
zero when some additional negative values are considered, as
in the case of mammary fibroblasts, might seem fair. When the
extreme positive value belonging to CT and TPA treated skin
fibroblasts was added in the analysis (Figure 4c), the skin-data
distribution departed from normality and the mean was no longer
significantly higher than zero. This reduction of a positive mean
to zero by an additional value which is actually higher than the
mean itself is obviously due to a well known statistical artefact:
means of non-normal distributions are nonsense.

Evaluation of non-normally distributed data
Non-normally distributed data cannot be used for computing and
comparing means, but splitting into groups may result in normal
distributions within groups. Extreme non-normal values can be
examined individually. Table 1 presents the specifications of the
cultures that gave extreme ST3 signals. The probability of
drawing by chance one of n identical items when 3 items are
drawn from a pool of 80 is 3n/80; the probability of drawing
a second one is [3n/80 x 2(n -1)/79]. We may, thus, compute
the probability that one of the three abnormal values on either
side of zero belonged to a benign-tumor extract (P=0.375) or
a skin-cell extract (P=0.263), and that the other two extreme
values belonged to non-pathological stroma extracts (P =0. 148)
or to carcinoma stroma extracts (P=0.01 1), simply by chance.
These probabilities, and the fact that the extreme values were
not really very far from the expected 'normal' ones, would
suggest that the discrepancies from normality were rather
erroneous (i.e. not explained by tissue and pathology contrasts
alone), with the exception of the two ductal carcinoma cultures
in which TPA seems to have had a real inhibitory effect on ST3.
The probability of the extreme positive IGFR value being
observed by chance in a skin fibroblast culture was 0.086. This
low probability, the very large absolute value of this observation
and the significantly positive mean of IGFR in other cultures of
the skin strain, considered together, would indeed suggest that
IGFR was up-regulated in these cells. Had we not examined the
distribution of the data, however, we would have no statistical
support to suggest this, because the mean specific signal in this
strain, from 7 cultures, would not be significantly different from
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Table 2. Common errors of evaluation due to inappropriate analysis or experimental design

Analysis Defects Suggestions

Parametric comparisons of non-normal miss real differences; may create artificial use a normalizing transformation; omit non-normal data; use
distributions differences non-parametric statistics

Non-parametric comparisons of normal miss fine quantitative differences try a parametric analysis first
distributions

binary transformation of continuous data creates artificial stability or artificially abrupt useful when detection is difficult; disastrous in between-gene
differences comparisons; assign non-parametric statistics

comparisons to a single specimen have limited explanatory power use one-sample t-test

comparisons between single specimens have no explanatory power evaluation not possible

zero and because the probability that the one 'really' positive
value belonged to a skin specimen by chance was higher than
the conventional level of significance. The absolute value itself
provides information about the strength of the presumed
modulation, compared to usual variation, but this information
is insufficient for attributing the modulation to skin-specific
factors. In the example of ST3, we have no statistical evidence
for the biological importance of the 3 highest specific signals
whereas we do have evidence for the importance of signals with
lower positive values in the post-radiation fibrosis group. Large
differences between specimens are, therefore, not necessarily
more significant than smaller ones. Information about gene
expression is to be found in the distribution of the data and not
in individual specimens.

DISCUSSION
Specificity and significance of differences in gene expression
The issues of specificity and significance are too frequently mixed
up in the literature of gene expression. As mentioned in the
introduction, innumerable are the papers reporting differences
in the expression of experimental genes between single specimens
of different types and claiming biological importance only because
these differences are gene-specific, i.e. obtained with a specific
detection protocol and/or not observed in a control gene. Authors
employing highly specific detection techniques, such as the RNase
protection assay, rarely use control genes (e.g. 4, 5). A
difference in a gene's expression may be thought to have a
biological importance only if it is both, gene-specific and
statistically significant. These conditions are totally independent
of each other. They must, therefore, be tested separately using
appropriate experimental designs. The problems arising from an
inappropriate specificity test-using a single, constitutively
expressed control gene-have been discussed (2). Here, we
appear to use no control genes but the data we present have
already been controlled for specificity, and corrected, using a
large number of randomly chosen control genes. So we may
concentrate this discussion on the question of significance. The
arguments that follow are summarized in Table 2.

Gene expression data are frequently distributed in a non-
normal manner
Non-normal distributions may arise from pooling normal
distributions with different means. Consider i cell populations
in which a gene is expressed at rates iki The experimental
estimates of each ui can be expected to be normally distributed

around that theoretical rate. Though, for the whole set of Ai-
estimates to be normally distributed, the theoretical /, rates
should, themselves, be normally distributed around their own
mean. To give an example from our experimental material, we,
could expect that our ST3 data be normally distributed in the
stromal fibroblasts if the rate of expression of ST3 in each such
culture was a normal variant of the mean rate in mammary
stroma. Similarly, our whole set of data for a gene in the entire
experimental material could be expected to present a normal
distribution only if the mean expression rates in breast epithelial,
stromal and skin cells were normal variants of one real expression
rate in all breast tissues. When measuring a biological constant
with a simple instrument (a morphometric ratio with a ruler or
the optical density of a solution with a photometer), the hypothesis
that sample means are normally distributed around a single
theoretical mean is reasonable, but regarding a potentially variable
gene-expression rate measured with a sophisticated multi-step
protocol the assumption of normality must be routinely tested.
The first cause of trouble that comes to mind when analysing

autoradiographic data is film saturation. Saturation may, indeed,
severely distort the distribution of optical densities causing
negative skewness. Recent technologies for quantifying radiation
directly (e.g. PhosphorImager analysis; 13) have advantages over
autoradiography, in this respect. However, saturation is not the
only possible cause of negative skewness, it cannot cause positive
skewness (as was the case in our complete data sets) and it can
easily be avoided by differential exposure. When autoradiographic
densities are linear functions of expression rates, then the
observation of a non-normal distribution is, in itself, a reason
for rejecting the hypothesis that the specimens derive from a pool
with a single mean; or, in other words, that the gene is expressed
at a constant rate in the sample. The observation of a normal
distribution is not proof of constancy, because the sum of distinct
distributions may not necessarily depart significantly from
normality. The method of evaluation of gene expression depends,
therefore, on whether one is dealing with an apparently constant
or an apparently variable expression rate.

Skewness and kurtosis
The skewness index is a measure of the relative frequency of
observations on each side of the mean and, as such, it indicates
tendencies of modulation with reference to the observed mean
rate. A significant positive skewness (e.g. IGFR in skin cells)
indicates that the gene is usually expressed at rates below the
group-mean and that, occasionally, it is up-regulated (long tail
on the positive side). A negative skewness (IGFR in stromal
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fibroblasts) indicates that the gene is generally over-expressed
and frequently down-regulated. Kurtosis indicates the relative
frequency of values near, and away from, the mean. A positive
kurtosis (IGFR in pooled fibroblasts; 27.3 i 0.6) indicates
frequent or strong modulation, on either side. A negative kurtosis
does not indicate absence of modulation-this would result in
a normal distribution-but, rather, a stabilizing mechanism which
restricts extreme fluctuation of the expression rate. The negative
kurtosis of all IGFR data in the interval of i 1 pooled
(-0.8 + 0.6) was rather artificial, since we intentionally cut off
many extreme values. PDGFRB values presented a genuinely
negative kurtosis around zero (see detail in Figure 2). We do
not analyze this case here but we may speculate that a short-tailed
distribution may arise as a result of various experimental artefacts
(load calibration or a narrow range of linear autoradiography)
and, perhaps, also as a result of natural regulatory mechanisms
stabilizing gene expression. Data presenting significant skewness
or kurtosis may mean a lot, or nothing, and should be evaluated
with great caution.

Explained variation
Statistical methods can be very powerful. If our statistics are

correct, we may claim to have traced a significant difference
(between post-radiation-fibrosis and non-pathological fibroblasts)
that corresponds to 20% of the ST3-specific variation, i.e. only
2.4% of the total variation of the optical signals obtained with
this probe; and yet ST3 was the transcript that presented the
narrowest specific variation of all the 39 transcripts we studied.
We may also claim to have traced a significant effect of TPA
on ST3 in a ductal-carcinoma fibroblast isolate, and a combined
effect of CT and TPA on IGFR in a skin fibroblast culture,
without repeating the treatment; in some research areas, like in
biopsy identification, repetition may be practically or theoretically
impossible. But do such 'minor' or 'single' observations carry

any weight? The percentage of variance that a model explains
(the power of the model) should not be confused with the level
of significance of the results. In the context of a distribution
extreme values are not single observations. Together with all the
other observations such values determine the shape of the
distribution. It is the shape of data distributions that we examine,
evaluate and try to interpret and not individual signals, as is
usually the case in gene expression literature.

Nevertheless, we do worry about statistical artefacts; statistics
do not prove anything, they only suggest and test hypotheses.
The beauty of the specific-signal transformation is that it enables
direct comparisons of data obtained in different detection and
quantification sessions, on different scales, for different genes.

If the difference in ST3 expression between non-pathological and
post-radiation-fibrosis stroma is real then its statistical significance
should persist as more such specimens become available. If CT
and TPA really affected IGFR in the skin fibroblasts then one

should expect to observe changes in the expression of other genes,

given that the effect of these drugs on transcription is indirect
and pleiotropic (14, 15). This prediction has been confirmed in
this study: a transcription-factor gene related to differentiation
(p53), an interleukin gene (114) and several growth-factor (TGFA,
TGFB, IGF2) and other growth-factor-receptor genes (EGFR,
PDGFRB and FES) were also strongly stimulated while a

transcription/replication-factor gene related to growth (MYC), a

ribosomal gene (28S rRNA) and growth itself were inhibited. In
contrast, the specific signals of a metabolic transcript (GAPD),

of a cytoskeleton transcript (ACTB) and of 19 other transcripts,
homologous or unrelated to the above, remained very close to
zero. Consequently, the distributions of the modulated transcripts
presented significant skewness whereas the great majority of the
examined genes presented normal distributions in the skin
fibroblasts (data not shown).

Random variation
When statistics are used incorrectly, or not at all, autoradiographic
data can be very misleading. The example of ST3, seen from
the pessimist's point of view, shows that as much as 97.6% of
the total autoradiographic variation, including extreme
observations, can have no recognizable biological importance.
This means that unless significance is appropriately documented,
the odds are that observed differences in optical density represent
random error. A 100-fold, or an even greater difference in a gene
product between tissues (e.g. as claimed by Glatt and Snyder;
3, 4) may be non-significant while a 5-fold, or an even smaller
difference (as reported by Pieroni et al. for the same gene in
the same tissues; 4) may be significant, depending on the within-
tissue variation (not reported in articles 3 and 4). Here, a
difference corresponding to nearly 8 standard deviations of IGFR
optical densities hardly approached the conventional 95%
confidence level whereas a difference corresponding to about 0.2
standard deviations of ST3 optical densities was highly significant.
The magnitude of a difference, by itself, tells nothing about
statistical significance and biological importance. We cannot
assign any importance to observations that we have not been able
to explain statistically; like, or instance, to ST3 signals in
epithelial specimens.

Statistics are equally necessary whether gene expression is
measured on a continuous scale (raw or transformed optical
densities) or on a nominal scale (presence - absence). The
example of IGFR in skin cells demonstrates how an unwise use
of the mean for describing non-normal data may lead to an
erroneous rejection of the modulation hypothesis. Non-normal
data should rather be described by distribution-free statistics
(skewness, kurtosis, percentiles, frequencies etc.) and evaluated
by non-parametric procedures. On the other hand, unthoughtful
transformation of continuous normal data to a nominal scale may
result in a massive waste of information leading to all types of
errors. We have no examples from our own work since we have
used a continuous scale precisely for this reason. We selected
for this purpose an article by Cullen et al. (11) of which the
subject and the biological material are very similar to ours and
in which, exceptionally, some statistics are reported. We have
no intention to criticize these particular authors, because the
procedures they followed are the same classical procedures of
evaluation of gene expression data as in hundreds of other articles.

Errors associated with current methodologies
The binary transformation. Typically, when a transcript is traced
in all examined specimens it is considered as constant and all
the between-specimens variation is ignored. This constancy is
merely the result of a transformation of continuous densities to
a binary scale. Cullen et al. claimed that expression of TGFB,
PDGFA, FGF2 and FGF5 did not differ between their benign
and malignant breast-tumor fibroblasts simply because they were
able to trace these transcripts in both cell types. Why should easily
detectable gene products be unrelated to phenotypic characters?
Analysis of variance of randomly chosen abundant transcripts
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has demonstrated the opposite possibility (2). Easy detection does
not wave aside the need of evaluation.
When the sensitivity threshold of the detection technique

approaches the median intracellular abundance of a gene product,
some of the specimens may present no detectable signals. In this
case, a binary scale and non-parametric procedures are

unavoidable but, even then, the distribution of the data is
important for selecting the right test. Cullen et al. detected IGF2
signals in 1 out of 9 benign-tumour fibroblasts and in 5 out of
9 malignant-tumour fibroblasts. They assumed that their negative
scores were real. They erroneously applied the x2
approximation, which results in a probability of 0.045 for that
table, and concluded that the difference was significant. Fisher's
exact probability test, which is the appropriate procedure for their
table, would result in a probability of 0. 131 and would lead to
the opposite conclusion even if the possibility of false negatives
were ruled out.
The binary transformation becomes particularly troublesome

when applied to an abundant control gene-product, so as to give
all specimens a positive score, and to a scarcer experimental gene-

product that is detectable only in some specimens. This creates
the impression that the binary variation of the experimental gene
is 'gene-specific' and that statistics are no longer needed. For
evaluating the specificity of the difference in TGFA between the
control epithelial line and the experimental fibroblasts, in Cullen's
et al. experiment, one should ask whether there was an analogous
difference in other transcripts, rather than whether TGFB was

detectable in the fibroblasts. But, was the difference in TGFA
significant in the first place?

The use of a single, non-random control specimen. This is
probably the most common error concerning the evaluation of
significance. In electrophoretic analysis, the use of a sure positive
marker is indeed recommended. This specimen is to indicate,
roughly, the power of the probe and the position at which the
wanted transcript must have migrated. The 'control' cells are

purposely selected for their known ability to express the gene
in question at a detectable rate; perhaps, at an unusually, or

pathologically, high rate. Non-random specimens, however, do
not represent any group and have no statistical meaning. The
experiments of Cullen et al. may suggest that diploid fibroblasts
express less TGFA and PDGFB than what an immortal,
pathological, hypertriploid epithelial cell line is known to be able
to express; or simply confirm, in a tautological manner, that the
control specimen expressed more TGFA etc than random
specimens do. By no means can such results be interpreted as

meaning that fibroblasts express these genes less than random
epithelial isolates usually do, or not at all. A sound evaluation
of any difference between two types of cells would require more
than one randomly chosen specimen of each type. When the
frequency of negatives, or positives, within a group of specimens
is close to 100%, there may be too little left for non-parametric
statistics to explain; one should consider using a more sensitive
detection method, or, for positive scores, a finer scale.

CONCLUSIONS

We investigated the variation of expression of several genes in
breast tissues. The solution to the problems of sensitivity and
specificity of transcript detection adopted here was to examine
total RNA extracts deposited on filters without further

manipulation and finely calculate the overall transcriptional
activity of each cell population (the mRNA content of the
specimens) from a large sample of mRNA species. Without
adding any artificial variation, the 'specific-signal' transformation
accounts for non-specific attachment of probes to loaded material
and standardizes the transcriptional activities of cell populations
and those of genes. Genes may, thus, be compared as if they
were all expressed at the same average rate in nature, and cell
populations, as if they all produced the same total amount of
mRNA. This transformation also improves the normality of
optical density distributions of and facilitates, thus, a parametric
statistical analysis.
Our results suggest that ST3 and IGFR may be involved in

mammary gland biology and/or pathology and deserve further
study. ST3 was confirmed to be a TPA-modulated transcript
specific to pathological fibroblasts, as Basset et al. originally
proposed (12). Although the effect of lOOnM TPA on our
particular ductal carcinoma strain (inhibition) was the opposite
to what Basset et al. had observed with lOnM TPA on other
strains (stimulation), we know that different concentrations of
TPA can have quite different-and even opposite-effects on a
gene's expression (14). Moreover, we do not expect all ductal
carcinomas to be of the same type nor to respond to treatment
in the same manner. It is also important to emphasize that a
negative 'specific signal' means a relative inhibition with
reference to other genes (38 in this case) and not necessarily an
absolute reduction of the gene's expression rate. Basset et al.
(12) did not compare ST3 to other TPA-sensitive genes.
Expression of ST3 seems, nevertheless, to be also associated with
another pathological state of mammary stroma, the post-radiation
fibrosis. IGFR appeared to be a fibroblast-specific transcript
subject to frequent and strong modulation. This result suggests
that stromal fibroblasts are able to modulate their sensitivity to
IGF-mediated messages. Cullen's et al. results concerning IGF]
(11), as well as our own observations on IGFJ and IGF2
expression in mammary tissues (E. Spanakis and D. Brouty-Boye,
in preparation), indicate that the IGF-IGFR system is involved
in the communication between mammary epithelium and stroma
and, perhaps, also in breast pathogenesis.
The most important point this article intends to make, however,

is that explicit assumptions and rigorous-if not advanced-
statistical procedures are imperative in gene expression research
because gene expression rates as well as optical densities of gene
products are complex variables and their evaluation presents
multiple technical and theoretical difficulties. This point merits
the attention of molecular biologists since practically all we know
about gene expression is, thus far, based on autoradiographic
data of which the probabilities have not been estimated. The
multi-gene slot blot analysis can provide massive amounts of high
quality data. Distribution descriptive statistics assist in the
selection of the right evaluation procedure.
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