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Abstract
A novel approach to the tricyclic core of the Stemona alkaloids stemofoline and
didehydrostemofoline has been discovered that features an intramolecular (3+2) dipolar
cycloaddition of an unactivated carbon-carbon double bond with an azomethine ylide; the
azomethine ylide was generated by an unprecedented reaction that occurred during a Swern
oxidation of an α-(N-cyanomethyl)-β-hydroxy ester. In separate experiments, the efficacy of
introducing the requisite oxygen functionality at C(8) and the 1-butenyl side chain at C(3) was
established.
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The roots and leaves of the Stemonacea species have been used extensively in traditional
oriental medicine as insecticides and to treat respiratory diseases and parasitic infestation.i
Stemofoline (1) was the first alkaloid isolated from Stemona japonica, ii and
didehydrostemofoline (2), which was originally named asparagamine A because the plant
from which it was isolated was erroneously thought to be Asparagus racemosus, was
reported afterwards.iii, iv Isostemofoline and isodidehydrostemofoline, the 11,12-E isomers
of 1 and 2, respectively, have also been isolated.v Both 1 and 2 exhibit powerful insecticidal
activity as insect acetylcholine receptor antagonists.iv,vi Moreover, 2 exhibits nanomolar
activity against different human carcinoma cell lines and possesses potent in vivo anti-
oxytocin activity.iiib, vii These structurally intricate and biologically interesting targets have
attracted considerable interest from the synthetic community.viii However, the only total
syntheses that have been recorded for alkaloids of this family are of (±)-isostemofoline by
Kendeix and of racemic 2 and (±)-isodidehydrostemofoline by Overman.x

In developing an approach to 1 and 2, we were intrigued by the possibility of forming the
tricyclic core embodied in 4 by a (3+2) dipolar cycloaddition involving an azomethine ylide
5 that might be generated in situ by silver ion promoted decyanation and deprotonation of
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the chiral amino nitrile 6 (Scheme 1).xi The subsequent transformation of 4 into the
advanced intermediate 3 would then require a remote functionalization xii followed by
introduction of the requisite lactone ring. A variety of options were then envisioned for
converting 3 into the targeted alkaloids. We now report the details of some of our work in
this area that has led to the discovery of a novel reaction to generate azomethine ylides and
the successful preparation of the functionalized tricyclic core of 1 and 2.

Inasmuch as we ultimately wished to complete enantioselective syntheses of 1 and 2, we
were attracted to a general entry to chiral pyrrolidines that had been developed by Davis.xiii
However, in the interest of establishing the underlying efficacy of our plan, we elected to
perform some preliminary experiments using racemic intermediates. In the event,
benzenesulfinyl amide (7) was condensed with 4-pentenal (8), which was freshly prepared
by Swern oxidation of 4-pentenol, in the presence of Ti(OEt)4 to give the sulfinyl amine 9 in
92% yield (Scheme 2). When 9 was allowed to react with an excess of the enolate of methyl
acetate, a tandem Mannich/cross-Claisen reaction ensued to provide the keto ester 10 in 52%
yield. Although the dianion of methyl acetoacetate also reacted with 9 to give 10, the yields
were lower. Because Davis had shown that N-sulfinyl groups were incompatible with the
impending cyclization,xiiia the N-sulfinyl group was replaced with an N-Boc group in 87%
overall yield. Reaction of 11 with 4-carboxybenzenesulfonyl azide (4-CBSA) gave the
intermediate diazo compound 12 that underwent facile Rh-catalyzed cyclization to give the
protected pyrrolidine 13 in 84% overall yield.

We soon discovered that removal of the N-Boc protecting group from 13 gave an unstable
intermediate keto ester that could not be further manipulated. Accordingly, we modified our
plan and reduced the keto function in 13 and immediately transformed the intermediate
alcohol into 14 by sequential removal of the N-Boc group and cyanomethylation (Scheme
3). We then envisioned that oxidation of the alcohol function in 14 would give 6 that would
then be transformed into the tricyclic adduct 4 according to the plan outlined in Scheme 1.
However, initial attempts to oxidize 14 under a variety of conditions afforded complex
mixtures of unidentifiable products. Surprisingly, when 14 was subjected to oxidation under
Swern conditions, we obtained a mixture (ca 5:1) of 15 and 16. After separation of these two
compounds by chromatography, 15 was isolated in 62% yield; the structures of 15 and 16
were confirmed by x-ray crystallography.xiv

The unexpected formation of a mixture of 15 and 16 upon Swern oxidation of 14 is
consistent with the generation and cyclization of the azomethine ylide 18 (Scheme 4). A
plausible mechanism for the formation of 18 might involve initial oxidation of 14 to give 6,
which might undergo reaction with an electrophilic species present during the Swern
oxidation to give an intermediate of the general form 17. Loss of either HCl or of a proton
and dimethyl sulfide would furnish 18. The formation of 18 from 6 under these conditions is
unprecedented and merits further investigation as a novel entry to azomethine ylides.

We then explored several tactics for introducing the requisite functionality at C(8) of 15 by
remote functionalization. Toward this objective, the ketone moiety of 15 was
stereoselectively reduced with NaBH4 to give 19 (Scheme 5). Irradiation of a solution of 19
in the presence of iodobenzene diacetate and iodine under conditions developed by Suaréz
gave 20 in 85% yield.xv The formation of the iodo ether in this process is also unusual and
appears to arise from two consecutive hydrogen-abstraction/iodination steps. In a parallel
study, we discovered that an oxygen atom may be introduced at C(8) of 19 via a Barton
reaction in the presence of oxygen to give the nitrate ester 21.xvi The structures of both, 20
and 21, were unequivocally proven by x-ray crystallography.xiv
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Having established several viable tactics to introduce an oxygen function at C(8), we then
turned our attention toward removing the undesired cyano group. In order to set the stage for
this effort, the ester group was first transformed into the butenyl side chain at C(3) required
for the synthesis of didehydrostemofoline (2). In the event, the alcohol moiety in 19 was first
protected as a TES ether by reaction with TES–OTf to give 22 in 95% yield.
Chemoselective reduction of the ester moiety to the primary alcohol followed by Swern
oxidation gave the aldehyde 23 in 60% overall yield. Stereoselective olefination of 23 with
the anion generated from 24 by the Julia-Kocienski protocol delivered 25.xvii
Unfortunately, we have been unable to effect the reductive decyanation of 25 to give 26
under a number of standard conditions.

In summary, we have developed a novel entry to the tricyclic core of the Stemona alkaloids
stemofoline and didehydrostemofoline. The approach features the intramolecular (3+2)
dipolar cycloaddition of an unactivated carbon-carbon double bond with an azomethine
ylide; the azomethine ylide was generated by an unprecedented reaction that occurred during
a Swern oxidation of an α-(N-cyanomethyl)-β-hydroxy ester. In separate experiments, the
efficacy of introducing the requisite oxygen functionality at C(8) via a radical-mediated
remote functionalization and the 1-butenyl side chain at C(3) via a Julia-Kocienski reaction
was established. Although we have not yet identified conditions for removing the cyano
group at C(5), this work validates our approach to these unusual alkaloids. The extension of
the chemistry developed herein to the syntheses of stemofoline and didehydrostemofoline is
under active investigation, the results of which will be reported in due course.
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Scheme 1.
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Scheme 2.
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Scheme 3.
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Scheme 4.
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Scheme 5.
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Scheme 6.

Dietz and Martin Page 10

Tetrahedron Lett. Author manuscript; available in PMC 2012 April 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


