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Abstract
This work proposes a new method to detect abnormalities in fiber bundles of first-episode (FE)
schizophrenia patients. Existing methods have either examined a particular region of interest
(ROI) or used voxel based morphometry (VBM) or used tracts generated using the single tensor
model for locating statistically different fiber bundles. Further, a two-sample t-test, which assumes
a Gaussian distribution for each population, is the most widely used statistical hypothesis testing
algorithm.

In this study, we use the unscented Kalman filter based two-tensor tractography algorithm for
tracing neural fiber bundles of the brain that connect 105 different cortical and subcortical regions.
Next, fiber bundles with significant connectivity across the entire population were determined.
Several diffusion measures derived from the two-tensor model were computed and used as
features in the subsequent analysis. For each fiber bundle, an affine-invariant descriptor was
computed, thus obviating the need for precise registration of patients to an atlas. A kernel based
statistical hypothesis testing algorithm, that makes no assumption regarding the distribution of the
underlying population, was then used to determine the abnormal diffusion properties of all fiber
bundles for 20 FE patients and 20 age-matched healthy controls. Of the 1254 fiber bundles with
significant connectivity, 740 fiber bundles were found to be significantly different in at least one
diffusion measure after correcting for multiple comparisons. Thus, the changes affecting first-
episode patients seem to be global in nature (spread throughout the brain).
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1. Introduction
Both, post-mortem and neuroimaging studies have contributed significantly to what we
know about the brain. MRI studies have demonstrated cortical volume reduction and
ventricle enlargement in schizophrenia (Shenton et al., 2001; Cannon et al., 1998). This fact
has been particularly informative in confirming early speculations that the brain is
disordered in schizophrenia. There is also a growing body of evidence to suggest that a
disturbance in connectivity between different brain regions, rather than abnormalities within
the separate regions themselves, are responsible for at least some of the clinical symptoms
and cognitive dysfunctions observed in schizophrenia (Davis et al., 2003; Kubicki et al.,
2007). Thus, an interest in white matter fiber tracts is emerging, as these structures provide
anatomical connections between distant, as well as proximal, brain regions. This interest
coincides with the advent of Diffusion Tensor Imaging (DTI) and more recently High
Angular Resolution Diffusion Imaging (HARDI), which makes it possible to evaluate the
organization and coherence of white matter fiber tracts (Tuch et al., 2002).

Analyzing diffusion data using the single tensor model has been the most popular choice for
investigating white matter abnormalities in a number of brain disorder studies. These studies
are generally approached using one of three possible methods: (1) region-of-interest-(ROI)
based methods, (2) voxel-based morphometry (VBM) methods and (3) fiber tract based
methods. Many researchers have used ROI methods that are based on identifying anatomical
brain regions and comparing the anisotropy or the extent of the region having high
anisotropy (see Kubicki et al. (2007) and the references therein). Such studies assume prior
knowledge about regions where the abnormalities are likely to occur. For studies where the
anatomical ROI of potential abnormality is difficult to define precisely, voxel-based
morphometry (VBM) methods tend to be used (Eriksson et al., 1998; Shenton et al., 2001;
Rugg-Gunn et al., 2001; Price et al., 2007; Prez-Iglesias et al., 2010). A voxel-based strategy
is more exploratory and is suitable for identifying unanticipated or unpredicted/
unhypothesized areas of abnormal white matter morphology. However, the statistical
differences obtained using such studies are heavily dependent on the registration (spatial
normalization) algorithms being used. Further, VBM based methods examine each voxel
separately, not all voxels jointly. This can result in biased interpretations of the data and it
also overlooks interactions between different brain regions (Davatzikos, 2004).

Due to the aforementioned limitations of the above two methods, tract based analysis
methods are fast becoming popular. Further, for diseases like schizophrenia, it is becoming
increasingly evident that a disturbance in connection between different brain regions in
addition to abnormalities within separate regions themselves, is responsible for the clinical
symptoms and cognitive dysfunctions observed in this disorder. Thus, it is natural to analyze
and locate abnormalities along fiber bundles using tract based methods.

Existing tract based methods require exact correspondence between the fiber bundles of all
subjects. One approach taken by researchers (O’Donnell et al., 2007; Maddah et al., 2008) is
to register the fractional anisotropy (FA) images to a template image in the atlas space to
obtain an affine transformation or a diffeomorphic mapping. Tractography is performed in
the subject space and the tracts are then mapped to the atlas space to obtain a
correspondence between the fiber bundles. The fibers are then parameterized by arc-length
and at each unit interval along the fiber, a t-test is used to find statistical difference between
two groups (Maddah et al., 2008). Alternatively, the authors in (Goodlett et al., 2008) create
an atlas and perform tractography in the atlas space. Fiber tracts are parameterized by B-
splines and Hotelling’s T2-statistic is used to locate abnormalities.
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In this paper, we will investigate abnormal fiber bundles in first-episode schizophrenia
patients. This population set is typically younger and changes occurring at disease onset can
be quite useful not only understanding the anatomical abnormalities, but also in analyzing
risk for prodromal (high-risk) subjects. Further, since FE patients are not on medication for
long time periods (unlike chronic patients), the impact of these medications on the brain
anatomy is limited (compared to chronic subjects).

2. Our contributions
In this work, we propose to apply several new techniques to the study of first-episode
schizophrenia. To date, most studies have used the single tensor model for analysis, despite
it being a poor fit in regions of crossings and branchings (Tuch et al., 2002). In this study,
for the first time, we will use fiber tracts generated using an unscented Kalman filter based
two-tensor tractography algorithm(Malcolm et al., 2009a). This method allows for
recovering tracts that pass through branching and crossing regions of the brain (Malcolm et
al., 2010).

Statistical analysis to detect group differences has been primarily done using the standard t-
test or the Hotelling’s T2-statistic (both assume a Gaussian distribution for the two sample
sets). In this work, we propose to use the non-parametric hypothesis testing algorithm of
(Gretton et al., 2008), which we will refer to as the kernel hypothesis algorithm, to find fiber
bundles that are statistically different between first-episode (FE) patients and matched
normal controls (NC). This algorithm tests the null hypothesis that the two populations have
same probability distribution, without any assumption on the type (say, Gaussian) of
distribution.

Further, most of the existing literature has focused on analyzing a selected set of fiber
bundles for detecting abnormalities. In this paper, we perform a connectome-like analysis by
testing for group differences between fiber bundles connecting 105 gray and white matter
regions of the brain. Thus, this is a first study that will examine fiber bundles of the entire
brain extracted using multi-fiber model with group differences being computed using a
kernel based hypothesis testing algorithm. In addition, application of this method to first-
episode schizophrenia is also novel.

3. Preliminaries
In this section, we provide a brief background on the two-tensor tractography algorithm
(Malcolm et al., 2009a,b, 2010), as well as the kernel based non-parametric hypothesis
testing algorithm (Gretton et al., 2008).

3.1. Unscented Kalman Filter based tractography
Recently, we proposed a method for simultaneous fiber model estimation and tractography
using the unscented Kalman filter (UKF) (Malcolm et al., 2009a). Other approaches to
tractography estimate the local fiber orientation at each voxel independently and thus do not
take into account the correlation in diffusion of water along the fiber path. In the UKF based
method, fiber tracking is formulated as recursive estimation: at each step of tracing the fiber,
the current estimate is guided by the previous. Thus, correlation in diffusion and spatial
regularization is incorporated as part of the model estimation step.

In this work, the signal is modeled as a mixture of two tensors and tractography is performed
within a filtering framework. Starting from a seed point, each fiber is traced to its
termination using an unscented Kalman filter to simultaneously fit the local model and
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propagate in the most consistent direction. Despite the presence of noise and uncertainty,
this provides a robust estimate of the local structure at each point along the fiber.

Mathematically, the signal model for two equally weighted tensors is given by:

(1)

where D1, D2 are the two diffusion tensors, b is the b-value, S(ui) is the measured signal in
gradient direction ui and S0 is the baseline signal obtained using zero diffusion sensitizing
gradient. In this work, we assume the diffusion tensor to be cigar-shaped by enforcing the
two minor eigenvalues to be equal. Thus, we use the following parameterization of the
diffusion tensor:

(2)

where m is the principal diffusion direction, λ1 > λ2 are the two eigenvalues, and p, q are the
remaining eigenvector’s of D. As shown in (Malcolm et al., 2009a), the free parameters for
each diffusion tensor are [m λ1 λ2], which are recursively estimated using the unscented
Kalman filter.

Several diffusion measures such as, fractional anisotropy (FA), axial diffusivity,
perpendicular diffusivity, relative anisotropy, trace, etc. are used by the neuroscience
community. However, a set of three orthogonal diffusion measures were proposed in
(Kindlmann et al., 2007), which capture all aspects of the shape of a diffusion tensor. These
measures are FA, norm (N) and mode (M) of the tensor defined below:

where, |.| denotes the determinant, tr(.) is the trace, I is the identity matrix and ∥.∥ denotes
the frobenius norm of a matrix. These measures can be computed for each tensor, and thus
six features are obtained.

3.2. Kernel Hypothesis Testing
Most of the statistical studies done by the neuroscience community is using the standard t-
test or some variants of it. This test assumes that the distribution of samples from the two
population is Gaussian and test’s the hypothesis that their mean’s are equal. Assumption of
Gaussianity may be a limitation in several cases. While there are nonparametric methods,
such as the Kolmogorov-Smirnov, that make no assumption about the distribution of the
population, the kernel based hypothesis testing algorithm of Gretton et al. (2008) has been
shown to have better performance than most of the existing algorithms on several data sets.

As such, we will use the kernel based method of Gretton et al. (2008) for statistical
hypothesis testing. This method has several advantages, chief among them are : a) It can be
used with high dimensional data without sacrificing robustness and accuracy. b) The data
need not necessarily lie in a Euclidean vector space, i.e., any type of data with an
appropriate kernel can be used. c) This method computes statistical differences without any
assumption on the distribution from which the samples are drawn. Thus, subtle differences
can be captured using the kernel based method.
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This method tests the hypothesis of two distributions (p, q) being equal p = q. The test
statistic used is the maximum mean discrepancy (MMD) between the two samples. Let F be
a class of functions f : X → ℝ and p, q be probability distributions (with domain X), then
MMD is defined as: MMD[F, p, q ] = supf∈F (Ex~p[f(x)] − Ey~q [f(y)]), where E represents
the expected value. To put it simply, MMD is the maximum difference between the mean of
the two sample populations as computed over all possible functions f ∈ F.

Computing MMD involves, mapping the data to a reproducing kernel Hilbert space (RKHS)
and computing the inner product (between high dimensional features) in this space using an
appropriate kernel (Gaussian in our case). If MMD is greater than a certain threshold, the
null hypothesis (p = q) is rejected. The hypothesis threshold is selected based on significance
level α, typically set to 0.05. We should point out an important difference while inferring
results from this test: The null hypothesis is rejected if MMD is greater than a threshold.
Thus, higher the MMD, greater is the statistical significance. This is in contrast to the
interpretation of p-value (for t-test), where lower p-value indicates higher statistical
difference.

4. Methods
The block diagram shown in Figure 1 gives the steps involved in the statistical analysis of
fiber bundles. Details about each step are given in the following subsections.

4.1. Whole brain tractography
The UKF based two-tensor tractography algorithm of (Malcolm et al., 2009a) was used to
trace fiber paths. Seeding was done in all the voxels where single tensor FA was greater than
0.18. Each voxel was seeded 10 times (randomly), and each fiber was traced from seed to
termination, with the termination criteria being FA < 0:15, for the primary tensor component
(the component most consistent with the tracking direction) being followed.

4.2. FreeSurfer segmentation
One way to obtain correspondence between fiber bundles across subjects, is to reliably
segment the brain into different anatomical regions. We achieved this, by using the
Freesurfer software (surfer.nmr.mgh.harvard.edu) to segment T1-weighted SPGR image of
each subject into 180 different cortical and subcortical gray and white matter regions. A T2
image (which was in the same coordinate space as the SPGR image) was then
diffeomorphically registered to the baseline (S0) diffusion weighted image of the same
subject using the FNIRT algorithm of the FSL software (Smith et al., 2004). This
diffeomorphism was applied to the label map (180 labels) obtained from T1 segmentation to
obtain a label map in the coordinate space of the diffusion images. Thus, a correspondence
was obtained across subjects by representing each region with the same label.

4.3. Fiber bundle extraction
Once anatomical correspondence was achieved, fibers connecting any two regions-of-
interest (ROI) were extracted. In order to ensure that the connections are distinct and the
fiber bundles do not overlap, only those fibers that have their end-points in the desired
ROI’s were retained. Further, cortical gray and white matter regions from the Freesurfer
segmentation were merged to obtain 105 unique ROI’s. Fiber bundle extraction was done
for each subject, and a connectivity matrix (105 × 105) was computed for each subject. In
order to remove spurious connections due to noise as well as to obtain robust statistics on
the data, any connection with less than 10 fibers was marked as “not connected” in the
connectivity matrix. Finally, a set of 1254 fiber bundles (connections) which were consistent
across all 40 subjects were retained for further analysis.
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4.4. Compute diffusion measures
Several diffusion measures have been used by the neuroscience community. However, a set
of three orthogonal diffusion measures that capture all aspects of the shape of a diffusion
tensor were proposed by (Kindlmann et al., 2007). These measures, as defined in section
3.1, will be used in our analysis. In particular, each of the six measures, namely, FA
(fractional anisotropy), M (mode) and N (norm) were computed at each point along the fiber
tract for all fiber bundles.

4.5. Estimate probability distribution
For each diffusion measure of a fiber bundle, a nonparametric probability distribution
function (PDF) was computed. This forms an affine-invariant representation of the fiber
bundle and is robust to misalignment. Further, all the statistical information regarding each
fiber bundle as given by the three diffusion measures is captured by the PDF. We should
note that, we use only those diffusion measures that correspond to the tensor component
along the fiber path, since we are only interested in abnormalities along the path and not
across the path. Thus, for each subject, we have a representation denoted by

, where pfa, pm, pn are the PDF’s of the FA, mode and norm
respectively for each fiber bundle i. The PDF’s were computed with 300 bins, making each
PDF a vector of dimension 300 × 1.

4.6. Kernel hypothesis testing
For each fiber bundle, the kernel based statistical hypothesis testing algorithm of (Gretton et
al., 2008), as described earlier, was used to determine statistical differences between the two
groups (FE and NC). For each diffusion measure, say FA, pfa was used as a feature for
which statistical differences were investigated. This is in contrast to traditional strategies
where the average FA is used to find differences. Since we use the entire probability
distribution (as opposed to the first moment only), all the statistical information about the
fiber bundle is used in the analysis. All three diffusion measures for each of the 1254 fiber
bundles were investigated for statistical differences. To correct for multiple comparisons, a
false discovery rate (FDR) of 0.05 was used.

Statistical difference in the context of the kernel based method is considered significant, if
MMD > t, where t is a threshold determined by the parameter β, typically set to 0.05.
Further, higher the value of MMD, the greater is the difference. In the remainder of this
discussion, we will often use the value Dk = MMD − t, which indicates the level of
significance. Further, to correct for multiple comparisons, we computed Dk for each fiber
bundle and each diffusion measure. Correction for multiple comparison was done in the
following manner:

Let  be the m independent tests with decreasing significance level, i.e.,

. For a given significance level α, find the largest x such that .
Then, all tests with i = 1 to x are accepted as statistically significant hypotheses. The FDR is

computed using the expression . In this work, we set α = 0.10.

5. Patient population
The study consisted of 20 first-episode patients and 20 age-matched normal controls. Figure
2 provides the demographic and clinical details of all subjects. Exclusion criteria for all
subjects included any history of neurological disorders, electroconvulsive shock treatment,
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drub abuse or alcoholism. Schizophrenia diagnosis was determined by DSM-IV criteria
using the Structured Clinical Interview for DSM-IV. Patient recruitment was done as part of
the Boston CIDAR Center (www.bostoncidar.org).

6. Data acquisition
Diffusion Weighted images (DWI) scans were acquired on a 3 Tesla GE system using an
echo planar imaging (EPI) DWI sequence. A double echo option was used to reduce eddy-
current related distortions. To reduce impact of EPI spatial distortion, an 8 Channel coil was
used to allow to perform parallel imaging using ASSET (Array Spatial Sensitivity Encoding
Techniques, GE) with a SENSE-factor (speed-up) of 2. Acquisitions have 51 gradient
directions with b=900 and 8 baseline scans with b=0. The original GE sequence was
modified to increase spatial resolution, and to further minimize image artifacts. The
following scan parameters were used: TR 17000 ms, TE 78 ms, FOV 24 cm, 144×144
encoding steps, 1.7 mm slice thickness. All scans had 85 axial slices parallel to the AC-PC
line covering the whole brain.

The data was pre-processed to reduce the effects of noise (Aja-Fernandez et al., 2008). To
remove artifacts due to eddy currents and head motion, an affine registration (using FLIRT)
of the diffusion weighted images to the baseline image was done for each subject.

7. Results
Of the 1254 fiber bundles that were investigated, 740 fiber bundles were found to be
statistically different in atleast one diffusion measure. Figure 3 shows a network graph of the
connections that were found to be statistically different. Statistical significance decreases
from green to red. Figure 4 shows volumetric rendering of the significance level of different
regions in the brain. Bright red indicates higher statistical difference. The volume was
computed by associating the significance value Dk with each voxel through which a fiber
bundle passed. Figures 5 and 6 shows several coronal and sagittal slices from this volume
with statistical significance overlaid on the FA images. From these figures, it becomes clear
that the cerebellum region is highly abnormal in FE patients. It is important to note that, the
views do not show “exact” location of abnormalities but only the fiber paths that are
abnormal. Figure 8 shows the significantly different connections with statistical significance
increasing from blue to red. The table in appendix gives a list of all the 98 ROIs that are
used in forming the anatomical network. Naming convention is the same as in Freesurfer
software.

Given that a significant number of fiber bundles were found to be different, the
abnormalities in FE patients seems to be global in nature rather being localized to any
specific bundle or region. Consequently, we performed statistical analysis of global features
derived from the two-tensor model. First, a non-parametric probability distribution was
computed for each of the six diffusion measures (FA, M, N for each tensor). This forms an
transformation-invariant representation since the probability distribution is independent of
any co-ordinate system. This representation allows for doing away with the need for
registration of the subjects. Next, the kernel based hypothesis testing algorithm was used to
find statistical differences between the two populations, with the PDF being the feature
vector. While no difference were reported for FA or mode, the norm of each tensor (N1, N2),
showed significant difference with Dk = 0.27 and Dk = 0.26 respectively for both the norms.
Figure 7 shows PDF’s for four features (FA1, N1, FA2, N2) for all subjects. As seen in figure
7 as well as from the list of fiber bundles in the appendix, mean diffusivity (which is
proportional to norm of the tensor) of each tensor is higher in FE patients even at the global
level. This observation is also consistent with recently published work of (Narr et al., 2009).
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8. Conclusion
In this work, we applied several new techniques for detecting abnormalities in first-episode
schizophrenia patients. In particular, we used a multi-tensor tractography algorithm to trace
fiber tracts that pass through crossing regions to connect 105 different gray and white matter
regions of the brain. A kernel based non-parametric statistical hypothesis algorithm was then
used to detect abnormal fiber bundles of FE patients. It was noticed that a significant
number of fiber bundles were statistically different, which consequently showed in the
global analysis of diffusion features. In particular, norm (proportional to mean diffusivity) of
the two tensors was higher in FE patients than in normal controls.

Appendix A. Freesurfer ROI’s shown in Figure 5
Table A.1

Freesurfer label names and numbers

Serial Number Label name Label number

1 Left-Cerebellum-White-Matter 7

2 Left-Cerebellum-Cortex 8

3 Left-Thalamus-Proper 10

4 Left-Caudate 11

5 Left-Putamen 12

6 Left-Pallidum 13

7 Brain-Stem 16

8 Left-Hippocampus 17

9 Left-Amygdala 18

10 Left-Accumbens-area 26

11 Left-VentralDC 28

12 Left-choroid-plexus 31

13 Right-Cerebellum-White-Matter 46

14 Right-Cerebellum-Cortex 47

15 Right-Thalamus-Proper 49

16 Right-Caudate 50

17 Right-Putamen 51

18 Right-Pallidum 52

19 Right-Hippocampus 53

20 Right-Amygdala 54

21 Right-Accumbens-area 58

22 Right-VentralDC 60

23 Right-vessel 62

24 Right-choroid-plexus 63

25 unknown 251

26 unknown 252

27 unknown 253

28 unknown 254
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Serial Number Label name Label number

29 unknown 255

30 ctx-lh-unknown 1000

31 ctx-lh-bankssts 1001

32 ctx-lh-caudalanteriorcingulate 1002

33 ctx-lh-caudalmiddlefrontal 1003

34 ctx-lh-cuneus 1005

35 ctx-lh-entorhinal 1006

36 ctx-lh-fusiform 1007

37 ctx-lh-inferiorparietal 1008

38 ctx-lh-inferiortemporal 1009

39 ctx-lh-isthmuscingulate 1010

40 ctx-lh-lateraloccipital 1011

41 ctx-lh-lateralorbitofrontal 1012

42 ctx-lh-lingual 1013

43 ctx-lh-medialorbitofrontal 1014

44 ctx-lh-middletemporal 1015

45 ctx-lh-parahippocampal 1016

46 ctx-lh-paracentral 1017

47 ctx-lh-parsopercularis 1018

48 ctx-lh-parsorbitalis 1019

49 ctx-lh-parstriangularis 1020

50 ctx-lh-pericalcarine 1021

51 ctx-lh-postcentral 1022

52 ctx-lh-posteriorcingulate 1023

53 ctx-lh-precentral 1024

54 ctx-lh-precuneus 1025

55 ctx-lh-rostralanteriorcingulate 1026

56 ctx-lh-rostralmiddlefrontal 1027

57 ctx-lh-superiorfrontal 1028

58 ctx-lh-superiorparietal 1029

59 ctx-lh-superiortemporal 1030

60 ctx-lh-supramarginal 1031

61 ctx-lh-temporalpole 1033

62 ctx-lh-transversetemporal 1034

63 ctx-rh-unknown 2000

64 ctx-rh-bankssts 2001

65 ctx-rh-caudalanteriorcingulate 2002

66 ctx-rh-caudalmiddlefrontal 2003

67 ctx-rh-cuneus 2005
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Serial Number Label name Label number

68 ctx-rh-entorhinal 2006

69 ctx-rh-fusiform 2007

70 ctx-rh-inferiorparietal 2008

71 ctx-rh-inferiortemporal 2009

72 ctx-rh-isthmuscingulate 2010

73 ctx-rh-lateraloccipital 2011

74 ctx-rh-lateralorbitofrontal 2012

75 ctx-rh-lingual 2013

76 ctx-rh-medialorbitofrontal 2014

77 ctx-rh-middletemporal 2015

78 ctx-rh-parahippocampal 2016

79 ctx-rh-paracentral 2017

80 ctx-rh-parsopercularis 2018

81 ctx-rh-parsorbitalis 2019

82 ctx-rh-parstriangularis 2020

83 ctx-rh-pericalcarine 2021

84 ctx-rh-postcentral 2022

85 ctx-rh-posteriorcingulate 2023

86 ctx-rh-precentral 2024

87 ctx-rh-precuneus 2025

88 ctx-rh-rostralanteriorcingulate 2026

89 ctx-rh-rostralmiddlefrontal 2027

90 ctx-rh-superiorfrontal 2028

91 ctx-rh-superiorparietal 2029

92 ctx-rh-superiortemporal 2030

93 ctx-rh-supramarginal 2031

94 ctx-rh-frontalpole 2032

95 ctx-rh-temporalpole 2033

96 ctx-rh-transversetemporal 2034

97 wm-lh-centrum-semiovale 5001

98 wm-rh-centrum-semiovale 5002
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Figure 1.
Block diagram indicating the steps involved in the statistical analysis of fiber bundles
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Figure 2.
Demographics of the subjects in the study.
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Figure 3.
Graphical representation of the connections that were found to be statistically different in FE
patients. Statistical significance decreases from green to blue to red.
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Figure 4.
Two views of the volumetric rendering of statistical differences with increasing red intensity
indicating higher difference.
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Figure 5.
Coronal slices showing statistical differences (overlaid on FA images), with significance
decreasing from red to white.
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Figure 6.
Sagittal slices showing statistical differences (overlaid on FA images), with significance
decreasing from red to white.
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Figure 7.
Top: Probability distribution functions of FA (FA1 and FA2) for 20 FE (red) and 20 NC
(blue) subjects. Bottom: PDF’s of norm (N) of each of the tensor components for 20 FE
(red) and 20 NC (blue) subjects.
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Figure 8.
Matrix showing the statistically different connections for FE patients. Significance increases
from blue (no connection) to red.
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