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Abstract
A multi-parametric model predictive control (mpMPC) algorithm for subcutaneous insulin
delivery for individuals with type 1 diabetes mellitus (T1DM) that is computationally efficient,
robust to variations in insulin sensitivity, and involves minimal burden for the user is proposed.
System identification was achieved through impulse response tests feasible for ambulatory
conditions on the UVa/Padova simulator adult subjects with T1DM. An alternative means of
system identification using readily available clinical parameters was also investigated. A safety
constraint was included explicitly in the algorithm formulation using clinical parameters typical of
those available to an attending physician. Closed-loop simulations were carried out with daily
consumption of 200 g carbohydrate. Controller robustness was assessed by subject/model
mismatch scenarios addressing daily, simultaneous variation in insulin sensitivity and meal size
with the addition of Gaussian white noise with a standard deviation of 10%. A second-order-plus-
time-delay transfer function model fit the validation data with a mean (coefficient of variation)
root-mean-square-error (RMSE) of 26 mg/dL (19%) for a 3 h prediction horizon. The resulting
control law maintained a low risk Low Blood Glucose Index without any information about
carbohydrate consumption for 90% of the subjects. Low-order linear models with clinically
meaningful parameters thus provided sufficient information for a model predictive control
algorithm to control glycemia. The use of clinical knowledge as a safety constraint can reduce
hypoglycemic events, and this same knowledge can further improve glycemic control when used
explicitly as the controller model. The resulting mpMPC algorithm was sufficiently compact to be
implemented on a simple electronic device.
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1. Introduction
People with type 1 diabetes mellitus (T1DM) may have a life expectancy ten years less than
their normal glucose tolerant counterparts due to complications resulting from chronic
hyperglycemia, such as cardiovascular disease and strokes [1]. Hyperglycemia is an elevated
blood glucose (BG) concentration, with a threshold defined as BG greater than 180 mg/dL
[2]. Aggressive treatment with intensive insulin therapy (IIT), involving up to a total of 12
manual capillary glucose measurements and insulin injections per day, reduces
hyperglycemia and can lead to a reduction in the prevalence of these complications [2]. IIT
also increases the risk of hypoglycemic events and increases the burden on the caregiver
and/or patient administering the therapy [3]. Hypoglycemia is any lower than normal BG;
symptoms of hypoglycemia, such as tachycardia and nausea, occur at around 50–70 mg/dL
[4,5].

The attraction of an efficient closed-loop device is thus threefold: increased life expectancy,
decreased hypoglycemia, and reduction in the burden of administering effective therapy.
Innovations in real-time continuous glucose monitoring (CGM) sensors and continuous
subcutaneous insulin infusion (CSII) pumps mean that the components necessary for a
closed-loop device suitable for use in ambulatory conditions are maturing [6], leaving the
control algorithm as the limiting factor in development.

CGM sensors and CSII pumps use the subcutaneous (SC) route for glucose measurement
and insulin delivery, respectively. Other routes, such as intravenous and intraperitoneal
[7,8], offer reductions in lag time [9], but are associated with an increase in the risk of
infection at the site of insertion [10,7]. The lag time associated with SC insulin infusion is an
obstacle for a control algorithm: absorption of glucose into the blood from carbohydrate
(CHO) raises BG faster than simultaneously injected SC insulin can lower it. Insulin
delivery rates may also be limited by the physical limitations of the CSII pump and safety
constraints driven by clinical parameters [11]. A controller framework known to be suitable
for systems with large lag times and constraints is model predictive control (MPC); this
control algorithm has been proposed as a candidate controller architecture for insulin
delivery [12–14] and has been implemented in manual closed-loop trials overnight [15].
Central to each of these MPC implementations has been a dynamic model of the effects of
subcutaneous insulin on glycemia.

The metabolic processes underlying insulin action involve complex interactions of
hormones [16], which lead to significant variation in insulin sensitivity [17–20]. Insulin
absorption variability is less than insulin action variability [21], but can be affected by
biofilms and inflammation. Gut glucose absorption is highly dependent upon the
composition of a meal [22]. Tracer studies involving radioactive isotopes have been reported
in order to characterize subcutaneous insulin and gut glucose absorption [22–24]; such
models may be representative of the variation inherent in a population, but are not practical
for use in an MPC algorithm because adapting these models to an individual subject would
require the repetition of an expensive experiment. The use of data driven, empirical models
based only on data collected from ambulatory subjects is a more practical method for
development of a personalized model; auto-regressive exogenous input models have been
presented in literature [25,26]. The main caveat of developing models from data obtained
from ambulatory subjects is that typically both model inputs—SC insulin and oral CHO—
occur simultaneously, which gives an identifiability problem; the “best” empirical models
can therefore have physically counterintuitive characteristics, such as an incorrect sign for a
process gain [27]. Classic process control techniques, such as impulse response tests, have
been executed in clinical trials in which insulin boluses and meals were separated by 3 h,

Percival et al. Page 2

J Process Control. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and support the notion that a simple model—with a gain, a time constant, and a time delay—
can capture the critical bandwidth behavior of glucose–insulin interactions [28].

Physicians are calculating “gains” through interactions with their patients with T1DM, and
these clinical parameters are the standard of care in endocrinology practices. The “correction
factor” (CF) is the lowering effect of BG from administering one unit of rapid-acting
insulin; the “insulin-to-carbohydrate ratio” (ICR) is the amount of carbohydrate offset by
one unit of rapid-acting insulin. These parameters are used to guide insulin dosing decisions
and are often refined throughout the life of the person with T1DM [29]. Due to this
refinement process, the parameters obtained are considered reliable and should be included
as a safety constraint in a closed-loop control algorithm [11].

Constrained MPC can necessitate the on-line solution of a quadratic program. This on-line
optimization can be replaced with a single set of a priori optimizations via multi-parametric
programming; the on-line problem is reduced to the evaluation of an affine function
obtained from a lookup table [30]. This reformulation is valuable in any application where
on-line computation should be minimized, due to low computational power, or in order to
extend battery life by minimizing computation, or to minimize the foot-print on a chip.
Multi-parametric MPC (mpMPC) has been evaluated in several biomedical applications
[31], and has been investigated for use with intravenous insulin delivery in an intensive care
unit in silico [32].

This study was designed to show the feasibility of using simple models, clinical parameters,
and mpMPC for control of glycemia via the SC route. Elements of modeling for control
were, for the first time, unified with clinical parameters derived by physicians. The resulting
models and safety constraints were used to develop a novel mpMPC control algorithm for
glucose control via subcutaneous insulin delivery. Closed-loop simulations were performed
on two clinically verified virtual subject cohorts.

2. Methods
2.1. Virtual subject cohorts

Two clinically validated simulation models were used to represent a virtual subject with
T1DM. Both models are semi-physiological, semi-empirical, and represent the effects of SC
insulin and oral CHO on BG. The models are divided into three compartments as shown in
Fig. 1: gut absorption of glucose from oral CHO, absorption of SC insulin into the plasma,
and their effects via a glucose-insulin kinetic model on BG.

The first cohort of virtual subjects was based on the model of Hovorka et al. [23], with
modifications to the insulin absorption model by Wilinska et al. [24]; four subjects were
derived by using a multiplier κj on the plasma insulin concentration I(t) in the insulin
sensitivity state equations of the model [23]:

(1)

where subscripts i and j represent state i and subject j, respectively, x is the insulin
sensitivity state, ka and kb are rate constants, and κj takes values of 0.5, 0.75, 0.25, and 1.
This cohort will be referred to as the Hovorka cohort.

The second cohort of virtual subjects was based on the cumulative work of scholars at the
Universities of Virginia and Padova [34–36], which has been accepted by the Food and
Drug Administration (FDA) as a substitute for animal trials [33]. Ten virtual subjects
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representative of the variation found in an adult population with T1DM were available. This
cohort will be referred to as the UVa/Padova cohort.

2.2. Model development
Identification of parameters for first-order-plus-time-delay-with-integrator transfer function
models for describing the effects of SC insulin and oral CHO on BG from impulse response
tests has been proposed [28,37]. Impulse response data for 1, 2, 5, and 10 U insulin boluses
and 25, 50, 75, and 100 g CHO meals were obtained from each virtual subject; the data used
for parameter estimation spanned 6 h for the bolus insulin model and 3 h for the meal model.
Six models were developed. The general form of models A–C was

(2)

where s is the Laplace variable, Y the deviation BG, U the deviation insulin input amount, D
the CHO input amount, K, τ, and θ are the model gain, time constant, and time delay,
respectively. Subscripts B and M represent the bolus insulin component of the model (bolus
model) and meal CHO component of the model (meal model), respectively. The integrator
element is included because over the timeframe of interest, the simulated subject has
integrating characteristics; in vivo, integrator characteristics are more prominent in the
impulse response [38]. Deviation variables are taken about nominal steady-state conditions
corresponding to the lowest risk [39]; the nominal BG was 110 mg/dL, the nominal insulin
delivery rate was that required to maintain the nominal BG, the nominal disturbance value
was zero. For model A, the heuristics used to estimate each parameter were as follows:

1. K was the ratio of greatest deviation from nominal of Y to the input size U;

2. θ was defined as y(t = θ) = 0.03Ku, where u is the units of insulin input for the
bolus insulin model, or the g CHO for the meal CHO model, and y is the glucose
deviation from nominal in mg/dL. The threshold of 3% of final response for θ was
chosen as it is just beyond the noise level in CGMs [40];

3. τ was defined as y(t = τ + θ) = 0.632Ku [41].

For model B, mean values were taken for τ and θ across all subjects in that particular cohort.
Recognizing the units of KB as mg/dL per U, KM as mg/dL per g CHO, CF as mg/dL per U,
and ICR as g CHO per U, the following relationships between clinical parameters and model
gains were defined:

(3)

(4)

For model C, the gains were thus determined from the clinical parameters, CF and ICR, that
are available with each virtual subject.

Due to the integrating element, models A–C have a pole at zero, yielding an unstable model.
For stability, a set of second-order models that approximate the critical bandwidth behavior
of models A–C were derived; the criteria for the second-order models were defined as
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(5)

(6)

where y† is the second-order model output, t† is the time at which the output of each of the
first-order integrating models A–C would be equal to its proposed second-order partner
(models D–F). The threshold of 90% of final output was chosen so that the bulk of the
steady-state response was duplicated within the timescale of interest; other thresholds could
be chosen but were not investigated in this proof-of-concept study. To meet the criteria
defined in Eqs. (5) and (6), a nonlinear optimization was performed to obtain a transformed
model gain and an additional time constant, denoted with subscript t in the following
equations:

(7)

Models A–F are compared in Table 1.

The models were then discretized and converted into the state space:

(8)

(9)

where k is the sample index, calculated from t = kΔt where Δt is the sampling period, and θu
and θd correspond to θB and θM, respectively, after rounding to the nearest sample index. x is
the state vector of dimension n-by-1, y the measurement scalar, u the manipulated variable,
insulin, and d the disturbance variable, CHO.

2.3. Controller formulation
The optimization objective was to minimize tracking error Y over prediction horizon NP,
spanning 6 h and minimize control moves ΔU over control horizon NM, spanning 30 min.
The cost function for this purpose was

(10)

where ΔU is an NM-by-1 vector of decision variables Δuj, Y is a NP-by-1 vector of predicted
tracking error, and Qy and R and matrices denoting penalties on tracking error and control
moves, respectively. Assuming a set-point of 110 mg/dL, which corresponds to the nominal
BG, the tracking error, Y, is given by

(11)
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where matrices T, SU, and SD are calculated from matrices A, B, and Bd. SE is a NP-by-1 unit
vector. U is of dimension NP, and is the absolute value of the control variable in the future:

(12)

D is an (NA+1)-by-1 vector of disturbances from the present up to NA steps in the future,
where NA is the announcement horizon. Three disturbance modeling scenarios were
considered.

1. Unannounced meal. No estimation of the meal size was made. The disturbance
model was not used. This is pure feedback (FB) control.

2. Measured meal. The meal CHO content was measured at the time of ingestion. In
this case, NA = 0. This is feedback/feedforward (FF/FB) control.

3. Announced meal. The meal CHO content was measured 30 min before ingestion.
In this case, NA = 6 with a five minute sample time. This is also FB/FF control,
with an augmentation of the FF component to look further into the future.

As can be seen from the definition of D, “measured” and “announced” meals are
fundamentally the same, with “measured” meals being an “announced” meal with zero lead
time.

The error model was an output additive disturbance, defined as

(13)

where ym,k is the measurement at the current sample k, and yk is the uncorrected, infinite step
ahead model prediction.

Two constraint cases were considered.

1. Physical constraints only.

2. Physical constraints and insulin-on-board (IOB) safety constraints [11].

2.3.1. Physical constraints—Basic physical constraints were based determined from
bounds on insulin delivery rates

(14)

where ID is the absolute insulin delivery rate, subscript basal is the nominal value, and
subscript max is the maximum insulin flow rate possible.

2.3.2. IOB constraints—Calculation of the IOB constraint [11] begins by considering the
history of delivered insulin and calculating the remaining active insulin

(15)
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where IOBk is the active insulin at sample k, NH is the oldest delivery of insulin considered,
and vector fh is the fraction of insulin remaining active after h samples [42]. The IOB rate
constraint was calculated using an allowance for clinical parameters, less the active IOB,
given by

(16)

where UIOB,k is the maximum insulin delivery rate at sample k, ICF,k is the insulin allowed
based on CF, and IICR,k is the insulin allowed based on ICR. An allowance for insulin based
on ICR was not given if the meal was unannounced.

Additionally, the nominal insulin infusion rate was always allowed:

(17)

The final IOB rate constraint was therefore

(18)

2.4. Formulation of the multi-parametric program
The cost function in Eq. (10) can be reformulated by completing the square [30,43] into a
more compact form suitable for solution as a multi-parametric program giving

(19)

(20)

where the vector of optimization variables, zk, is a function of the parameter vector, pk, and
the manipulated variable vector ΔUk, defined as

(21)

and S is obtained from

(22)

The vector pk is called the parameter vector because in the context of parametric
programming, this is traditionally the name given to the set of variables (or parameters) over
whose range optimal solutions are sought.

The multi-parametric programming problem as defined by Eqs. (19) and (20) was solved
using the Multi-Parametric Toolbox [44] and YALMIP [45]. The parameter vector, pk
included the state vector, xk, the last control move, uk, the current error, ek, the meal

Percival et al. Page 7

J Process Control. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



measurement and announcement vector, dk, and the IOB constraint, uIOB,k. The maxima and
minima of each component of interest in pk were:

(23)

(24)

(25)

(26)

(27)

The solution is the form of lookup table defined in the state space; the optimal control law
was determined by searching the lookup table for the entry j satisfying the associated vector
of inequalities

(28)

where Hj and Kj define the limits of the validity of optimality of entry j. The associated
affine function is evaluated using

(29)

where Fj and Gj correspond to entry j in the lookup table for optimal control given
parameter vector pk.

3. Results and discussion
3.1. Model development

Comparison of each of the models A–F with the subject data was performed. For the
Hovorka cohort, the critical bandwidth frequencies were captured in each of the
personalized models, i.e., models A, B, D, and E. The calibration data from the Hovorka
cohort and each model’s response to a 1 U insulin bolus is shown in Fig. 2; models C and F,
which have gains based upon clinical parameters, do not capture the asymptotic behavior as
well as models A, B, D, and E. The model response to a meal is similar for all Hovorka
subjects, as shown in Fig. 3.

The calibration data from UVa/Padova cohort and each model’s response to a 1 U bolus is
shown in Fig. 4; from an asymptotic perspective over the window of interest, models C and
F do not capture the hypothesized gains. The data and model fits from a 25 g CHO meal for
the UVa/Padova cohort are shown in Fig. 5. The lag time for each model is similar to the lag
time of the data in all cases.
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The model parameters identified for model 1 are summarized in Table 2 for the Hovorka
cohort and Table 3 for the UVa/Padova cohort. Comparison of the bolus model gains, KB
across cohorts shows that the Hovorka cohort are much more sensitive to insulin than the
UVa/Padova cohort. There is an order of magnitude difference in the CF of UVa/Padova
adult subjects 3 and 4 indicating a wide range of insulin sensitivity in the cohort; this
difference is maintained in the corresponding gain, KB, of these subjects. The variation of τ
and θ is significantly less than the variation of K, indicating that the gains, K, are the most
important parameter in accounting for inter-subject variation.

A quantitative analysis of the model calibration is given in Figs. 6 and 7 using the FIT
metric, defined as

(30)

where g is the measurement value, ĝ the uncorrected model estimate, and ḡ the mean
measurement value. A score of 100 implies perfect fit, a score of zero implies predicting the
mean measurement value would have equivalent performance. The models with gains based
on clinical parameters perform poorly compared with models using gains obtained from
impulse response tests.

The model gains and clinical parameters are compared in Fig. 8 for the UVa/Padova cohort.
An increase in the size of the input excitation decreases the value of the model gain
obtained, indicating nonlinearities. The trend is that the model gains have the strongest
correlation with the clinical parameters when the input excitation is small. The implication is
that the size of the impulse used in identification should be of a similar magnitude to those
impulses, i.e., meals, expected in daily life. The clinical parameters assigned to an individual
with T1DM are a reflection of this.

3.2. Controller performance
The control law was formulated using a prediction horizon of 6 h because this length of time
was used to model insulin. The sample time was chosen as 5min, which is a common
measurement frequency among CGM sensors in use. The control horizon was 30 min.
Integrating states can be problematic for mpMPC, unless a larger search region is specified,
which increases the size of the lookup table and thus may defeat the goal of minimizing the
footprint on a chip. Thus, SOPTD models were preferable to FOPTDI models for control
and the FOPTDI models were not used any further. This was reasonable from a modeling
perspective because there was not significant loss of model performance when applying the
empirical transformation. Additionally, the FOPTDI remain the best starting point because
the parameters have clinical/physical meaning. Because the performances of models D and
E were clinically similar, results from models D and F are shown in the following results.
Extensive simulations showed that Qy/R = 0.1 was a reasonable trade-off between
robustness to uncertainty and avoiding a sluggish response. Closed-loop simulations were
performed assuming a daily meal plan of 200 g CHO, divided into three meals of 50, 85, 65
g CHO ingested at 7 a.m., noon, and 7p.m.

Fig. 9 shows the closed-loop responses for the Hovorka cohort with a controller based on
Model D. Performance characteristics associated with the three methods of controlling for
disturbances are similar across all subjects. Unannounced meals of this size lead to
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unacceptable low postprandial BG. The use of a disturbance model reduces the peak BG
levels after CHO ingestion, while also generally increasing the BG minima. Meal
announcement further reduces the peak BG levels, but at the cost of further decreasing the
postprandial BG. The control algorithm delivers some insulin upon announcement of the
meal. This delivery of insulin over several steps is a shift from the basal-bolus paradigm,
and thus cannot be considered as a pre-meal bolus; indeed, the control algorithm makes no
distinction between the two. The model and controller performance on the Hovorka subjects
indicates that the system has only mild nonlinearities; as implemented, the variation in BG
could be reduced with a modest reduction in daily CHO consumption, and the low
postprandial BG could be avoided at the cost of higher peak BG by increasing the set-point.
Indeed, dietary restriction and consistency are considered key to control of diabetes mellitus
[46]. Meal announcement was not investigated any further due to decrease in BG minima
associated with this controller performance and the practical implications of knowing meal
CHO before meal time.

Fig. 10 shows the closed-loop responses for the UVa/Padova cohort with a controller based
on Model D. Both unknown meals and measured meals were considered, along with the
inclusion of the IOB constraint based on clinical parameters. The performance of an
unconstrained controller with unknown meals is satisfactory for subjects 2, 7, and 9.
Subjects 1, 3, and 10 require meal measurement to avoid hypoglycemia subjects 4, 5, and 8
require an IOB safety constraint to avoid hypoglycemia. The failure of the safety constraint
for subject 6 indicates that the clinical parameters are not appropriately prescribed. This
highlights the importance of hypoglycemia alarming and fault detection, which is in itself an
active area of research for insulin delivery systems [47–49]. For subject 6, the associated
clinical parameters were doubled to improve insulin dosing decisions in the following
simulations. In this study, we have not investigated adaptive control; excellent strategies
have been developed and could be applied to this control schema. For determining if a
model is still valid, fault detection methods could be applied [50] to recommend obtaining a
new model. Run-to-run methods [51] could be used to reset the nominal conditions used
should insulin requirements change significantly. Iterative learning control [52] and run-to-
run control [53] could also be used to determine a dynamic set-point, based on prior
performance.

Fig. 11 shows the closed-loop responses for the UVa/Padova cohort with a controller based
on Model F. Subjects 4 and 8 need the safety constraint to avoid hypoglycemia. For subjects
1, 3, 5, 7, 9, and 10, glycemic control is clinically identical with or without the safety
constraint; the convergence of controller performance in this manner indicates that the
model contains the same information used in the safety constraint in an optimal manner. The
glucose trajectories for subject 6 show improved performance with modified clinical
parameters; hypoglycemia is avoided with the IOB constraint. Although model D provided a
better prediction of open-loop data than model F, the controller based upon model F
performs better in a closed-loop scenario. This is because performance for open-loop
prediction was measured in a least-squares sense, where as performance for closed-loop
control is measured in terms of safety. By considering the safety margins implicitly in the
model, rather than explicitly in the constraint, improved performance without the IOB
constraint occurs.

Fig. 12 shows the value of the upper limit on the rate constraint for the UVa/Padova cohort.
The rate constraint increases with deviation from nominal and when meals are announced;
the rate constraint also increases when insulin delivery is less than basal as active insulin
decays. The insulin delivery rate from the controller without the IOB constraint frequently
exceeds that of the controller with the IOB constraint.
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The critical challenge for a control algorithm is robustness under uncertainty. Uncertainty in
meal CHO content and subject insulin sensitivity were addressed. Each subject was
simulated for 30 days; daily variation of insulin sensitivity was considered by parameter
variation drawn from a normal distribution with standard deviation of 10%, and CHO
content of each meal was assumed to vary following a normal distribution with standard
deviation of 10%; these distributions were chosen to capture the expected variation in
insulin sensitivity [54] and meal size estimates [55] observed in the literature. The low blood
glucose index (LBGI) and high blood glucose index (HBGI) were calculated to summarize
glycemic control for each day [39,56]. Calculation of LBGI and HBGI involves
normalization of BG into risk space, to account for the asymmetry of the hazard associated
with deviations from nominal. Threshold levels distinguishing low, medium, and high risk
of hyperglycemic and hypoglycemic events have been associated with HBGI and LBGI,
respectively; these thresholds relate to the risk of deleterious consequences associated with
BG that is not at euglycemic levels.

A summary analysis of all BG data for the 30 days of simulations is shown in Fig. 13. In all
instances, controller performance avoids a high risk of hypoglycemia; with the IOB
constraint formulation, the risk of hypoglycemia was classified as “low” [39].

Due to the inevitable hyperglycemia that occurs postprandially with unrestricted CHO
consumption, glycemic control was assessed by relaxing requirements on a 3 h postprandial
period, which has precedent in the literature [57]. The LBGI and HBGI analysis was
repeated for the closed-loop glucose trajectories, excluding the postprandial period, as
shown in Fig. 14. There was a significant reduction in HBGI, with most data points falling
below the “low” risk threshold, and those points above the “high” risk threshold were
significantly reduced.

The threshold levels for interpreting LBGI and HBGI were developed before CGM sensors
became available; the paucity of data available meant that a measurement showing
hyperglycemia could reasonably be interpreted as a sustained hyperglycemic event. The
glucose trajectories shown in Fig. 11 indicate that the hyperglycemia caused by daily CHO
consumption of 200 g CHO is not sustained indefinitely; euglycemia is always restored
overnight. Therefore, to interpret the HBGI results as meaning high risk may be overstating
the problem.

3.3. Controller implementation
In order to retain the practical benefits of solving a multi-parametric program offline, the
lookup table should be of a size that lends itself to portability on simple devices. Fig. 15
shows the size of the controllers for each subject that were implemented in the robustness
simulations. All the controllers were of a reasonable size given modern portable
computational devices. The size of the lookup table depends upon the complexity of the
model, the cost function, and the constraint formulation. The increase in complexity from
additional parameters in the program from measured meals leads to a modest increase in
size; the increase in complexity due to the IOB constraint is more significant, but does not
make the lookup table size a computational burden or memory issue.

4. Conclusions
Low order transfer function models can have physically meaningful parameters and the
necessary degrees of freedom to characterize the principle characteristics of clinically
validated models of SC insulin effects on BG. The identification procedure for parameters
for such models used only ambulatory data and would be relatively inexpensive to
implement. Clinical parameters served a similar function in characterizing the most
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important information and could be used as the basis of models useful for control derived
from a minimum amount of data.

MPC provided an intuitive framework for a complex optimization problem, whereby tuning
handles do not become too complicated for a non-specialist to understand. The robustness of
the proposed control algorithm was demonstrated through physiologically significant
changes in insulin sensitivity and mismatches between subject estimated and ingested CHO.
The safety constraints implemented improved performance by reducing the occurrence of
hypoglycemia. Using simple models and only the most important constraints led to a
sufficiently compactly posed multi-parametric programming problem that was suitable for
implementation on a simple computational device—”MPC-on-a-chip”.

Abbreviations

BG blood glucose

CGM continuous glucose monitoring

CF correction factor

CHO carbohydrate

CSII continuous subcutaneous insulin infusion

FDA Food and Drug Administration

ICR insulin-to-carbohydrate ratio

IIT intensive insulin therapy

IV intravenous

SC subcutaneous

T1DM type 1 diabetes mellitus
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Fig. 1.
General compartmental division of virtual subject models used by Hovorka and coworkers
[23] and the UVA/Padova simulator [33].
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Fig. 2.
Calibration data and the uncorrected model response from models A, B, D, and E, due to a 1
U bolus. Panels 1–4 correspond to the Hovorka subjects 1–4.
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Fig. 3.
Calibration data and the uncorrected model response from models A, B, D, and E, due to a
25 g CHO meal. Panels 1–4 correspond to the Hovorka subjects 1–4.
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Fig. 4.
Calibration data and the uncorrected model response from models A–F due to a 1 U bolus.
Panels 1–10 correspond to the UVa/Padova adult subjects 1–10.
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Fig. 5.
Calibration data and the uncorrected model response from models A–F due to a 25 g CHO
meal. Panels 1–10 correspond to the UVa/Padova adult subjects 1–10.
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Fig. 6.
The FIT metric for Hovorka subjects 1–4 for each model identified from the impulse
response data. Left: bolus response. Right: meal response.
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Fig. 7.
The FIT metric for UVa/Padova adult subjects 1–10 for each model identified from the
impulse response data. Left: bolus response. Right: meal response.
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Fig. 8.
Clinical parameters from UVa/Padova cohort compared with identified model gains. Series
descriptors denote excitation size; small: 1 U, 25 g CHO; medium: 2 U, 50 g CHO; large: 5
U, 75 g CHO; x-large: 10 U, 100 g CHO. Left: correction factor. Right: insulin-to-
carbohydrate ratio.
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Fig. 9.
Closed-loop results for the Hovorka cohort. Meal plan is 50, 85, and 65 g CHO at 7 a.m.,
noon, and 7 p.m. Control algorithms compared are the unannounced, measured, and
announced meal scenarios, using model D. Panels 1–4 correspond to the Hovorka subjects
1–4.
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Fig. 10.
Closed-loop results for the UVa/Padova cohort. Meal plan is 50, 85, and 65 g CHO at 7
a.m., noon, and 7 p.m. Control algorithms compared are the unannounced (FB) and
measured (FB/FF) meal scenarios, with and without the IOB constraint, using model D.
Panels 1–10 correspond to the UVa/Padova adult subjects 1–10.
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Fig. 11.
Closed-loop results for the UVa/Padova cohort. Meal plan is 50, 85, and 65 g CHO at 7
a.m., noon, and 7 p.m. Control algorithms compared are the unannounced (FB) and
measured (FB/FF) meal scenarios, with and without the IOB constraint, using model F.
Panels 1–10 correspond to the UVa/Padova adult subjects 1–10.
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Fig. 12.
Closed-loop results for the UVa/Padova cohort. Meal plan is 50, 85, and 65 g CHO at 7
a.m., noon, and 7 p.m. The control algorithms both consider measured meals (FB/FF), one
has the IOB constraint, using model F. The IOB safety constraint for one controller is shown
in the insulin delivery panels. Panels 1–10 correspond to the UVa/Padova adult subjects 1–
10.
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Fig. 13.
Mean values of the daily LBGI and HBGI obtained over 30 days for the UVa/Padova
cohort. Control algorithms compared are the unannounced (FB) and measured (FB/FF) meal
scenarios, with and without the IOB constraint, using model F.
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Fig. 14.
Mean values of the daily LBGI and HBGI obtained over 30 days for the UVa/Padova cohort
excluding the postprandial period. Control algorithms compared are the unannounced (FB)
and measured (FB/FF) meal scenarios, with and without the IOB constraint, using model F.
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Fig. 15.
Size of control law for UVa/Padova cohort based on model F for unannounced (FB) and
measured (FB/FF) meals with and without the IOB constraint.
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Table 1

A comparison of features of models A–F.

Model Integrating Second order

Personalized A D

Mean dynamics B E

Clinical parameters C F
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