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Abstract
Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS),
but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the
hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these
effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were
pretreated with or without 10 μM ebselen for 2 hours followed by MeHg (0, 1, 5, and 10 μM)
treatments. MeHg-induced changes in astrocytic [3H]-glutamine uptake were assessed along with
changes in mitochondrial membrane potential (ΔΨm), using the potentiometric dye
tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-
induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation.
MeHg treatment significantly decreased (p<0.05) astrocytic [3H]-glutamine uptake at all time
points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [3H]-glutamine uptake
at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic
inhibition of [3H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM)
(p<0.05)]. MeHg treatment (1 hour) significantly (p<0.05) dissipated the ΔΨm in astrocytes as
evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of
1 μM MeHg treatment for 1 hour on astrocytic ΔΨm and partially reversed the effect of 5 and 10
μM MeHg treatments for 1 hour on ΔΨm. In addition, ebselen inhibited MeHg-induced
phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05 to
0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via
oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic
mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective
effects elicited by ebselen reinforce the idea that organic selenocompounds represent promising
strategies to counteract MeHg-induced neurotoxicity.
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Introduction
Methylmercury (MeHg) is an organic form of mercury (Hg) with toxic effects in multiple
organs, and is one of the most poisonous environmental pollutants (Bakir et al., 1973;
Takeuchi, 1989; Castoldi et al., 2008). It is a highly and selectively neurotoxic compound,
leading to neurological and developmental deficits in the central nervous system (CNS),
both in humans and experimental animals (Choi 1989; Clarkson et al., 2003; Pinheiro et al.,
2008). MeHg preferentially accumulates in astrocytes and inhibits glutamate uptake in these
cells. The toxic mechanism(s) of MeHg has yet to be fully understood (Aschner 2000).

Mitochondria, which are the main sites for the glutamate/GABA-glutamine cycle, represent
a major target of MeHg (Allen et al., 2001). Earlier studies reported that cultured astrocytes
ceased respiration at ~30 min after MeHg treatment, reflecting inhibition of the
mitochondrial electron transport chain (Yee and Choi 1996; Allen et al., 2001; Shanker et
al., 2004). MeHg-induced decrease of mitochondrial membrane potential has also been
reported in neurons (Limke and Atchison 2002) and other cell types (InSug et al., 1997;
Shenker et al., 1998). In the liver, MeHg has been shown to inhibit mitochondrial function,
leading to K+ influx and membrane depolarization (Sone et al., 1977).

Glutamine is an important precursor for the synthesis of the primary excitatory
neurotransmitter glutamate and inhibitory neurotransmitter γ-aminobutyric acid (GABA)
(Boulland et al., 2002). Astrocytes-derived glutamine is taken up by neurons, where it is
metabolized to glutamate, which, in turn, upon neuronal activity is released into the synaptic
cleft and taken up by astrocytes via a Na+-dependent mechanism. Subsequently, glutamate is
converted to glutamine by a highly active glutamine synthetase (Sidoryk-Wegrzynowicz et
al., 2009).

Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organic selenium compound.
Selenium is a structural component of several enzymes with physiological antioxidant
properties, including glutathione (GSH) peroxidases (Flohé, et al., 1973), and it is known to
possess anti-oxidant and anti-inflammatory properties (Cotgreave et al., 1989; Yang et al.,
1999; Mugesh and Singh, 2000; Parnham and Sies, 2000). Of particular importance, the
organoselenium compound, ebselen, has been demonstrated to be neuroprotective in
preclinical studies (Saito et al., 1998; Davalos, 1999; Porciuncula et al., 2001; Satoh, et al.,
2004; Centuriao, et al., 2005; Yamagata K et al., 2008). The antioxidant activity of
organoselenides has been attributed to their GSH peroxidase-like activity (Muller et al.,
1984; Wendel et al., 1984). More recently it has been demonstrated that ebselen is reduced
by mammalian thioredoxin reductase (TrxR) forming ebselen selenol/selenolate (Zhao and
Holmegren, 2002; De Freitas et al. 2010). Selenolate intermediates are potent nucleophiles
and can readily react with electrophilic species, including reactive oxygen species (ROS)
(Masumoto et al. 1996; Zhao and Holmegren 2002)

The present study was carried out to examine the effects of MeHg on glutamine metabolism
and mitochondrial inner membrane potential (ΔΨm) in cultured astrocytes and to test the
hypothesis that ebselen can effectively attenuate the toxicity of this metal. Additional studies
addressed the efficacy of ebselen in attenuating MeHg-induced ERK phosphorylation and
apoptosis via the activation of caspase-3.
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2. Materials and methods
2.1. Materials

L-[G-3H]glutamine (specific activity: 49.0 Ci/mmol) was purchased from Amersham
Biosciences (Piscataway, NJ). Methylmercuric chloride (MeHgCl) was purchased from ICN
Biomedicals (Costa Mesa, CA). Minimal essential medium (MEM) with Earle's salts, heat-
inactivated horse serum, penicillin, streptomycin and tetramethylrhodamine ethyl ester
(TMRE) were purchased from Invitrogen (Carlsbad, CA).

2.2. Primary astrocyte cultures
Methodologies for the isolation and culturing of cerebral cortical astrocytes derived from
newborn (1-day-old) Sprague–Dawley rats were previously described (Yin at al 2007). In
brief, rat pups were decapitated and the cerebral cortices removed. After carefully removing
the meninges, the cerebral cortices were digested with bacterial neutral protease (Dispase,
Invitrogen, Carlsbad, CA) and astrocytes recovered by repeated removal of dissociated cells
from brain tissues. Twenty-four hours after the initial plating in BD Falcon 6- and 12-well
plates, the medium was changed to preserve the adhering astrocytes and remove the neurons,
microglia and oligodendrocytes. The cultures were maintained at 37°C in a 95% air / 5%
CO2 incubator for 3 weeks in MEM with Earle's salts supplemented with 10% heat-
inactivated horse serum, 100 U/ml penicillin and 100 μg/ml streptomycin. The medium was
changed twice per week. These monolayer, surface-adhering cultures were >95% positive
for the astrocytic marker, glial fibrillary acidic protein (GFAP).

2.3. Measurement of changes in mitochondrial membrane potential (ΔΨm)
The ΔΨm was measured with the potentiometric dye tetramethylrhodamine ethyl ester
(TMRE). TMRE accumulates in mitochondria as a function of the ΔΨm. At the end of
treatments, the culture medium was removed (duplicate plates per experiment; repeated
three times using different batches of astrocytes) and the cells were loaded for 20 min at
37°C in a 5% CO2 incubator with TMRE at a final concentration of 50 nM in sodium-
HEPES buffer. Cells were rinsed with phosphate buffered saline (PBS) and examined with a
Zeiss inverted fluorescent microscope (Zeiss Axiovert S100, Carl Zeiss MicroImaging, Inc.)
equipped with a cooled digital camera (Photometrics CoolSNAP, Roper Scientific
Photometrics, Tucson, AZ) controlled by computer software (Image Pro Laboratories,
Stamford, CT). Images of various fields in each plate were captured at 10× magnification.
Fluorescent intensities were obtained from 8 randomly selected fields per experiment and
were analyzed with NIH software (Scion Incorporation, Frederick, MD). In each image
field, the total number of pixels was quantified on a gray scale (0–255 counts) and the mean
pixel value in was expressed as mean ± S.E.M. of the total number of mean pixel values in
each group. The fluorescent intensities were expressed as percent fluorescence change over
control.

2.4. Determination of the neuroprotective effects of ebselen on ΔΨm
Immediately after 2 hour pretreatment with or without ebselen (10 μM) in Na-HEPES
buffer, MeHg was added for 1 hour to confluent astrocyte cultures (3 weeks post isolation)
at 0, 1, 5, or 10 μM. Next, the cells were washed twice with 2 ml of Na-HEPES buffer and
TMRE was loaded at a final concentration of 50 nM in Na-HEPES buffer for 20 min. Next
astrocytes were washed with PBS and fluorescence was monitored as described above.

2.5. Western blot analysis
Astrocytes were treated with or without ebselen (10 μM) for 2 hours before exposure to
MeHg (1, 5 or 10 μM) for various time periods. The cells were then lysed with lysis buffer
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[Tris-HCl, pH 7.4, 20 mM, EDTA 2.5 mM, Triton X-100 1%, sodium deoxycholate 1%,
SDS 0.1%, NaCl 100 mM, PMSF 1.0 mM, leupeptin 10 μg/ml, pepstatin 10 μg/ml] and
collected for protein concentration determination by BCA assay (Pierce, Rockford, IL). An
equal amount of protein (30 μg) was loaded and run on a 12% SDS-PAGE gel and
transferred onto a nitrocellulose membrane (PerkinElmer Life Sciences, Boston, MA). The
primary antibodies used were polyclonal anti-ERK1/2, monoclonal anti-phospho-ERK,
polyclonal anti-caspase-3, and monoclonal anti-β-actin. The secondary antibodies were
peroxidase conjugated (HRP) goat anti-rabbit IgG or goat anti-mouse IgG (Pierce, Rockford,
IL). Supersignal West Pico (Pierce, Rockford, IL) was used for horseradish peroxidase
(HRP) detection on a Hyperfilm ECL system (Nikon, Melville, NY). Stripping of the
membrane was performed in Restore Western Blot Stripping Buffer (Pierce, Rockford, IL)
as required. The levels of phosphorylated ERK (p–ERK) were expressed as arbitrary units of
optical density, following the correction for content of total ERK (ERK1/2). Band intensities
of caspase-3 were corrected for loading with β-actin. Densitometry measurement of band
intensities was quantified and expressed as arbitrary units (AlphaEaseFC Imaging System
software, Alpha Innotech, San Leandro, CA).

2.6. 3H-Glutamine uptake in astrocytes
Astrocytes were studied 3 weeks post isolation, when the cell monolayer became fully
confluent. Cells in 6-well plates were washed three times with 2 ml of fresh sodium-HEPES
buffer consisting of: 122 mM NaCl, 3.3 mM KCl, 0.4 mM MgSO4, 1.3 mM CaCl2, 1.2 mM
KH2PO4, 10 mM glucose, and 25 mM HEPES (N-2-hydroxy-ethylpiperazine N'-2-
ethansulfonic acid), adjusted to pH 7.4 with 10 M NaOH. Immediately after 2 hour
treatment with or without ebselen (10 μM) in sodium-HEPES buffer, astrocytes were treated
in sodium-HEPES buffer only, or with sodium-HEPES buffer containing MeHg (1, 5, or 10
μM) for 30 min in a 37°C, 95% air / 5% CO2 incubator. Cells were then washed three times
with 2 ml of Na-HEPES buffer; thereafter, 1 ml of pre-warmed buffer containing 1 μCi/ml
L-[G-3H]glutamine was added to each well and glutamine uptake was measured at 1 min
and 5 min at room temperature. At each time point, the reactions were stopped by aspirating
the buffer from the well, followed by 5 washes with 2 ml of ice-cold mannitol buffer [290
mM mannitol, 10 mM Tris-nitrate, 0.5 mM Ca(NO3)2, pH adjusted to 7.4 with KOH]. At the
end of the experiments, cells were lysed in 2 ml of 1 M NaOH. An aliquot of 25 μl was used
for protein determination with the bicinchoninic acid (BCA) protein assay (Pierce,
Rockford, IL). An aliquot of 750 μl was used for radioactivity measurement by liquid
scintillation and the values were expressed as cpm/mg protein (Tri-Carb 2900TR, Perkin
Elmer Life Science).

2.7. Statistical analysis
3H-glutamine uptake and release experiments were conducted in duplicate wells/experiment,
and the mean from three to four independent experiments was used for statistical
analysis. 3H-Glutamine uptake and release were corrected for cellular protein levels and
expressed as cpm/mg protein. TMRE staining was conducted in triplicate wells and the
mean from three independent experiments was used for statistical analysis. Western blotting
was performed three to four times. All data were expressed as percentage of control (100%)
± S.E.M. The data were analyzed by one-way analysis of variance (ANOVA) followed by
Bonferroni multiple test with statistical significance set at p<0.05. When the overall
significance resulted in the rejection of the null hypothesis (p<0.05), the source of the
variance was determined with the Tukey-Kramer test (also known as the Tukey range test).
All analyses were carried out with GraphPad software for Microsoft Windows (Graph Pad
Software, San Diego, CA).
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3. Results
3.1. Ebselen abolishes MeHg-induced astrocytic ΔΨm

Reactive oxygen species (ROS) generation has been linked to MeHg-induced neurotoxicity.
To investigate the mechanisms by which MeHg induces ΔΨm, astrocytes were treated with
various concentrations of MeHg for 1 hour, and ΔΨm was measured by TMRE fluorescence.
As shown in Fig. 1A, treatments with MeHg alone for 1 hour resulted in qualitative
dissipation of the ΔΨm in cultured astrocytes, as demonstrated by decrease in mitochondrial
TMRE fluorescence. Quantification of TMRE fluorescent intensities (Fig. 1B) revealed that
1-hour treatment with MeHg at all tested concentrations (1, 5, and 10 μM) caused significant
dissipation of ΔΨm. Ebselen alone (2 hour treatment) did not affect astrocytic ΔΨm (p>0.05
compared with controls). Pre-treatment with ebselen (2 hours) followed by treatment with
MeHg fully abolished the 1 μM MeHg-induced decrease in TMRE fluorescence (p>0.05
compared with control), and partially prevented the dissipation of the mitochondrial
membrane potential in astrocytes treated with 5 or 10 μM MeHg.

3.2. Ebselen attenuates MeHg-induced ERK phosphorylation in astrocytes
The possible involvement of the mitogen-activated protein kinase (MAPK) subfamily in
MeHg-induced neuronal injury was studied by measuring the phosphorylation levels of
extracellular-signal regulated kinase (ERK). As shown in Fig. 3A, MeHg alone induced a
robust increase in the levels of phosphorylated ERK in astrocytes as early at 15 min post
exposure (p<0.01, compared with control) and the phosphorylation status remained elevated
for at least 24 hours post MeHg treatment (Figs. 2A and 2B). Ebselen alone (2 hour
treatment) did not increase the basal levels of phosphorylated ERK (p>0.05, compared with
controls). Pretreatment with ebselen (2 hours) followed by MeHg exposure significantly
(p<0.05 vs. MeHg alone) attenuated the effect of MeHg-induced ERK phosphorylation from
30 min to 24 hours of treatment (Figs. 2A and 2B).

3.43. Ebselen diminishes MeHg-induced caspase-3 cleavage in astrocytes
Next we investigated whether MeHg promotes caspase-3 cleavage in astrocytes. As shown
in Fig. 3, MeHg treatment significantly promoted caspase-3 cleavage in astrocytes from 15
min to 6 hours. Ebselen alone (2 hour treatment) did not change caspase-3 cleavage values
(p>0.05, compared with control). Combination treatments of ebselen (2 hour pretreatment)
followed by MeHg exposure significantly prevented the MeHg alone-induced promoting
effect on caspase-3 cleavage.

3.4. Ebselen reverses astrocytic MeHg-induced glutamine uptake inhibition
As shown in Fig. 4, MeHg (1, 5, and 10 μM) treatment alone for 30 min significantly
inhibited in a concentration-dependent manner the astrocytic uptake of glutamine at 1 min
(p<0.01 or p<0.001) and 5 min (p<0.001). Ebselen (10 μM) treatment alone for 2 hours did
not affect astrocytic glutamine uptake (p>0.05 compared with control). Pre-treatment with
ebselen displayed a significant protective effect against MeHg-induced glutamine uptake
inhibition and this protection was observed at either 1 or 5 min.

4. Discussion
The present study demonstrates for the first time, that the antioxidant ebselen pretreatment
stabilizes the mitochondrial membrane potential (Fig. 1), inhibits MeHg-induced ERK
phosphorylation (Fig. 2) and attenuating the MeHg-induced promoting effect on caspase-3
cleavage (Fig. 3) and protects astrocytes from MeHg by restoring glutamine uptake (Fig 4),.
Phosphorylation of ERK, caspase-3 cleavage and the collapse of the mitochondrial inner
membrane potential (ΔΨm) represent early events in MeHg-induced neurotoxicity
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(Milatovic et al., 2007), which are linked to the demise in cellular homeostasis and ROS
generation. Oxidative stress has been implicated in various neurodegenerative conditions as
well as in metal-induced neurotoxicity (Bush, 2000). Studies in neuronal cultures, neuronal
and glial co-cultures and recent studies in primary astrocytic cultures have all demonstrated
increased ROS formation upon MeHg exposure (Ali et al., 1992;Gasso et al., 2001;Mundy
and Freudenrich, 2000;Shanker et al., 2003;2005;Yin et al., 2007).

Ebselen is an organic selenium compound. Selenium is a structural component of several
enzymes with physiologically antioxidant properties (Muller et al. 1984; Mugesh and Singh
2000). A number of selenium compounds possess chemical and biological antioxidant
properties (Mugesh and Singh, 2000; Parnham and Sies, 2000; Imai et al., 2001; Nakamura
et al., 2002; Herrera et al., 2003; Kalayci et al., 2005; Gabryel and Małecki, 2006; Johnsen-
Soriano et al., 2007; Tripathi and Jena, 2008; Tak and Park, 2009). Ebselen was
demonstrated to be neuroprotective in preclinical and clinical studies (Saito et al., 1998;
Yamaguchi et al., 1998; Davalos, 1999) and in a variety of in vitro and in vivo animal
models of neuropathological conditions, including ischemia (Dawson et al., 1995; Imai et al.
2003; Porciuncula et al., 2003), quinolinic acid- or glutamate-induced excitotoxicity
(Porciuncula et al., 2001; Rossato et al., 2002a,b) and exposure to MeHg (Farina et al.,
2003; Moretto et al., 2005; Funchal et al., 2006; Roos et al., 2009). The antioxidant activity
of ebselen has been tentatively attributed to its GSH peroxidase-like activity (Muller et al.,
1984; Wendel et al., 1984) and to its ability to serve as a substrate for mammalian
thioredoxin reductase (TrxR), which metabolizes ebselen to its selenol/selenolate
intermediate (Zhao and Holmegren, 2002; De Freitas et al. 2010). In vivo treatment with
ebselen and diphenyl diselenide can reduce MeHg neurotoxicity in rodents (Farina et al.
2003a,b; de Freitas et al. 2009). Accordingly, ebselen could have decreased MeHg toxicity
in astrocytes as reported herein via its selenol by decreasing MeHg-induced oxidative stress
and by a direct interaction of its selenol with MeHg, forming a non-toxic stable
intermediate.

Our experiment also showed that MeHg, in a concentration-dependent manner, led to
significant dissipation of ΔΨm (Figure 1). These changes were fully or partially prevented
by pretreatment with ebselen, attesting to the effectiveness of ebselen in reducing MeHg-
induced ROS generation. Furthermore, as discussed above, the selenol intermediated of
ebselen could interact directly with MeHg, thus decreasing its toxicity. Loss of the ΔΨm
leads to colloid osmotic swelling of the mitochondrial matrix (Gunter and Pfeiffer, 1990),
redistribution of metabolites (Ca2+, Mg2+, Glutathione, NADPH) across the inner
membrane, defective oxidative phosphorylation, cessation of ATP synthesis, and the
generation of ROS. These mitochondrial changes may initiate a cascade of events
culminating in cell death (apoptosis or necrosis) (Berbardi et al., 1998;Kroemer and Reed,
2000). The ΔΨm is a sensitive indicator for the energetic state of the mitochondria and the
cell and can be used to assess the activity of the mitochondrial respiratory chain,
electrogenic transport systems and the activation of the mitochondrial permeability
transition (Ly et al., 2003). Thus, evaluation of ΔΨm depolarization is of critical importance
for the assessment of cellular metabolism, viability and apoptosis.

Extracellular signal-regulated kinases (ERK1/2), one of the members of mitogen-activated
protein kinase (MAPK), respond to several extracellular stimuli and are activated by MAPK/
ERK kinase1/2 (MEK1/2) by phosphorylating threonine and tyrosine residues (Seger and
Krebs 1995). It is known that oxidative stress activates MAPK cascades (Herrlich and
Böhmer, 1999; Allen and Tresini 2000). ERK activation is generally considered a pro-
survival pathway (Baines et al., 2002; de Bernardo et al., 2003), but increasing evidence
suggests that phosphorylation of ERK also contributes to cell death (Chu et al., 2004;
Zhuang and Schnellmann, 2006; Ren et al., 2009). The level of ERK phosphorylation or its
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kinetics may play a role, as inhibiting basal ERK signaling has different effects than
inhibiting toxin-induced ERK activation (Gomez-Santos et al., 2002). Furthermore, the time
course of ERK activation is tightly correlated with mitochondrial ROS production and
antioxidants inhibit ERK phosphorylation and rescue from neuronal injury (Chu et al., 2004;
Kulich et al., 2007). ERK1/2 stimulation by ROS has been described in neurons (Samanta et
al., 1998) and neuroprotection by MEK inhibition against oxidative stress in both neurons
and in astrocytes (Satoh et al., 2000; Rosenberger et al., 2001). A rapid or transient
activation of ERK promotes neuronal survival (Weng et al., 2007; Lin et al., 2008), while
sustained or delayed ERK activation promotes cell death (Kulich and Chu, 2001; Gomez-
Santos et al., 2002; Zhu et al., 2007). ERK can modulate mitochondrial functions
(particularly those associated with cell death) and promote oxidative injuries (Alonso et al.,
2004; Chu et al., 2004; Kulich et al., 2007; Dagda et al., 2008). In addition, activation of
ERK is involved in the induction of apoptosis in cortical astrocytes (Blazquez et al., 2000;
Oh et al., 2006). Our results showed that MeHg activates ERK phosphorylation in a time-
dependent manner (Fig. 2A and 2B). While early ERK phosphorylation may be protective,
sustained activation (for at least 24 hours) (Fig. 2B) is likely deleterious. Accordingly, the
ability of ebselen to attenuate the time-dependent phosphorylation of ERK likely reflects its
ability to protect astrocytes from the sequalae of sustained MeHg-induced ERK
phosphorylation (Fig. 2A and 2B).

Caspase-3 plays a central role in mediating apoptosis, chromatin condensation and DNA
fragmentation (Riedl and Shi, 2004). Therefore, caspase-3 is considered one of the major
executioners of apoptosis and has classically been viewed as a terminal event in the process
of programmed cell death. Accordingly, caspase-3 activation has been described in neuronal
cells following specific types of central nervous system (CNS) insults, including traumatic
brain injury and ischemic/excitotoxic damage (Beer et al., 2000; Nath et al., 2000; Brecht et
al., 2001; Manabat et al., 2003). In vitro studies have also suggested that caspase-3
proteolytic activity plays a crucial role in excitotoxin-induced neuronal apoptosis (Allen et
al., 1999; Tenneti and Lipton, 2000). In addition, expression of caspase-3 has been described
in oligodendrocytes (Beer et al., 2000; Nottingham and Springer, 2003) and astrocytes
following CNS damage (Beer et al., 2000; Benjelloun et al., 2003; Mouser et al., 2006). The
present study also demonstrated that MeHg promotes caspase-3 cleavage and that
pretreatment with ebselen partially prevents this effect (Fig. 3).

Glutamine is an energy substrate for most cells (Fox et al., 1996) and an important precursor
for neurotransmitters glutamate, GABA, and in particular for GSH synthesis (Albrecht et al.,
2007). Our present study indicates that MeHg inhibits the astrocytic uptake of glutamine in a
concentration-dependent manner (Fig. 4), corroborating our previous reports (Allen et al.
2000; Aschner, et al. 1990; 1994; 2000; 2007; and Mutkus et al., 2005). Ebselen
pretreatment (2 hours) effectively abolished the MeHg-induced reduction in glutamine
uptake (Fig. 1), suggesting that it may restore the efficient cycling of glutamine between
astrocytes and neurons, assuring optimal glutamine homeostasis. Mechanisms associated
with decreased astrocytic glutamine uptake are related to inhibition of mRNA coding of the
glutamine transporters, SNAT3/SN1 and ASCT2 (Yin et al., 2007; Sidoryk-Wegrzynowicz
et al., 2009) and potentially direct inhibition of the transporter by ROS, as has been
previously ascribed to glutamate uptake inhibition by MeHg (Shanker et al., 2004).

In summary, the present study demonstrates that MeHg exerts its toxic effects, at least in
part, by inhibiting astrocytic glutamine uptake, collapsing the mitochondrial inner
membrane potential, and triggering phosphorylation of ERK and activation of caspase-3.
The selenium-containing compound, ebselen, can markedly attenuate these MeHg-induced
effects. From a molecular point of view, both the thiol-peroxidase activity of ebselen and the
chemical interaction of MeHg with selenol ebselen intermediate appear to be responsible for
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the observed protective effects. These results indicate that organic selenocompounds
represent promising strategies to counteract MeHg-induced toxicity, shedding light on new
pharmacological modalities for treatment of MeHg poisonings.

Acknowledgments
This study was supported by NIH Public Health Service Grant ES07331 to M.A.

Abbreviations

ΔΨm mitochondrial membrane potential

CNS central nervous system

ERK extracellular-signal related kinase

MeHg methylmercury

ROS reactive oxygen species
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Figure 1.
Effects of MeHg/ebselen on mitochondrial ΔΨ. Cultured astrocytes were treated with or
without ebselen (10 μM) for 2 hours and then were exposed to MeHg at various
concentrations (0, 1, 5, or 10 μM) for 1 hour. (A) Fluorescent microscopy shows the
mitochondrial ΔΨ after TMRE staining. (B) Quantitative analyses (see Materials and
Methods Section) of TMRE fluorescence (ΔΨ). Values are expressed as mean ± SEM of 24
random fields in each group. Experiments were performed in three independently isolated
sets of cultures. * p<0.05, ** p<0.01, *** p<0.001 versus control; ΔΔΔ p<0.001 versus
MeHg plus ebselen treatments in the paired groups by one-way ANOVA followed by
Bonferroni multiple comparison tests.
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Figure 2.
Effects of MeHg/ebselen on ERK phosphorylation in cultured astrocytes as determined by
immunoblotting (Figure 3A, 5 to 360 min; Figure 3B, 30 min to 24 hours). Prior to exposure
to MeHg, astrocytes were pretreated with or without ebselen (10 μM) for 2 hours. Values are
mean ± SEM of 4–6 independent experiments in each group. Statistical analysis was carried
out by one-way ANOVA followed by Bonferroni multiple comparison tests; * p<0.05, **
p<0.01, *** p<0.001 versus control; Δ p<0.05; ΔΔ p<0.01 versus MeHg plus ebselen
treatments in the paired groups.
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Figure 3.
Effects of MeHg/ebselen on activation of caspase-3 precursor in cultured astrocytes. Prior to
exposure to MeHg, astrocytes were pretreated with or without ebselen (10 μM) for 2 hours.
Values are mean ± SEM of 4–6 independent experiments in each group. Statistical analysis
was carried out by one-way ANOVA followed by Bonferroni multiple comparison tests; **
p<0.01, *** p<0.001 versus control; Δ p<0.05; ΔΔ p<0.01 versus MeHg plus ebselen
treatments in the paired groups.
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Figure 4.
Effects of MeHg/ebselen on glutamine uptake in astrocytes. Rat primary astrocytes cultures
were pretreated with/without ebselen for 2 hours and then incubated for 30 min at 37°C in
the absence or presence of MeHg (1, 5, or 10 μM), and the net uptake of glutamine (3H-
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glutamine) was quantified at 1 min (1A) and 5 min (1B), respectively. Values are expressed
as, mean ± SEM (n=4–6). Experiments were performed in three independently isolated sets
of cultures. * p<0.05, ** p<0.01, *** p<0.001 versus control; Δ p<0.05; ΔΔ p<0.01, ΔΔΔ
p<0.001 versus MeHg plus ebselen treatments in the paired groups by one-way ANOVA,
followed by Bonferroni multiple comparison tests.
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