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Abstract
This paper reviews evidence suggesting that nicotine and tobacco smoke profoundly modulate the
effects of alcohol on γ-aminobutyric acid (GABA) neuronal function, specifically at the GABAA-
benzodiazepine receptor (GABAA-BZR). The focus of this paper is on recent neuroimaging
evidence in preclinical models as well as clinical experiments. First, we review findings
implicating the role of alcohol at the GABAA-BZR and discuss the changes in GABAA-BZR
availability during acute and prolonged alcohol withdrawal. Second, we discuss preclinical
evidence that suggests nicotine affects GABA neuronal function indirectly by a primary action at
neuronal nicotinic acetylcholine receptors. Third, we show how this evidence converges in studies
that examine GABA levels and GABAA-BZRs in alcohol-dependent smokers and nonsmokers,
suggesting that tobacco smoking attenuates the chemical changes that occur during alcohol
withdrawal. Based on a comprehensive review of literature, we hypothesize that tobacco smoking
minimizes the changes in GABA levels that typically occur during the acute cycles of drinking in
alcohol-dependent individuals. Thus, during alcohol withdrawal, the continued tobacco smoking
decreases the severity of the withdrawal-related changes in GABA chemistry.
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Introduction
γ-aminobutyric acid (GABA) neuronal function is modulated by ethanol and nicotine
(Kumar et al., 2009; Markou, 2008). Neuroadaptations within GABA neurons contribute to
the development of both ethanol and nicotine dependence, as well as complications
associated with the abrupt discontinuation of ethanol or nicotine in dependent individuals
(Hughes, 2009). Similarly, GABA systems have been implicated in the recovery from
ethanol and nicotine dependence (Mason et al., 2006; Staley et al., 2005a). Given the high
rate of alcohol and nicotine dependence comorbidity (Grant et al., 2004), studying the
convergent effects of acute and chronic exposure to these substances might provide
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clinically relevant insights about the underlying mechanistic interactions of ethanol and
nicotine. In this review we examine evidence suggesting that GABA neuronal function, and
specifically the GABAA-benzodiazepine receptor (GABAA-BZR), is a major neurochemical
target mediating the comorbidity of alcohol and nicotine dependence. We hypothesize that
nicotine profoundly alters both the acute and chronic effects of ethanol on GABAA receptors
and thus increases the risk for both alcoholism (by suppressing ethanol neuroadaptations and
withdrawal) and nicotine dependence (because the increased tolerability of ethanol and
ethanol withdrawal serves as a negative reinforcer for continued smoking). Important
contributions of neuroadaptions associated with GABAA receptors to ethanol dependence
have been reviewed previously (Krystal et al., 2006) and we refer readers to other recently
published reviews on the interaction of nicotine and alcohol such as genetic components
(Flatscher-Bader and Wilce, 2009; Schlaepfer et al., 2008) and reward mechanisms
(Schlaepfer et al., 2008) that contribute to the comorbidity.

Comorbidity of Alcohol and Nicotine Dependence
The high rate of comorbidity between alcohol and nicotine dependence is well established.
While in the general population it is estimated that 25% of people are current cigarette
smokers, up to 45% of alcohol-dependent individuals smoke, and as many as 14% of
smokers are also alcohol-dependent (Grant et al., 2004). Smokers consume twice as much
alcohol as nonsmokers (Carmody et al., 1985), alcohol problems are approximately 10 times
more prevalent in smokers vs. nonsmokers (DiFranza and Guerrera, 1990), and alcohol-
dependent smokers use more cigarettes per day than non-alcohol-dependent smokers
(Dawson, 2000). Unfortunately, individuals with a current or past alcohol problem have a
more difficult time quitting smoking than non-alcoholics (Bobo et al., 1987; Kahler et al.,
2010a; Romberger and Grant, 2004) and they are more likely to lapse to smoking while they
are drinking (Kahler et al., 2010b). However, quitting smoking does not appear to affect
rates of heavy drinking (Kahler et al., 2010a), suggesting that quitting smoking and drinking
must both be targeted in vulnerable individuals. There are several factors that may underlie
the high comorbidity of smoking and drinking (reviewed in (Meyerhoff et al., 2006). First,
the effects of the drugs, when used together, may be additive or synergistic with regard to
the reinforcing properties. Second, pharmacological effects or interactions of the drugs, such
as changes in metabolism or cross-tolerance, may lead to co-abuse. Third, genetic factors
likely contribute to this comorbidity.

We suggest that there is a critical influence of nicotine on alcohol's actions at the GABAA
receptor, as an additional factor that may contribute to the comorbidity of these disorders.
The cycle of addiction begins with acquisition or initiation of drug taking, which escalates to
a steady-state maintenance phase and then cycles of withdrawal and relapse typically occur.
It is likely that during these phases, discrete brain areas and neurochemical systems are
recruited. Traditionally, the initiation phase is characterized by positive reinforcement,
which is critically tied to the mesolimbic dopamine system (Di Chiara and Imperato, 1988).
The shift from controlled to uncontrolled use can be associated with a shift from positive to
negative reinforcement, i.e., when addicted individuals switch from taking drugs for the
euphoric effects to taking drugs to prevent withdrawal symptoms. At that point it becomes
critical to maintain homeostasis between the inhibitory (GABAergic) and excitatory
(glutamatergic) systems. During alcohol withdrawal, the drug-maintained homeostasis is
severely disrupted, most clearly evidenced by seizures, and it is at this critical juncture that
nicotine may be conferring protection against changes in neurochemicals and in alcohol
withdrawal symptoms. Specifically, the profound effects of nicotine on alcohol-induced
alterations of GABAA receptors may drive the continued use of both substances.
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Effects of Alcohol and Alcohol Withdrawal on GABAA Receptors
GABAA receptors are ligand-gated ion channels that are the primary mechanism for
modulating inhibitory synaptic transmission in the brain and have a central role in
modulating the effects of alcohol in the central nervous system (Davies, 2003; Krystal et al.,
2006; Kumar et al., 2004). GABA plays a number of important roles in the brain, including
maintaining homeostatic balance between excitation and inhibition (Sivilotti and Nistri,
1991), tuning the activity of glutamate neurons (Sesack et al., 2003), and entraining the
coherent oscillatory interactions within cortical networks (Mann and Paulsen, 2007; Wang
and Buzsaki, 1996). The GABAA receptor is a member of a family of homologous
transmitter-gated ion channels along with the nicotinic acetylcholine receptor (nAChR),
glycine and 5-HT3 receptors (Sigel and Buhr, 1997). GABAA receptors are pentamers
typically comprised of two α1-6, two ß1-3, and one γ1-3 subunit. Benzodiazepines bind to a
distinct site at the interface between an α and γ subunit on the GABAA receptor, a site
commonly referred to as the GABAA-benzodiazepine receptor (GABAA-BZR).

Although acute ethanol exposure has been reported to potentiate GABA-gated currents
(Suzdak and Paul, 1987; Tatebayashi et al., 1998), direct ethanol effects on synaptic
GABAA receptors only occur at ethanol levels that are lethal in humans (Koski et al., 2002;
Koski et al., 2005). Potent effects of ethanol in vivo likely reflect direct actions of ethanol at
extrasynaptic GABAA receptors (Krystal et al., 2006; Sundstrom-Poromaa et al., 2002;
Wallner et al., 2003). Acute ethanol may also act indirectly at synaptic GABAA receptors
(via increased glutamate release), thereby increasing the synaptic release of GABA
(Ariwodola and Weiner, 2004; Carta et al., 2004; Moghaddam and Bolinao, 1994). Of
interest is the capacity of ethanol to raise levels of neurosteroids that interact with GABAA
receptors (Barbaccia et al., 1999; Morrow et al., 1999) in a manner similar to other GABAA-
receptor positive modulators that may influence tolerance to alcohol (Morrow et al., 2006).
Importantly, GABA-ergic neurosteroids do not exhibit cross-tolerance like benzodiazepines,
and have been shown to be protective during ethanol withdrawal (Devaud et al., 1996;
Devaud et al., 1995). Neurosteroids act at extrasynaptic GABAA receptors that mediate
tonic inhibition, rather than at synaptic GABAA receptors that mediate phasic inhibition
(Stell et al., 2003; Wohlfarth et al., 2002). This is important because as previously
mentioned the extrasynaptic GABAA receptors have been proposed as a high-affinity target
for ethanol (Sundstrom-Poromaa et al., 2002; Wallner et al., 2003). Long-term ethanol
exposure stimulates changes in GABAA receptor subunit composition (Charlton et al., 1997;
Devaud et al., 1997; Petrie et al., 2001), and the consequence of this adaptation is that
GABAA receptors show higher affinity for GABA, but disrupted chloride channel
conductance (Liang et al., 2007; Morrow et al., 1988; Sanna and Harris, 1993). When
ethanol is removed, the lowered functionality of the GABAA receptors contributes to the
heightened excitatory tone (Kang et al., 1996), which is clearly evidenced by irritability,
sympathetic activation, seizure activity, and neurotoxicity associated with the ethanol
withdrawal syndrome (Hoffman, 1995; Kokka et al., 1993).

Several postmortem studies have been conducted to determine potential differences in
numbers of GABAA-BZRs between individuals with alcohol dependence and controls;
however, the results are conflicting. The studies report decreases in GABAA-BZRs of 30%
in hippocampus and 25% in frontal cortex (Freund and Ballinger, 1991), no difference in
GABAA-BZR density in frontal cortex or cerebellum (Korpi and Uusi-Oukari, 1992), and
increases in GABAA receptor density (Tran et al., 1981) in alcohol-dependent subjects vs.
controls. This variability may be due to the lack of control for smoking status, and/or to
other caveats associated with the study of postmortem specimens such as postmortem
interval, freezer storage time and insufficient information about the chronicity and intensity
of drug use over the lifetime.
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The use of receptor imaging (single photon emission computed tomography, SPECT, and
positron emission tomography, PET) has significantly advanced the field of drug addiction
research by allowing us to probe and quantify receptors of interest in the living human brain.
SPECT in combination with the radiotracer [123I]iomazenil, a GABAA-BZR inverse agonist,
and PET with [11C]flumazenil, a GABAA-BZR antagonist, provide a way to quantify
numbers of GABAA-BZRs in human subjects. SPECT and PET studies consistently
demonstrate decreased GABAA-BZRs in alcohol dependent subjects at approximately 1
month (Abi-Dargham et al., 1994), 3 months (Lingford-Hughes et al., 2000; Lingford-
Hughes et al., 1998) and 7 months (Lingford-Hughes et al., 2005) of abstinence. The
reductions in GABAA-BZR availability were consistently reported in the medial frontal
cortex (Abi-Dargham et al., 1998; Lingford-Hughes et al., 1998) and cerebellum (in
alcoholic women only)(Lingford-Hughes et al., 2000). The most recent study, which was the
first to evaluate GABAA-BZRs longitudinally within subjects while controlling for smoking
status, demonstrated increased GABAA-BZRs at about 1 week withdrawal in alcohol-
dependent nonsmokers (n=8) compared to alcohol-dependent smokers (n=15) and controls
(n=15), that normalized to control levels by 4 weeks of abstinence (Staley et al., 2005a). The
acute increases were predominantly in the cortical regions (Staley et al., 2005a). These
preliminary findings during acute abstinence highlight a temporal change in GABAA-BZRs
during the recovery from alcohol dependence with increased GABAA-BZRs during early
withdrawal, which then decreases during extended recovery. It is not yet clear whether
GABAA-BZR availability normalizes to control levels during prolonged recovery, or
whether there may be a sustained, long-lasting decrease (Lingford-Hughes et al., 2005)
compared to controls.

A number of studies have also implicated the GABAA-BZR in alcohol dependence by
demonstrating that alcohol-dependent subjects abstinent at least 2 months have a blunted
response to benzodiazepines compared to controls (Bauer et al., 1997; Lingford-Hughes et
al., 2005; Volkow et al., 1997). Further, in nonhuman primates that chronically self-
administered ethanol, the benzodiazepine sensitivity of GABAA receptors in the amygdala
was decreased (Anderson et al., 2007). In combination with the neuroreceptor findings, this
suggests several main points. First, the upregulation of GABAA-BZRs observed in alcohol-
dependent nonsmokers (Staley et al., 2005a) seemed to develop over the first week of
abstinence and was related to the severity of withdrawal symptoms, suggesting that synaptic
GABAA-BZRs were recruited in response to alcohol withdrawal. Second, the upregulation/
recruitment of receptors was transient, suggesting that the increase represented a transitional
stage between two populations of receptors. This is consistent with the preclinical studies
suggesting that alcohol potently facilitates the extrasynaptic, BZ-insensitive GABAA
receptors (Sundstrom-Poromaa et al., 2002; Wallner et al., 2003), and that the synaptic, BZ-
sensitive GABAA-receptors reemerge during acute withdrawal. Third, the blunted sensitivity
to BZs during prolonged abstinence is consistent with the idea that protracted alcohol
withdrawal is associated with the sustained emergence of synaptic GABAA-receptors and
reduction of extrasynaptic GABAA-receptors that are not stimulated by BZ agonists. These
findings provide a mechanistic explanation for the cross-tolerance between alcohol and BZs.

One of the caveats to studying neurochemical changes in the brain related to a mental
illness, including alcohol dependence, is the high prevalence of persistent brain atrophy in
psychiatric populations. Therefore, an observation of a decrease in receptor availability may
be due to a reduction in brain volume and not receptor number. Since brain atrophy in
alcohol dependence can be widespread and severe (Mechtcheriakov et al., 2007) and
compounded by nutritional deficiencies, if not controlled it can introduce a confound to the
study. Thus, because differences in GABAA receptor density were reported in the absence of
changes in gray matter in alcohol-dependent subjects (Lingford-Hughes et al., 1998), it
could be speculated that changes in density may not be due to global or regional brain
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atrophy but to changes in neurochemistry at the receptor level. Another limitation of
measuring the GABAA-BZR with SPECT and PET is that changes in GABAA receptor
density may be due to changes in the composition of the receptor subunits, which cannot be
differentiated using existing radiotracers. For example, preclinical (Floyd et al., 2004;
Kumar et al., 2003; Luddens and Korpi, 1995; Sarviharju et al., 2006) and postmortem
human (Mitsuyama et al., 1998) studies suggest differential changes in subunit expression
after chronic ethanol exposure. However, [123I]iomazenil SPECT and [11C]flumazenil PET
measure all GABAA-BZRs containing various subunits and we cannot distinguish between
them. Thus, continuing translational neuroscience research will be critical to determine
specific receptor subunit compositions that may be involved in specific targeted behaviors
and whether any respond preferentially to treatment medications (Atack, 2010; Wallner and
Olsen, 2008).

Neuroreceptor imaging studies in human alcohol-dependent subjects have yet to control for
heritable or developmental (gene by environment interactions) factors that influence ligand
binding to GABAA receptors. This issue is important because several GABAA receptor
subunit genes have been reported to contribute to the heritable risk for alcoholism. The
GABAA α2 subunit gene, GABRA2, is involved in modulating acute alcohol sensitivity
(Haughey et al., 2008) and subsequently alcohol dependence (Bierut et al., 2010; Covault et
al., 2004; Edenberg et al., 2004; Soyka et al., 2007). Additionally, the GABRG1
polymorphism, which encodes the GABAA receptor γ1 subunit and is in linkage
disequilibrium with the GABRA2 polymorphism, has been associated with alcohol
dependence (Covault et al., 2008). Subsequent studies matching for genotype will be needed
to address this issue.

Effects of Nicotine on GABAA Receptors
The primary addictive chemical in tobacco smoke is nicotine, and the majority of work on
nicotine's effects on neuronal receptor systems has involved the nicotinic acetylcholine
receptor (nAChR) and the catecholaminergic system (Penton and Lester, 2009; Picciotto et
al., 1998). However, activation of the nAChR by nicotine or nicotinic agonists has been
shown to increase GABA release (Dani and De Biasi, 2001; Lena and Changeux, 1997;
Maggi et al., 2001) and influence GABA-mediated inhibition (Freund et al., 1990) within
the mesolimbic dopamine system (Balfour et al., 2000; Di Chiara, 2000) and the
septohippocampal pathway (Wu et al., 2003). The effects of nicotine on GABA activity
likely occur indirectly as a result of nicotine's actions at the nAChRs which are located
directly on the soma, preterminal, and presynaptic regions of GABAergic neurons
(Colquhoun and Patrick, 1997). Activation of nAChRs enhances GABA activity (Alkondon
et al., 1997; Genzen and McGehee, 2005) as well as other neurotransmitter activity
(Colquhoun and Patrick, 1997). Acute nicotine administration increases GABA activity
(Lena et al., 1993; McMahon et al., 1994a, b), and both acute nicotine (Porcu et al., 2003)
and more chronic administration in tobacco smokers (Bjornerem et al., 2004; Field et al.,
1994) is associated with increased concentrations of GABA-ergic neurosteroids, which are
correlated with negative affect and craving (Marx et al., 2006). The effects of chronic
nicotine administration on GABA activity are less clear. While a preclinical study indicated
chronic nicotine treatment increased the density of BZ receptors in the cerebral cortex
(Magata et al., 2000), a recent neuroimaging study in our laboratory demonstrated no
difference in GABAA-BZR availability between current healthy smokers and nonsmokers
(Esterlis et al., 2009). An important caveat to this study is that smokers were imaged at 7
hours of smoking abstinence. Since tobacco smoke contains over 4000 chemicals in addition
to the primary addictive chemical, nicotine, including the harmala alkaloids which are
inverse agonists at the GABAA-BZR (Rommelspacher et al., 1981; Totsuka et al., 1999),
these may have interfered with [123I]iomazenil binding to the receptor if they were still
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present in the brain. However, a subset of smokers (n=4) was imaged again after 5 weeks
continued smoking abstinence, and the initial findings of no difference in receptor
availability between smokers and nonsmokers were confirmed. Due to the high comorbidity
of alcohol dependence and tobacco smoking, it will be important in future studies to
determine the effects of nicotine and other components in tobacco smoke on the regulation
of the GABAA receptor. It is possible that the harmala alkaloids act either alone or in
concert with nicotine to oppose the effects of alcohol at the GABAA receptor.

Interactions of Ethanol and Nicotine on GABAA Receptors
Preclinical and clinical studies suggest a potential mechanism by which nicotine may
modulate alcohol's effects at the GABAA receptor. Specifically, modulation of nAChRs by
nicotine and a nicotinic antagonist reduced the sensitivity of GABAA-receptors to the
benzodiazepine diazepam (Lof et al., 2007). The authors suggest that this may translate into
the co-abuse of alcohol and tobacco if nicotine acts to decrease the sedative effects of
alcohol. This is consistent with findings in humans that nicotine reduces alcohol's sedating
effects (Perkins et al., 2000; Perkins et al., 1995) and thus underscores a potential increased
risk for both alcohol (the reduced sensitivity to sedation may lead to more drinking) and
nicotine dependence (the increased tolerability of alcohol drives continued smoking).

Despite the high comorbidity of tobacco smoking and alcohol dependence, few clinical
studies have been conducted on the interaction of alcohol and nicotine on GABAA receptors.
Our group (Staley et al., 2005a) investigated changes in GABAA-BZRs during the recovery
from alcohol dependence in tobacco smokers versus nonsmokers using [123I]iomazenil and
SPECT brain imaging. There was a significantly increased availability of GABAA-BZRs in
alcohol-dependent nonsmokers versus smokers during acute alcohol withdrawal (1 week)
suggesting that tobacco smoke suppressed the alcohol-induced GABAA-BZR increase. This
acutely increased GABAA-BZR availability is likely primarily composed of synaptic
GABAA receptors that are recruited during early alcohol withdrawal. This elevation was
correlated with more severe alcohol withdrawal symptoms in alcohol-dependent
nonsmokers, which were not apparent in alcohol-dependent smokers, suggesting that
tobacco smoking may block some symptoms of alcohol withdrawal by suppressing the
increased availability of GABAA-BZRs during acute withdrawal from alcohol.

Preliminary evidence from an ongoing study in our laboratory suggests that even in long-
term abstinent alcohol-dependent individuals (abstinent at least 6 months) smoking
continues to modify cortical GABAA-BZR availability, such that abstinent alcoholics who
continued to smoke had lower GABAA-BZR availability than abstinent alcoholics who
remained nonsmokers (Esterlis et al., 2010). Thus, during both acute and long-term alcohol
withdrawal, tobacco smoking profoundly regulates alcohol-induced brain chemistry
changes.

In addition to SPECT and PET imaging modalities, proton magnetic resonance spectroscopy
(MRS) can be used to measure brain chemicals, such as GABA, in vivo. In a preliminary
study, Mason and colleagues (2006) measured occipital GABA levels in alcohol-dependent
smokers and nonsmokers over the course of recovery from alcohol dependence. Alcohol-
dependent nonsmokers at 1 week of alcohol abstinence had higher GABA levels than
alcohol-dependent smokers (alcohol-dependent smokers had levels similar to healthy
controls), and at 1 month of abstinence GABA levels decreased in nonsmokers and
remained unchanged in smokers (Mason et al., 2006). However, there is a limitation to MRS
measures of extracellular GABA. MRS measures the total amount of GABA in the volume
of tissue, but because the extracellular GABA levels exist in a low concentration, they could
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be significantly changed without affecting the total concentration of GABA measured in the
tissue volume.

Taken together, these initial studies suggest that during acute withdrawal (1 week of
abstinence) there may be increased cortical GABA levels and cortical synaptic GABAA-
BZRs in nonsmokers, but not smokers, and that by 1 month of abstinence, both GABA
levels and GABAA-BZRs have “normalized” in the nonsmokers, while remaining constant
in the smokers (Mason et al., 2006; Staley et al., 2005b). In long-term abstinent alcoholics
(greater than 1 month), there is consistent evidence for a reduction in GABAA-BZRs (Abi-
Dargham et al., 1998; Gilman et al., 1996; Lingford-Hughes et al., 1998), and preliminary
evidence indicates that tobacco smoking may mediate this reduction (Esterlis et al., 2010).
Thus, prior to chronic alcohol dependence, available GABAA-receptors are BZ sensitive;
but during alcohol dependence, the GABAA-BZ insensitive receptors, which are
extrasynaptic, are recruited. These extrasynaptic GABAA receptors have a higher affinity for
ethanol, but lower conductance than synaptic GABAA receptors, which accounts for alcohol
tolerance. With the shift from synaptic to more extrasynaptic GABAA receptors, the overall
conductance capacity for chloride is reduced leading to a smaller response to alcohol and a
vulnerability to withdrawal due to a functional GABA deficiency. When alcohol is removed
from the system, during acute recovery, there is a re-emergence of the GABAA-BZ sensitive
receptors in addition to the insensitive receptors resulting in an overall upregulation of
GABAA-BZRs as noted in Staley et al., 2005, which resolves and then decreases during
extended abstinence.

Nicotine and alcohol may also interact via their actions on glutamic acid decarboxylase
(GAD) 67, one of the two enzymes that synthesize GABA in the brain. GAD67 and 65
appear to be responsible for GABA synthesis in terminals and cell bodies, respectively, with
GAD67 maintaining levels of GABA (Soghomonian and Martin, 1998). Nicotine has been
shown to upregulate GAD67 expression by its actions at nAChRs located on GABAergic
interneurons in the cortex and hippocampus (Satta et al., 2008). Chronic alcohol
consumption has been linked to a reduction in GAD 67 mRNAs (Falco et al., 2009).
Another potential mechanism by which GABA levels could be changed is rapid change of
GAD between its inactive apoenzyme to its active holoenzyme. The conversions from the
active to inactive forms can occur within minutes (Porter and Martin, 1988; Soghomonian
and Martin, 1998). Thus, nicotine may reverse the alcohol-induced suppression in GAD by
acute and chronic stimulation of GAD. Indeed, acute nicotine inhalation has been reported to
increase the rate of GABA synthesis in the human brain (Mason et al., 2007). It may be by
its action on GAD67 that nicotine compensates for alcohol-induced alterations in GABAA-
BZRs.

It remains unclear at which point in the addiction process tobacco smoking modulates the
alcohol-induced changes on GABA neuronal function. We hypothesize that tobacco
smoking is functionally changing or dampening GABA tone in the alcohol maintenance
phase during the repeated cycles of drinking that occur every few days during chronic
episodes of drinking. There are a variety of drinking patterns in alcohol-dependent
individuals. While some individuals engage in daily drinking (Danel et al., 2003; Hatton et
al., 2009), others engage in several days of drinking followed by acute withdrawal periods
(Mello and Mendelson, 1971). Among younger individuals a common pattern is to engage in
binge-drinking on weekends (Harrison et al., 2008). Chronic tobacco smokers do engage in
daily smoking, so an alcohol-dependent smoker may have either alcohol or nicotine
continuously in their system. In alcohol-dependent smokers, during acute alcohol
withdrawal, the neuronal excitability may remain attenuated by continued tobacco smoking.
In general, studies suggest that people do not change their smoking status during alcohol and
substance abuse treatment (Friend and Pagano, 2005; Toneatto et al., 1995), but there is a
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lack of research on smoking consumption changes during early alcohol withdrawal. It will
be important to determine in future studies whether alcohol-dependent smokers transiently
increase their smoking consumption during acute alcohol withdrawal, which may relieve
withdrawal symptoms. In summary, during acute withdrawal, there is increased GABA-
ergic tone in both alcohol-dependent smokers and nonsmokers, but it is significantly greater
in nonsmokers. Over the course of protracted abstinence (greater than 1 month) we
hypothesize the GABA oscillations return to baseline conditions in both smokers and
nonsmokers (Figure 1).

Implications
The interaction of ethanol and nicotine at the GABA receptor may contribute to the high
rates of the persistence of co-abuse of the drugs resulting in increased intake of alcohol in
tobacco smokers and of tobacco in alcohol-dependent individuals. These findings have
implications for the treatment of alcohol-dependent smokers and nonsmokers during alcohol
withdrawal. Specifically, smokers may be benefiting from a protective effect of nicotine or
tobacco smoke on GABA-ergic alcohol-withdrawal symptoms. If nicotine does suppress the
alcohol-induced increase in GABAA-BZRs, this suggests that nicotine replacement therapies
and nicotinic agonist medications may be useful treatment strategies in both smokers and
nonsmokers (nicotine replacement is not typically addictive) during alcohol withdrawal.
There is recent preclinical (Steensland et al., 2007) and clinical (McKee et al., 2009)
evidence to support the use of varenicline, a partial ß2-nAChR agonist, for reducing alcohol
consumption. Additionally, the nicotine patch reduced alcohol self-administration in a
human laboratory paradigm in heavy drinking daily smokers (McKee et al., 2008). Although
studies examining the direct effects of ethanol on ß2-nAChRs are mixed (Gorbounova et al.,
1998; Ribeiro-Carvalho et al., 2009; Robles and Sabria, 2008), prolonged abstinence from
chronic alcohol consumption was recently associated with decreased ß2-nAChR availability
compared to baseline in nonhuman primates (Cosgrove et al., 2010). If this decrease is found
to be associated with withdrawal symptoms and increased relapse rates in humans, this
suggests that nicotinic agonist drugs may be useful to help keep the ß2-nAChRs at baseline
levels. Thus, nicotinic agonist therapy (varenicline, nicotine replacement) may be indicated
for both alcohol and nicotine withdrawal symptoms in alcohol-dependent smokers
encouraged to quit drinking and smoking at the same time. Because preclinical evidence
suggests varenicline is useful in reducing alcohol-seeking behaviors in animals not exposed
to nicotine (Hendrickson et al., 2010; Steensland et al., 2007), future research should also
evaluate the potential benefit of nicotinic agonist therapy during initial abstinence from
alcohol in alcohol-dependent nonsmokers.

Further, both ethanol and nicotine have been shown to increase levels of GABA-ergic
neurosteroids that act at the GABAA receptor in a manner similar to positive modulators.
Thus, an alcohol-dependent smoker who quits drinking may benefit from the protective
effects of neurosteroids that are promoted as they continue to smoke. A recent study
suggests that neuroactive steroids may be a novel treatment for smoking cessation (Marx et
al., 2006); and, they may also prove useful during alcohol withdrawal and for dual alcohol
and smoking cessation, especially because neurosteroids do not exhibit cross-tolerance as do
benzodiazepines.

In addition to viewing nicotine and nicotinic agonists as potential therapeutics for alcohol
dependence, it is possible that GABA-ergic agents may be helpful in tobacco smoking
cessation. Preclinical (Corrigall et al., 2001; Paterson et al., 2004) and clinical (Franklin et
al., 2009) studies suggest that baclofen attenuates nicotine and cigarette consumption. A
clinical limitation of baclofen is that it must be taken every 4-6 hours. Thus, effective
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GABA-ergic drugs for smoking cessation will be dependent on new medications
development.

Recommendations for Future Research
1. Continued development of neuroimaging ligands

It is important to continue development of compounds for in vivo imaging. Specifically,
ligands that preferentially measure different subunit compositions and differentiate between
synaptic and extrasynaptic GABAA receptors, based on the evidence that subunit
composition of the GABAA receptor changes with the development of alcohol dependence
(Krystal et al., 2006). The importance of a polymorphism in GABRA2 (Edenberg et al.,
2004; Soyka et al., 2007) and GABRG1 (Covault et al., 2008) for alcohol dependence
highlights the need for an α2 and γ1 selective ligands. The GABAB-receptor is also a site of
interest and a radiotracer for this receptor is currently under development.

2. Continued development of imaging methodology
Currently, MRS has been used to measure a specific voxel of interest in the occipital cortex
in alcohol-dependent smokers and nonsmokers. With the advancing technology, GABA and
other chemicals measurements in other brain regions of interest have been examined in other
populations and it will be critical to examine alternative brain regions such as the frontal
cortex that are critically involved in alcohol dependence.

3. Better characterization of alcohol and tobacco smoking use in imaging studies
Recommendations for assessing patterns of alcohol consumption have been given (Leeman
et al., 2007). We would additionally recommend obtaining measures in tobacco smokers that
assess tobacco smoking dependence, craving and withdrawal, including the Fagerström Test
for Nicotine Dependence (FTND) (Heatherton et al., 1991), the Tiffany Questionnaire for
Smoking Urges (QSU) (Tiffany et al., 1993), and the Nicotine Withdrawal Scale (Hughes
and Hatsukami, 1986). Biochemical measures of recent smoking, including carbon
monoxide and cotinine levels, should be used for confirmation of smoking and nonsmoking
status in addition to self-reports of cigarettes smoked. Time since last cigarette should be
reported and standardized in imaging protocols. Obtaining these measures in all subjects will
increase cohesion between imaging groups and the interpretation of findings across studies.

4. Integration of receptor imaging with other biochemical tools, i.e., multimodal imaging
Because many imaging studies are limited in their findings, e.g., to a difference in receptor
availability between two groups, or a change over time, it is important to increase the
amount of biochemical data obtained in subjects. Examples include obtaining MRS in the
same subjects, measuring functional brain changes, obtaining additional receptor imaging
scans to examine changes in more than one receptor system in the same subjects, and
correlating promising biomarkers with the brain measures.

Summary
Despite the high prevalence of comorbid tobacco smoking and alcohol dependence, studies
on the neurochemical mechanisms underlying these disorders and their interactions are
scarce. Moreover, because of the high rate of comorbidity and the devastating medical
consequences of using both drugs, additional studies are needed to address changes that
occur during acute withdrawal from alcohol alone, and from dual alcohol and nicotine
withdrawal, to delineate the best strategy for abstinence in alcohol-dependent individuals
who abuse both drugs, i.e., stop alcohol first vs. nicotine first, or both simultaneously. In this
review we have described evidence that nicotine profoundly alters both the acute and
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chronic effects of ethanol on GABAA receptors, which may underlie the high comorbidity of
alcohol and nicotine dependence. This relationship has significant implications for our
understanding of the recovery from alcohol dependence in both smokers and nonsmokers.
Future studies should systematically examine the effects of comorbid tobacco smoking
during the recovery from alcohol dependence in order to successfully inform the clinical
treatment of alcoholism.
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Figure 1.
The top panel illustrates a hypothetical series of several days of drinking in a chronic
alcohol-dependent individual followed by acute and prolonged withdrawal. Repeated dosing
of alcohol and withdrawal with regular episodes of smoking shown over the course of one
day (bottom panel) may cycle endogenous GABAergic tone up protectively during periods
of alcohol withdrawal and down during periods of drinking (top panel), when alcohol
supplements the endogenous tone. Smoking may compensate for a loss of alcohol during
periods of acute withdrawal (top panel), allowing alcohol-dependent smokers to maintain
greater stability of GABAergic tone. Specifically, during acute alcohol withdrawal, there is
an initial increase in GABAergic tone in alcohol-dependent smokers and nonsmokers, which
is more severe in nonsmokers. During prolonged withdrawal there is likely a return to
baseline, or normal cycling of GABA.
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