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Abstract
Use of conjugated equine estrogens (CEE) has been linked to smaller regional brain volumes in
women aged ≥65 years, however it is unknown whether this results in a broad-based characteristic
pattern of effects. Structural MRI was used to assess regional volumes of normal tissue and
ischemic lesions among 513 women who had been enrolled in a randomized clinical trial of CEE
therapy for an average of 6.6 years, beginning at ages 65-80 years. A multivariate pattern analysis,
based on a machine learning technique that combined Random Forest and logistic regression with
L1 penalty, was applied to identify patterns among regional volumes associated with therapy and
whether patterns discriminate between treatment groups. The multivariate pattern analysis
detected smaller regional volumes of normal tissue within the limbic and temporal lobes among
women that had been assigned to CEE therapy. Mean decrements ranged as high as 7% in the left
entorhinal cortex and 5% in the left perirhinal cortex, which exceeded the effect sizes reported
previously in frontal lobe and hippocampus. Overall accuracy of classification based on these
patterns, however, was projected to be only 54.5%. Prescription of CEE therapy for an average of
6.6 years is associated with lower regional brain volumes, but it does not induce a characteristic
spatial pattern of changes in brain volumes of sufficient magnitude to discriminate users and non-
users.
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Introduction
Conjugated equine estrogen (CEE) increases the risks of dementia and mild cognitive
impairment in women aged 65 years or older and is associated with deficits in cognitive
function (1,2). Additionally, relative to placebo, CEE-based therapy is associated with
smaller mean hippocampal and frontal lobe volumes, but not ischemic lesion volumes (3,4).
It is not known whether CEE therapy differentially affects other regions to produce
distinctive spatial patterns of reduced volumes and/or lesions..

This work has two main objectives: first, to test the primary hypothesis about the existence
of spatial patterns of tissue atrophy and/or lesions that are associated to the CEE-based
therapy that could have been missed in previous work due the coarse spatial resolution that
was employed; the second goal is largely methodological. We introduce a new sophisticated
multivariate technique based on Random Forest (RF) and penalized logistic regression to
analyze MRI data, which we have developed to overcome some of the challenges in
identifying patterns across large numbers of potential predictors (5,6).

RF belongs to the category of the so called ensemble methods for classification because a
committee of learners (e.g. trees) is generated and each one casts a “vote” to classify cases.
Trees are built using classification and regression trees methodology (CART). RF has
several properties that explain its increasing popularity in bioinformatics: 1) can be used
when there are more variables than observations; 2) can deal with both two class and multi-
class problems; 3) does not overfit; 4) can handle mixtures of categorical and continuous
variables; 5) contains a built-in cross-validation method; 6) generates measures to evaluate
variable importance (7). Precisely this last RF property is used in this work by making use of
the RF’s permutation importance index to obtain ranks of the MRI volumetric measures. On
the other hand, the L1 penalized logistic regression is a machine learning technique that
allows dealing with many variables and forces to zero non-relevant variables via an
embedded mechanism .

Differently from our previous work (3,4) we conducted our analyzes at a much finer spatial
scale by using 157 measurements of regional volumes of normal tissue and ischemic lesions
from magnetic resonance images acquired from women 1-4 years after they had participated
in a large randomized placebo-controlled clinical trial of CEE therapy to identify treatment-
related differences.

SUBJECTS and METHODS
The Women’s Health Initiative Memory Study (WHIMS), an ancillary study to the
Women’s Health Initiative (WHI), consisted of parallel placebo-controlled randomized
clinical trials of 0.625 mg/day CEE with and without 2.5 mg/day medroxyprogesterone
acetate (MPA) in women with a uterus or post-hysterectomy (8). Participants were recruited
from 39 clinical centers of the WHI CEE-Alone and CEE+MPA clinical trials (9,10). They
were 65 to 79 years of age and free of dementia. Written informed consent was obtained.
The National Institutes of Health and Institutional Review Boards of participating
institutions approved the protocols and consent forms.
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Modified MiniMental State (3MS) exams (11) were administered at baseline by trained
technicians. Information on other pre-trial risk factors for cognitive decline was obtained by
standardized interviews and self-reports (12).

This report is limited to the CEE-Alone trial to avoid possible influences of MPA. This trial
was terminated early (February, 2004) due to an increased risk of stroke and lack of
evidence for prevention of cardiovascular disease (10).

MRI acquisition and image processing
The WHIMS Magnetic Resonance Imaging (WHIMS-MRI) study was designed to contrast
MRI outcomes between women who had been assigned to active versus placebo therapy
during the WHIMS trials in 14 of its clinical sites (13). Exclusion criteria included presence
of pacemakers, other implants, foreign bodies, and other contraindications for MRI. None of
those scanned had been classified as having cognitive impairment at WHIMS enrollment. A
total of 1,403 women completed MRI scans that met central reading criteria for analysis, of
which 520 were from the CEE-Alone trial (3,4). Complete data on dementia risk factors
were available on 513 (98.6%) of these women, who are described in this report. These
women had MRIs an average (range) of 8.0 (6.5, 9.3) years and 1.4 (0.8, 2.2) years after trial
enrollment and termination.

Standardized protocols were used for acquisition and processing of MRI scans and for
measuring volumes (3,4). Images were acquired with field of view=22 cm and matrix
size=256×256. The sequences included oblique axial spin density/T2-weighted spin echo
(TR = 3200 ms, TE = 30/120 ms, slice thickness = 3 mm), FLAIR T2-weighted spin echo
(TR = 8000 ms, TI = 2000 ms, TE = 100 ms, slice thickness = 3 mm), and oblique axial 3D
T1-weighted gradient echo (TR = 21 ms, TE = 8 ms, flip angle = 30 degrees, slice thickness
= 1.5 mm) acquired from the vertex to the skull base parallel to the anterior commissure-
posterior commissure (AC-PC) plane.

To quantify regional brain volumes, the T1-weighted volumetric MRI scans were first
preprocessed according to a standardized protocol (14): 1) alignment to the AC-PC
orientation; 2) removal of extracranial material; and 3) segmentation of brain parenchyma
into gray matter (GM), white matter (WM), and CSF. Regional volumetric measurements of
GM, WM, and CSF were subsequently obtained via a validated, automated computer-based
template warping method. This technique is based on a digital atlas labeled for brain lobes
and individual structures, including the hippocampus. Atlas definitions were transferred to
MRI scans via an image-warping algorithm called HAMMER that performs pattern
matching of anatomically corresponding brain regions (15). The volumes of GM, WM, and
CSF of each labeled brain region were obtained by summing the number of respective
voxels within each region. Volumes of brain lesions and periventricular abnormal WM were
also measured separately via the same procedure, using the three sets of images; total lesion
volume was measured, as described in (4). Intracranial volume was estimated as the total
cerebral hemispheric volumes including ventricular cerebrospinal fluid and the cerebral
spinal fluid within the sulcal spaces.

Analytical methods
We used a multivariate pattern analysis method that combined Random Forest (RF) and
logistic regression with L1 penalty (LR-L1) to identify regional volumes that were useful to
discriminate women’s treatment assignment. Our approach consists of a two-step backward
elimination scheme. First, RF was used to rank the regional brain volumes according to their
importance for classifying women based on the RF permutation importance index, which is
one of the measures generated by RF for predictor relevance identification. Then, LR-L1

Casanova et al. Page 3

Magn Reson Imaging. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



was used to assess the relevance of each subset of predictors via its classification accuracy.
These two steps were embedded into a 10-fold cross-validation procedure to reduce
selection bias (16). One-by-one, MRI measures were eliminated based on the RF ranking to
reach the smallest subset that maintained the maximum overall accuracy. We characterized
the performance of our method in terms of classification accuracy, power, and false positive
rate using simulations. These simulations explored how differences in the number of
relevant predictors, their signal-to-noise ratio, and the heterogeneity of relationships
between predictors and treatment influenced performance. These details appear in an
appendix.

Although prior analyses of WHIMS-MRI data found little evidence that CEE-based
therapies influenced ischemic lesion volumes, these findings were based on a limited
number of regions. We thus chose to include both volumes of ischemic lesions and normal
tissues in our analyses: 157 total volumes (see Table 1). Each individual volume was divided
by the intracranial volume to adjust for difference in skull sizes and adjusted for age,
education level, body mass index, and baseline 3MS scores using linear regression.

To portray mean differences in volumes from the regions identified by our approach, we
used analyses of covariance to gauge the relative magnitudes of observed effects, with
adjustment for the above factors.

RESULTS
Women had been enrolled in the CEE-Alone trial for an average (range) of 6.6 (5.5, 7.7)
years. Table 2 describes their risk factors for cognitive decline and dementia, which were
balanced by original trial randomization. Fifty percent reported prior use of hormone
therapy; 21% had used it for more than 10 years. Among those reporting prior use, 52% had
begun therapy at or before the time of their last menstrual period. During follow-up, these
women met the study criterion for adherence to their assigned treatment (≥80% of expected,
based on pill counts) an average of 70% of the time.

Our analytical approach identified volumes that optimally discriminated between treatment
groups, with a projected overall accuracy of 53.1% for women assigned to CEE therapy and
56.4% for women assigned to placebo: 54.5% overall. The selected regional volumes appear
in Table 3. Assignment to CEE therapy was associated with smaller regional volumes of
normal brain tissue in the limbic cortex (left cingulate and left perirhinal cortex) and
temporal lobe (left entorhinal cortex and right inferior temporal gyrus); unadjusted analyses
of covariance yielded p<0.05. Our approach also identified parietal lobe regions (left angular
gyrus and right superior parietal lobe) for which CEE-based therapy was associated with
slightly larger volumes of normal tissue, i.e. regions for which no adverse treatment effects
were evident. Only one regional ischemic lesion volume (total occipital lobe) was selected
as being potentially useful for classification of treatment assignment, however this
difference was not pronounced (unadjusted p=0.4383).

We grouped women according to whether they were classified correctly ≥50% of the time
across 10 runs of the multivariate pattern analysis and examined whether rates varied among
subgroups defined by risk factors for cognitive impairment (Table 4). Classification rates
were not markedly influenced by age, hypertension, or education. Women who had been
assigned to CEE therapy were more likely to be classified correctly if they had higher
baseline 3MS scores. Women who had been assigned to placebo were more likely to be
classified correctly if they had lower baseline 3MS or prior cardiovascular disease.
Classification accuracy was not related to pre-trial use of hormone therapy.
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Because our approach did not yield classification rules that performed much better than
chance, it was important to confirm its validity. We were concerned whether heterogeneity
in associations between CEE therapy and regional volumes, such as might occur if adverse
effects were limited to subgroups of women, might diminish performance and whether our
sample size was adequate to identify predictors. As described in the appendix, we found that
the approach was fairly robust even when heterogeneity was marked or the number of
predictors varied. We projected that as few as 300 participants were sufficient to provide
powers ranging from 69% to 98% for signal-to-noise ratios ≥1 and false positive rates from
3% to16%.

DISCUSSION
We previously reported that assignment to 4-6 years of CEE-based therapy was associated
with sustained smaller mean regional volumes of approximately 1% in the frontal lobe
overall and 2% in the hippocampus (3). The current analyses sought more pronounced
imprints of CEE therapy on normal and ischemic lesion volumes across an extensive atlas of
brain regions that could be used to identify users.

We confirmed that our analytical approach had reasonable levels of statistical power to
identify regions useful for classifying women with respect to treatment. We report three
findings of potential interest. First, the adverse effects of CEE therapy appeared to be
greatest for brain volumes of normal tissue within several limbic and temporal lobes regions.
Second, we found little evidence of associations between ischemic lesion volumes and CEE
therapies. Third, classification rates were highest among subgroups of participants defined
by pre-treatment cognitive function and prior cardiovascular disease.

We confirmed that CEE therapy was associated with smaller volumes of normal tissue in
some regions, with mean decrements ranging as high as 7% in the left entorhinal cortex
(ERC) and 5% in the left perirhinal cortex. These exceed the effect sizes originally reported
for the regions targeted in the original WHIMS-MRI report, i.e. frontal lobe, hippocampus,
and overall (3). This suggests that the adverse impact of treatment may be more diffuse than
originally reported and may differentially affect particular sub-regions of the brain. The
magnitudes of the effects we detected, however, were not sufficiently large to classify
women accurately according to treatment assignment, which is a stronger requirement. As
an example, for Gaussian distributions, a classification accuracy of 54.5% is associated with
a mean shift of approximately 0.25 standard deviations: for relatively large sample sizes,
such as ours, this mean shift would be expected to reach statistical significance, as in our
original report, despite the relatively modest discrimination it provides. Thus, the effects of
CEE therapy on brain structure are generally not so pronounced as to be easily distinguished
from other influences. For women who convert to cognitive impairment following CEE-
based therapy, however, the affects may be more strongly expressed as relative decrements
in regional brain volumes, at least in the hippocampus (28).

Like the hippocampal formation, the ERC plays a key role in episodic memory function and
is among the earliest brain region affected by AD neuropathology (17,18). ERC volume loss
may be a better neuroimaging marker than hippocampal or frontal lobe atrophy in
identifying middle-aged and older adults who are at-risk of memory decline (19) and disease
progression to dementia (20-22). A higher degree of AD-type neuropathological lesions in
the ERC and marked loss of layer II ERC neurons are found very early in persons at-risk to
develop AD, relative to the normal elderly (23,24). ERC volume decline precedes
hippocampal atrophy in patients with MCI who eventually progress to AD when compared
with MCI non-converters and healthy normal subjects (20). Thus, the greater ERC volume
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declines relative to hippocampal and frontal lobe atrophy we saw may suggest a causative
mechanism that links CEE use and incident dementia among postmenopausal women.

We are intrigued by the laterality in our findings, which highlight atrophy in the left ERC
and perirhinal cortex. Although in general, patients with AD have symmetric amyloid
deposition in the cortical and subcortical structures, a higher degree of amyloid deposition in
the left brain structures has previously been demonstrated in individuals at-risk for AD (25)
and greater left parietal and temporal lobe atrophy is seen in MCI converters when
compared to non-converters (26,27). Moreover, greater left parietal lobe hypometabolism is
seen in APOE epsilon 4 carriers who are cognitively healthy relatives of AD patients (28).

CEE-based therapies increase the risk of stroke, regardless of age (29). Our analyses confirm
the finding of Coker et al., however, that these therapies did not result in markedly increased
volumes of subclinical lesion volumes in women in the WHI (4).

The multivariate pattern analysis appeared to perform best for identifying CEE therapy
among women who had relatively high pre-treatment global cognitive function. This may
seem, at first, counterintuitive in that CEE therapy has been found to have smaller average
effects on cognitive function and brain volumes in such women (2,3). However, even within
this subgroup of women, CEE therapy is associated with increased risks for cognitive
impairment and atrophy (1,30). It may be that the expression of treatment effects are
variable in this subgroup of women and that when present to a sufficient degree, they are
more detectable against the backdrop of the relatively health brains of women who are not
exposed to CEE therapy. Likewise, our classification algorithms appeared to be more
successful in identifying placebo therapy among women with lower pre-treatment cognitive
function and prior cardiovascular disease. It may be that it identifies, among these women,
those whose lower cognitive abilities are associated with vascular disease and not atrophy.

Our findings may reassure women over the age of 65 years who have used CEE therapy.
While CEE therapy is associated with increased risk of cognitive impairment in this age
range and is not recommended for use other than treatment of menopausal symptoms, its
typical affect on brain structure, while statistically significant as in the primary WHIMS
report, appears not to be large. It may be that the effects of CEE therapy on regional brain
volumes are highly variable among women so that no characteristic patterns emerge. While
we cannot discount this, we feel it is more likely that the effect sizes, although reaching
nominal levels of statistical significance, are just too small relative to other sources of
variability among women to provide effective discrimination.

The machine learning technique introduced in this work based on Random Forests and
penalized logistic regression produced good power and control of false positives in the
situations tested by our simulations, even when signal to noise ratios were low due to the
presence of heterogeneity in the data. Heterogeneity is to be expected in settings such as
WHIMS where the mechanisms that define the effects of the CEE drugs are very complex
and very likely different for different groups of women (31).
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APPENDIX

Analytical Details and Performance Assessment
Detailed descriptions of RF and LR-L1 methods are in (32-33). We used the R package
randomForest (34) considered one of the best RF implementations available (35) and the
LIBLINEAR toolbox (36) implementation of LR-L1.

Multivariate Analysis Algorithm
Our method can be summarized, as follows.

1. Loop K-fold cross-validation

For each fold, compute a ranking of predictors based on RF using the training data
set. N rf RFs were computed, the corresponding permutation importance scores
were averaged and the predictors were sorted according to these average scores.
The predictors with average scores ≤ 0 were discarded. We used the default values
for RF parameters in the randomForest package: number of trees (ntree) 500 and
the number of variables sampled as candidates at each split (mtry) equal , p =
157 .

Loop across # of predictors [p, p - 1…. 3 2 1], the top features in the RF ranking.

a. Train the LR1 classifier using grid search with K-fold cross-validation to
determine the optimal regularization parameter C based on the maximum
overall accuracy.

b. Apply the classifier obtained in step a) to the test data and obtain estimates
of the overall and intra-class accuracies.

end

end

2. Average the overall and intra-class accuracies across the K folds for each subset of
predictors.

3. Estimate the optimal number features (Nopt) as the size of the smallest subset of
predictors that produced the maximum overall accuracy.

4. Compute N rf RFs using the whole data set, averaging the permutation importance
scores. Sort the predictors to these average scores.

5. Selected top Nopt predictors in this ranking.
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Simulations
We created simulated datasets with 300 women, evenly divided into two groups, and p =
100 potential predictors. We studied our method’s performance under different signal-to-
noise ratios and fractions of relevant predictors and the influence of heterogeneity in
relationships between predictors and group assignment among women, calculating the mean
and standard deviation (SD) of its overall accuracy, power, and false positive rate from 30
simulated datasets as:

where CCC is the number of correctly classified cases, TC is the total number of cases, TP is
the number of correctly identified relevant features, #Target Features is the number of
relevant predictors present in the data, FP is the number of predictors incorrectly identified
as relevant and TN is the number of features correctly identified as non-relevant. All
simulations used the randomForest package default values for the main RF parameters
(ntree = 500, ) and the number of CV folds was fixed to 5.

Simulation 1
This simulation tested our method under different signal to noise ratios. The predictors are
independently and identically distributed (i.i.d) generated from N(0,1). Ten predictors (10%)
were fixed to be relevant by adding different constant values (A = 2, 1, 0.5, 0) to all the
subjects in the target class (Y = −1). We fixed N rf equal 20.

Simulation 2
This simulation assessed performance when different fractions of features were relevant.
The predictors were i.i.d generated from N(0,1). We fixed the signal-to-noise ratio to the
lower level we analyzed in simulation 1 (A = 0.5) excluding the no signal case. We varied
the fraction of relevant features to be 0.05, 0.1, 0.2 and 0.4. We fixed N rf equal 20.

Heterogeneity
All the above simulations were repeated without and with heterogeneity. Predictors were
i.i.d generated from N(0,1). We simulated 50% heterogeneity by adding the signal to one-
half of the relevant predictors in one-half of the subjects of the target class (Y = −1) and for
the second half of the relevant predictors the signal is added to the second half of the
subjects in the same class.
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Results
Table A.1 presents results from the first simulations. In both situations (heterogeneity
present or not) the mean overall accuracy decreased as the signal-to-noise ratio decreased.
Heterogeneity, as expected, also decreased the overall accuracy. False positive rates (FPR)
tended to increase as signal-to-noise ratio decreased, which was also expected. The power
generally followed a similar trend, with the exception when the signal-to-noise ratio was 2.
There are two reasons for this, both related to the performance of the regularized logistic
regression as a wrapper. In general, regularization makes the classifier more robust to the
presence of noisy predictors. Also, when the signal-to-noise ratio is high, fewer relevant
predictors will be sufficient to produce high classification accuracy rates. This is a good
characteristic from the point of view of classification accuracy, but decreases the wrapper’s
sensitivity to the correct number of relevant predictors.

Table A.2 shows the results of the second simulation that evaluates performance for
different fractions of relevant predictors. An increased fraction of relevant predictors leads
to an improvement of the overall classification accuracy in both situations. This is to be
expected, since the amount of information that allows the classifier to discriminate between
the two classes increases with the fraction of relevant predictors. The power and false
positive rates of the method decrease with the increase of the fraction of relevant predictors
when no heterogeneity is present. A different pattern for both power and false positive rates
is observed when heterogeneity is present. A maximum value is obtained when 20% of the
predictors are relevant.

Table A.1

Mean (standard deviation) projected overall accuracy, power and false positive rate across
30 realizations of data for different signal-to-noise ratios

SNR levels
No Heterogeneity Heterogeneity

Accuracy (%) Power
(%)

FPR
(%)

Accuracy
(%)

Power
(%)

FPR
(%)

2 99.9 (0.2) 69.3 (11.2) 0 (0) 94.3 (1.1) 96.7 (6.6) 1.7 (5.1)

1 93.7 (1.7) 98.0 (5.0) 5.2 (10.0) 76.3 (2.0) 89.0 (10.3) 2.7 (4.8)

0.5 77.2 (2.4) 86.7 (12.5) 3.2(5.0) 59.6 (4.2) 47.3 (20.0) 8.7 (6.9)

No signal 53.1 (2.7) - 14.0 (10.0) 52.6 (2.7) - 8.7 (7.3)

Table A.2

Mean (standard deviation) projected overall accuracy, power and false positive rate across
30 realizations of data for different fractions of relevant features is presented. The SNR level
was selected to be 0.5

Proportion of
Relevant

Predictors

No Heterogeneity Heterogeneity

Accuracy
(%)

Power
(%)

FPR
(%)

Accuracy
(%)

Power
(%)

FPR
(%)

0.05 69.5 (3.0) 90.0 (14.7) 6.8 (9.4) 57.0 (3.2) 43.3 (17.5) 9.5 (8.0)

0.1 77.5 (2.2) 91.0 (11.4) 5.2 (6.3) 62.0 (3.4) 53.7 (20.3) 13.7 (9.0)

0.2 85.0 (2.5) 86.2 (11.1) 3.5 (4.2) 65.6 (3.1) 57.8 (19.8) 14.5 (9.4)

0.4 90.5 (1.9) 84.8 (11.0) 3.2 (4.9) 70.2 (2.9) 51.4 (16.0) 8.9 (7.6)
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Table 1

Analyzed brain regions (N=157): each contributed four volumes (right and left sides; abnormal and normal
tissue) except the corpus callosum which contributed a single. Note that total volumes are also included for
lobes containing at least five regions (frontal, occipital, parietal, and temporal lobes)

Lobe Region

Basal Ganglia Caudate nucleus, Globus palladus, Putamen, Thalamus

Frontal Inferior frontal gyrus, Middle frontal gyrus, Superior frontal gyrus, Lateral orbital
frontal gyrus, Medial orbital frontal gyrus, Medial frontal gyrus, Precentral gyrus
Total frontal lobe

Occiptal Inferior occipital gyrus, Middle occipital gyrus, Superior occipital gyrus, Lateral
occipital temporal gyrus, Cuneus, Medial occipital gyrus, Occipital pole, Total
occipital lobe

Parietal Angular gyrus, Postcentral gyrus, Precuneus, Superior parietal lobule, Supramarginal
gyrus, Total parietal lobe

Limbic Cingulate region, Insula, Perirhinal cortex

Temporal Inferior temporal gyrus, Middle temporal gyrus, Superior temporal gyrus, Entorhinal
cortex, Hippocampal formation, Parahippocampal gyrus, Uncus, Lingual gyrus
Temporal pole, Total temporal lobe

Corpus Callosum Corpus callosum
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Table 2

Characteristics of the cohort of women from the CEE-Alone trial

Risk Factor

CEE-Alone Trial Cohort

Treatment Assignment
Mean (SD) or Percent

p-value
CEE

N=257
Placebo
N=263

Age at WHI
Enrollment

70.7 (3.7) 70.7 (3.8) 0.9582

Age at MRI Scan 78.6 (3.7) 78.6 (3.8) 0.9951

Duration of On-trial
Follow-up

6.6 (0.6) 6.6 (0.5) 0.1842

Hypertension
 No
 Yes

47.5
52.5

52.9
47.2

0.2542

Prior CVD
 No
 Yes

91.8
8.2

90.9
9.1

0.7562

Baseline 3MS 95.6 (3.7) 95.7 (3.6) 0.1842

Education
 Not college grad
 College grad

70.4
29.6

74.5
25.5

0.3263

Prior hormone therapy
use
 No
 Yes

51.0
49.0

48.3
51.7

0.5987

Magn Reson Imaging. Author manuscript; available in PMC 2011 May 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Casanova et al. Page 14

Table 3

Mean volumes (mm3) of the regions selected by the multivariate pattern analysis and intra-lobe sums, based
on analyses of covariance with adjustment for intracranial volume, age, education, body mass index, and pre-
treatment 3MS score

Regional Volume

Volumes Selected To Classify The
CEE-Alone Cohort

Treatment Assignment
Mean (SE) or Percent

Unadjusted
p-valueCEE Placebo

Normal tissue

Frontal lobe regions

  Right superior frontal gyrus 6.10 (0.09) 6.24 (0.09) 0.2700

Limbic lobe subregions

 Left cingulate 8.52 (0.08) 8.80 (0.08) 0.0177

 Left perirhinal cortex 1.174 (0.02) 1.23 (0.02) 0.0227

 Sum of two regions above 9.695 (0.09) 10.04 (0.09) 0.0068

Occipital lobe total 21.81 (0.21) 22.25 (0.21) 0.1494

Parietal lobe

 Left angular gyrus 4.93 (0.08) 4.81 (0.07) 0.2989

 Right superior parietal lobe 10.34 (0.13) 10.07 (0.13) 0.1468

 Sum of two regions above 15.27 (0.19) 14.88(0.19) 0.1413

Temporal lobe

 Left entorhinal cortex 0.65 (0.01) 0.70 (0.01) 0.0004

 Right inferior temporal gyrus 5.16 (0.05) 5.31 (0.05) 0.0340

 Sum of two temporal lobe regions 5.81 (0.05) 6.01 (0.05) 0.0086

Ischemic lesion volume

 Occipital lobe total 0.23 (0.02) 0.21 (0.02) 0.4383
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