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Abstract
Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput
technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence
ratios as a function of the genomic DNA location and provides a cytogenetic representation of the
relative DNA copy number variation. Analysis of such data typically involves estimation of the
underlying copy number state at each location and segmenting regions of DNA with similar copy
number states. Most current methods proceed by modeling a single sample/array at a time, and
thus fail to borrow strength across multiple samples to infer shared regions of copy number
aberrations. We propose a hierarchical Bayesian random segmentation approach for modeling
aCGH data that utilizes information across arrays from a common population to yield segments of
shared copy number changes. These changes characterize the underlying population and allow us
to compare different population aCGH profiles to assess which regions of the genome have
differential alterations. Our method, referred to as BDSAcgh (Bayesian Detection of Shared
Aberrations in aCGH), is based on a unified Bayesian hierarchical model that allows us to obtain
probabilities of alteration states as well as probabilities of differential alteration that correspond to
local false discovery rates. We evaluate the operating characteristics of our method via simulations
and an application using a lung cancer aCGH data set.
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1 Introduction
1.1 Detection of Shared Aberrant Genetic Regions in Cancer

Genomic abnormalities in the number of DNA copies in a cell have been shown to be
associated with cancer development and progression (Pinkel and Albertson 2005). During
cell replication, various types of errors can occur that either lead to the insertion of an extra
copy or deletion of part of a DNA sequence in the genome. If left unchecked, these errors
can silence important genes or amplify their expression, in either case leading to an
improperly functioning cell. If they involve amplification of proto-oncogenes that regulate
cell division or deletion of tumor suppressor genes that prevent unwanted cell division or
induce programmed cell death, these errors can be contributing factors in the initiation stage
of carcinogenesis. Accumulation of particular combinations of these genetic errors can cause
a group of cells to cross the threshold to cancer, at which point the cells’ increased genetic
instability and high replication rate will lead to even more errors, which can lead to
progression or metastasis. Thus, we may expect that shared genomic regions with common
DNA copy alterations in a particular population of cancer patients may contain genes that
are crucial in characterizing this population, whether it be a group of patients with a
common cancer type, a set of patients who metastasize versus those who do not, or a subset
of patients responding to a particular biological therapy. The detection of these shared
regions of aberration and assessment of differential alterations between groups have the
potential to impact the basic knowledge and treatment of many types of cancers and can play
a role in the discovery and development of molecular-based personalized cancer therapies.

1.2 Array CGH
Comparative genomic hybridization (CGH) methods were developed to survey DNA copy
number variations across a whole genome in a single experiment (Kallioniemi et al. 1992).
With CGH, differentially labeled test (e.g., tumor) and reference (e.g., normal individual)
genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence
ratios along the length of chromosomes provide a cytogenetic representation of the relative
DNA copy number variation. Chromosomal CGH resolution is limited to 10–20 Mb, hence
any aberration smaller than that will not be detected. Array-based comparative genomic
hybridization (aCGH) is a recent modification of CGH that provides greater resolution by
using microarrays of DNA fragments rather than metaphase chromosomes (Pinkel et al.
1998; Snijders et al. 2001). These arrays can be generated with different types of DNA
preparations. One method uses bacterial artificial chromosomes (BACs), each of which
consists of a 100- to 200-kilobase DNA segment. Other arrays are based on complimentary
DNA (cDNA, Pollack et al. 1999, 2002) or oligonucleotide fragments (Lucito et al. 2000).
As in CGH analysis, the resultant map of gains and losses is obtained by calculating
fluorescence ratios measured via image analysis tools. An alternative high resolution
technique to detect copy number variation is accorded by single nucleotide polymorphism
(SNP) genotyping methods (Zhao et al. 2004; Herr et al. 2005). By genotyping large
numbers of DNA sequences, one can potentially use aCGH to determine gains and losses
with high resolution across the entire genome. The broad goal of determining such genomic
patterns of gains and losses can be subsequently used in possible cancer diagnosis and
management. For example, for a group of patients diagnosed with the same pathological
type of cancer, genetic subtyping can predict markedly different responses to
chemotherapies and offer powerful prognostic information.

Like most microarray analyses, the normalization of the intensity ratios (or the
corresponding log-ratios) is conducted before any downstream analysis, in order to adjust
for sources of systematic variation not attributable to biological variation. The most common
normalization techniques are global in nature such as centering the data about the sample
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mean or median for a given hybridization (Fridlyand et al. 2004). We refer the reader to
Khojasteh et al. (2005) for further discussion on normalization methods for aCGH data. For
our analysis we assume that the data have been appropriately normalized in order to adjust
for experimental artifacts.

In an idealized scenario where all of the cells in a tumor sample have the same genomic
alterations and are uncontaminated by cells from surrounding normal tissue, the log2 ratio of
normal probes is log2(2/2) = 0, of single copy losses is log2(1/2) = −1, and of single copy
gains is log2(3/2) = 0.58. Multiple copy gains have values of log2(4/2), log2(5/2), and so on.
Loss of both copies would theoretically correspond to a value of −∞. In this idealized
situation, all copy number alterations could be promptly observed from the data, obviating
the need for statistical techniques. However, in real applications the log2 ratios differ
considerably from these expected values for various reasons. First, aCGH data are
characterized by high noise levels that add random measurement errors to the observations.
Second, a given tumor sample is not completely homogeneous, since there may be
contamination with neighboring normal cells and considerable genomic variability among
the individual tumor cells. This heterogeneity means that we actually measure a composite
copy number estimate across a mixture of cell types, which tend to result in attenuation of
the ratios toward zero.

1.3 Existing approaches
As mentioned before, one of the key goals in aCGH data analysis is to infer regions of gains
and losses in the copy number across the genome map. A host of methods have strived to
fulfill this need with varying degrees of success. Most proposed methods fall into two
categories: calling methods and segmentation methods. Calling methods model the aCGH
profile at a probe/clone level and call the states of each probe gain, loss or neutral. The most
popular of these methods are the hidden Markov models (HMM). Guha et al. (2008)
proposed a Bayesian HMM to account for the dependence between neighboring clones by
specifying the true copy number states as the latent states in the HMM scheme. Shah et al.
(2007) extended the HMMs to detect shared aberrations by modeling the shared profile by a
master sequence of states that generates the samples. Hodgson et al. (2001) proposed a
three-component Gaussian mixture model corresponding to gain, loss, or neutral states,
respectively. Another related approach using HMM is in Fridlyand et al. (2004), which also
shares characteristics of the segmentation approaches described below.

Change point models in the statistical literature are commonly referred to as segmentation
methods seeking to identify contiguous regions of common means, separated by
breakpoints, and to estimate the means in these regions. Sen and Srivastava (1975) proposed
a frequentist solution of detecting a single change point, which was subsequently extended
by Olshen et al. (2004) for aCGH data as the circular binary segmentation (CBS). The CBS
recursively detects pairs of change points to identify chromosomal segments with altered
copy numbers. Other authors proposed penalized maximum likelihood approach, wherein
the likelihood function is maximized for a fixed number of change points, usually with an
added (heuristic) penalty to control for overfitting. Jong et al. (2003) used a population-
based algorithm as minimizer, while Picard et al. (2005) used dynamic programming. Eilers
and de Menezes (2005) applied a penalized quantile smoothing method for modeling the
array-CGH profiles, while Huang et al. (2005) used a penalized least squares criterion.
Tibshirani and Wang (2008) proposed a variation of the lasso penalty called “fused lasso”
where the penalty encouraged flatness of the underlying profile. Bayesian approaches for
change-point models typically involve a joint prior on the configuration of possible change
point(s) and the associated parameters. Carlin et al. (1992) proposed a hierarchical Bayesian
analysis of change point models in the context of a single change point while Inclan (1993)
and Stephens (1994) considered models for multiple change points. Barry and Hartigan
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(1993) discussed alternative formulations of change points in terms of product partition
distributions, which was subsequently tailored for aCGH data by Erdman and Emerson
(2008). Chib (1998) proposed a formulation of the multiple change point model in terms of
latent discrete state variables that indicated the regime from which a particular observation
has been drawn. Hutter (2007) developed an exact Bayesian regression algorithm for
piecewise constant functions using unknown segment number and boundary locations.
Denison et al. (1998) proposed an approach to the variable change point problem in a
different context, using reversible jump techniques, but considered only the single function
case. Our approach generalizes the approach of Denison et al. (1998) to multiple functions
in functional regression framework.

In the aCGH context, all of these segmentation methods provide breakpoint locations and
corresponding means, but do not discern whether the corresponding segments represent a
true aberration. That is, once the change points are identified and associated mean log ratio
levels are estimated, it is not at all clear which segments of common mean represent real
genetic aberrations (i.e., copy number gain or loss) and which are simply due to
experimental variability (Engler et al. 2006). Thus, an additional post model-fitting
procedure is implemented to call the segments as gains or losses and are often based on ad
hoc thresholding criteria, such as the median of the median absolute deviations (Rossi et al.
2005). Other approaches include clustering-based approaches to combine similar segments
(Hupe et al. 2004) and combining segments based on their distributions (Willenbrock and
Fridlyand, 2005). Thus the final inference is highly dependent on the performance of the
segmentation procedure, which is usually based on user-defined parameters. Moreover,
since the subsequent calling procedures are not a part of the natural model building scheme,
the variability in the estimation of the segments is inherently ignored in the subsequent
inference.

All of the methods described above, calling and segmentation, are formulated for single
array CGH profiles and do not explicitly address the problem of detecting shared patterns of
aberration within a common group of patients. Shared copy number aberrations (CNAs)
define patterns that provide a molecular characterization of a common group phenotype,
potentially detecting a disrupted genetic processes. A common strategy for detecting CNAs
involves a two-step approach: first making gain/loss calls on individual arrays/samples using
single array approaches, and then inferring common regions of alteration in which the
frequency of alteration exceeds some specified threshold. (Aguirre et al. 2004; Diskin et al.
2006; Garnis et al. 2006). There are two key drawbacks to this two-stage approach. First,
pre-processing each sequence separately may remove information by smoothing over short
or low frequency signals that characterize the population (Shah et al. 2007), and thus some
shared CNAs may be misdiagnosed as experimental noise. Second, it underutilizes the
information in the data since it fails to borrow strength across samples when determining
regions of copy number change. By modeling the samples together, it is possible to gain
power for detecting shared regions of alteration if one uses a model that effectively reduces
the noise level while reinforcing shared signals across samples. This increase in power may
yield improved sensitivity for detecting shared copy number aberrations, especially changes
of small magnitude that are present for a high proportion of samples in the population, or
changes in the presence of high noise levels.

As an illustration we plot, in Figure 1, aCGH samples from a real lung cancer dataset
analyzed in Section 6. The log2 ratios are plotted against their genomic location from 1–50
Mb in the p-arm on Chromosome 1 for six samples from a subtype of lung cancer. To
exemplify our approach, we focus our attention on two areas of the genome: 2–3 Mb and
38–40 Mb, marked by two parallel vertical dashed grey lines towards the left and right of the
x-axis respectively, that appear to exhibit CNAs (mostly gains). While only four samples
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seem to clearly exhibit a gain in copy number around the 2–3 Mb location - samples 1,4,5
and 6, where the samples are number 1–6 from top to bottom, while only three samples
seem to exhibit a clear gain around the 38–40 Mb location -samples 2,3 and 6. Combined
with this variable frequency of aberrations in samples is the fact that the size of the
aberrations (vertical height) differs from sample to sample. It is our aim to borrow strength
across samples, in a statistically coherent manner, to detect such patterns of shared
aberrations. Figure 9 shows the corresponding plot of posterior probabilities of shared
aberrations (gains and losses) plotted as a function of the genome location, for the entire
chromosome 1. Using our methods, we found genes TNFRSF4, TP73 and E2F2 located at
those particular loci that are known to be altered in lung cancer (Coe et al. 2006). The
regions shown in yellow (at the top of the plot) are those identified via a two-step approach,
which smooths over the low frequency aberrations in those genomic locations and thus fails
to identify genes detected via a joint analysis approach.

In this paper, we propose a new method, BDSAcgh (Bayesian Detection of Shared
Aberrations for aCGH). It is based on a hierarchical Bayesian random segmentation
approach for modeling aCGH data that borrows strength across arrays from a common
population to yield segments of shared copy number changes that characterize the
underlying population. We take a functional data analysis (FDA, Ramsay and Silverman
2005) approach to modeling these data by viewing each individual array CGH profile as a
function, with its domain being the position within the genome. We represent each function
with a sum of piecewise constant basis functions indicating genomic regions sharing a
common copy number state, model averaging over various change point arrangements
suggested by the data in the model fitting. Our method yields mean abberration profiles for
different specified groups that can be formally compared to detect group differences. After
fitting the Bayesian model, we obtain the probabilities that each genomic region is a CNA,
which leads to false discovery rate (FDR)-based calls of CNA. The resulting posterior
probability plots are highly interpretable to a practitioner, because the shared regions of
aberrations are summarized in terms of probabilities rather than segmented means. Further,
our approach will allow us to compare different populations and obtain the FDR-based
inference for calling genomic regions “differentially aberrated” between the two
populations.

The paper is organized as follows. In Section 2 we propose our hierarchical Bayesian model
for multiple sample aCGH data. In Section 3, we discuss estimation and inference. Section 4
focuses on FDR-based determination of shared aberrations. Simulations are described in
Section 5 with a real data example presented in Section 6. We conclude with a discussion in
Section 7. All technical details are collected into an Appendix.

2 Bayesian Random Segmentation Model underlying BDSAcgh
2.1 Probability Model

Consider an array with n probes. Here we model each chromosome separately, although the
chromosomes could also be modeled jointly, if desired. Without loss of generality, assume
that these probes are indexed by j = 1, …, n from the p telomere to the q telomere. Further
assume that we have G groups of patients that may correspond, for example to various
subtypes of cancer or various stages of pathogenses. The observed data for a patient i(= 1,
…, Mg) in group g(= 1, …, G) is the tuple (Ygij, Xgij), where Ygij is the log2 ratio observed at
Xgij, which represents the genomic location of the probe on a chromosome and is naturally
ordered as Xgi1 ≤ Xgi2 … ≤ Xgij. Although not required, for ease of exposition we assume
that the number of probes is the same across all groups and patients. The model we posit on
the log2 ratios is
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(1)

where μg(•) is the overall mean aCGH profile for group g evaluated at genomic location Xij,
αgi(•) is the ith subject’s deviation from the mean profile evaluated at Xgij, and the error
process εgij(•) (possibly location dependent) accounts for the measurement error. Model (1)
can be viewed as a functional mixed effects model (Guo 2002;Morris and Carroll 2006) for
which the individual array CGH profiles are considered to be functional responses of log2
ratio intensities observed over a fine grid of genomic locations. The population level profiles
μg(•) are the functional fixed effects characterizing the mean log2 ratio intensities in the
population, and the subject-specific curves αgi(•) are the random effect functions,
representing the patterns of subject-to-subject variation.

Before fitting this model, we need to consider representations for the group mean, random
effect, and residual error functions. Here, we will use a basis function approach (Ramsay
and Silverman 2005), representing each of the functions as a sum of basis coefficients and
basis functions. For ease of exposition, we drop the subscript g from our ensuing discussion
and concentrate on a single group analysis. We model (1) via low dimensional basis function
projection as (ignoring group ordering g)

(2)

where the following definitions and model assumptions are made. Bk(•), k = 1,…, K are the
basis functions used to represent both the group mean function μg(•) and random effect
functions αgi(•) in (1), with corresponding basis coefficients βk and bik, respectively. The
measurement errors εij are assumed to be Normal (0, ) and uncorrelated with βk and bik.
Thus, we assume that the error variance  varies from patient to patient and accounts for
the between patient variability. Different kinds of error structures, such as auto-regressive
(AR) errors or robust estimation via t-distributed errors, can easily be accommodated in our
model, but we do not pursue these structures here. We assume that the random effects
coefficients, bi = (bi1, …, biK)T, are normally distributed with mean 0 and covariance

. This admits the following covariance structure on the within-array functional

observations: , where Yi = (Yi1, …, Yin)T and Bi(Xi) is the
n × K basis matrix corresponding to subject i.

In the existing literature, general classes of basis functions like splines (Guo 2002,Ruppert et
al. 2003) or wavelets (Morris and Carroll 2006) have been used with functional mixed
models, but here we take a different approach. Motivated by the underlying biology of the
data, we use piecewise constant basis functions with endpoints stochastically determined by
the data. Note that use of Haar wavelets (Hsu et al. 2005) induces piecewise constant basis
functions, but the corresponding change points are constrained to occur at specific locations
that involve splitting the genomic domain by factors of two. Our choice is more flexible,
allowing change points at arbitrary locations as suggested by the data. Suppose the ordered
genome locations X ∈  are bounded by lower and upper elements , . Suppose  is
partitioned into K disjoint sets, such that  and Δi∩Δi′ = ∅ for i ≠ i′. The partition
is determined by (K − 1) ordered change points c⃗ = {c1, …, cK−1}, where c1 < c2 <, …, <
cK−1, such that Δ1 = [ , c1], Δ2 = (c1, c2],…, ΔK = (cK−1, ]. The basis function Bk(Xij) is
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then defined to be 1 if Xij ∈ Δk and 0 otherwise. This is a “zero order basis” that strongly
smooths or borrows strength across all observations within a common segment.

Since our goal in this analysis is to detect common regions of aberrations across samples
characterizing the population, we use the same set of basis functions, and thus the same
change points, in both the population average profile and the array-specific profiles. This
engenders computational feasibility for these high-dimensional data and effectively allows
the model to borrow strength across samples in determining the shared regions. As we will
discuss in Section 2.2, we will start with a large number of potential change points and allow
the data to determine which are included in the modeling. Although the arrays from the
same group share the same segmentation, the segmentation differs by group in order to
account for the heterogeneity in the aberrations over different types (and/or stages) of
cancer. We will also assess which regions of the genomes are differentially aberrated
between groups by comparing their group-level mean alterations.

2.2 Prior Specification
2.2.1 Distribution of the Population Profile—The previous section details a
segmentation model for a sample of aCGH profiles. We introduce the calling of aberrations
in the population or “master” profile via a hierarchical formulation. Since the aCGH profiles
can be thought of as a mixture of three generic copy number states: copy number deletion
(−), copy number neutral (0), and copy number amplification (+), we specify a three
component mixture distribution for βk, the parameter describing the population copy number
state for segment k. To this end, we define the following latent indicators,

 if segment k belongs to the copy number loss state

 if segment k belongs to the copy number neutral state

 if segment k belongs to the copy number gain state

Thus, conditional on the the binary mixture indicators { }, our three-component
finite-mixture distribution for βk is

(3)

where f•(•) are the probability density functions with parameters θ• that are assumed to be
mixture specific. In general, one can assume any distribution to characterize the mixtures,
depending on the application.

For modeling aCGH data, we found it useful to use the following distributions to
characterize the mixtures: f−(•) = (−κ−, −ε−), f0(•) = N(0, δ2), and f+(•) = (ε+, κ+), where

 is the uniform distribution and N is the normal distribution. The parameters κ’s and ε’s
provide the upper and lower limits of the uniform components of the mixture, respectively.
We allow asymmetric distributions for deletions and amplifications since deletions typically
are less skewed than amplifications, which have a longer right tail. We set κ− and κ+ to large
values encompassing the expected maximum range of the log ratios. The lower limits ε− and
ε+ are set to small constants in order to determine the boundaries, such that the mean of
segments, βk are classified as a gain or a loss. Following Guha et al. (2008), who suggest
values of (ε−, ε+) between [0.05, 0.15], we set the values to be 0.1 for all of the analyses
presented here.
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The variance of the normal distribution in the mixture, δ2, controls the spread of normal
distribution and can either be fixed or estimated. Letting δ2 → 0 leads to a point mass at 0
that does not overlap the adjoining mixtures. In this paper, we estimate δ2 by specifying an
inverse-gamma prior with a (small) mean set to E(δ2) = max(ε−, ε+). This normal/uniform
mixture, depending on the values of the κ’s and δ2, can lead to lighter or heavier tails than
the normal distribution. Since in this application we are interested in heavier tails than
normal, we impose the constraint that (κ−, κ+) > δ2.

The mixture parameters  (for each segment k) follow an independent
multinomial distribution as λk ~ Multi(1, π−, π0, π+), and the associated vector of
probabilities π = (π−, π0, π+) follows a Dirichlet distribution as Dir(π10, π20, π30). A plot of
this mixture prior is shown in Figure 2, where the individual components are (−4, −0.1) in
red, N(0, 0.10) in grey, and (0.1, 4) in green. The convolved prior using equal weights is
plotted as a solid black line.

Such normal/uniform mixtures have been employed in clustering (see Fraley and Raftery,
2002) and by Parmigiani et al. (2002) for gene expression data. In essence, the mixture
distribution on the population level coefficients βk implies that the master sequence of array
CGH profiles arise from a discrete mixtures of gains, losses, or neutral states. Essentially the
calls, as an aberration or not, are done at the population level rather than at the sample level
because our interest lies in the detection of shared regions of aberration across samples.

2.2.2 Prior Specification of Change Point Configurations—As we alluded to in
Section 1, one of the key goals of aCGH analysis is to find the number and location of
change points, and thus the shared regions of common copy number aberrations. With n
probes per chromosome, the possible number of change points is n − 1, which leads to 2(n−1)

possible configurations for the change points. Modern aCGH arrays typically have on the
order of thousands of probes on a given chromosome, and an exhaustive search for the
optimal configuration is obviously computationally challenging. There are basically two
approaches to this problem. One approach start with a large (fixed) number of segments (K)
and controls over-fitting via an explicit penalty added to the likelihood. The optimal
configuration of change points is then determined using a posterior empirical criterion. In
practice often a heuristic penalty is used (Hutter, 2007) such as such as L1 penalty (Eilers et
al., 2005), least squares penalty (Huang et al., 2005), “fused” lasso penalty (Tibshirani and
Wang, 2008) and curvature of the log-likelihood (Picard et al., 2005). The penalty-based
approaches can be biased towards too simple (Weakliem, 1999) or too complex (Picard,
2005) models. Alternatively, a more exact approach is to treat the number and locations of
the change points/knots as random variables and conduct a MCMC-based stochastic search
over the posterior space to discover configurations with high posterior probabilities. Here,
we take this latter approach.

Depending on the resolution of the array used and other information, we may have a prior
expectation of the distribution of the number of segments, which can be used to set the
hyperpa-rameters of the prior on K such as Poisson(K|γ), where γ is the prior expectation of
the number of segments with density γK exp(−γ)/K!. This prior was originally adopted by
Green (1995) on the number of model components in a different context. Another option is
the negative binomial distribution which is a Gamma mixture of Poisson and is more
flexible than the Poisson distribution, which has only one parameter that controls both the
mean and the variance. However, in the absence of such information we can set a flat prior
on K such as discrete uniform prior U(0,…, Kmax), where Kmax is an upper limit on the
number of change points expected in the data. We found that in our posterior inference is
insensitive to the choice of the prior on K, (see supplementary Figure 1) and use this latter
choice as a default specification in all of our analyses.
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Therefore the joint prior on (c⃗, K) is given by

for K = 0, …, Kmax, where K = dim(c̃) is the number of elements in c⃗ and T = | |, is the size
of the candidate set of change point locations . The first term in the prior ensures that each
configuration of change points of dimension K has equal weight. Thus we assume that given
K, any set of change points is found by sampling K items from a candidate set  without
replacement. This in turn ensures that the elements of c⃗ are distinct and Kmax ≤ T. The
second term assumes that each possible dimension K is equally likely. Although in theory
one can set the number of candidate change points equal to the number of probes on the
chromosome, this may not be computationally feasible given the resolution of current aCGH
arrays. Hence, from a practical standpoint we need to restrict the set of candidate change
points while maintaining flexibility in estimating the segmented profiles. In our
implementation, we obtain a candidate set of change points by first applying a segmentation
method to each individual profile i to obtain a set of individual level segments , and then
taking the union of these individual segments to obtain our candidate change point set  =
∪i . In the individual segmentations, we recommend choosing the tuning parameters
conservatively, i.e., erring on the side of over-segmenting rather than under-segmenting.
Further details about the implementation procedure can be found in the Supplementary
Materials.

2.2.3 Priors on Variance Components—One of the key issues from both practical and
methodological points of view is the modeling of the random effect variance Σb which is of
dimension K, and thus involves estimation of K(K + 1)/2 parameters if left unstructured. We

assume a diagonal structure, . While assuming independence
between segments, this structure accounts for the correlation between markers within the
same segment and allows separate subject-to-subject or array-to-array variances for different
segments. To aid conjugacy, we assume independent diffuse inverse-gamma priors for the

individual elements of Σb and the error variances  with the
hyperparameters set to (1,1).

3 Posterior Computation via MCMC
We will fit this fully specified Bayesian model using MCMC techniques (Gilks et al. 1996).
Since we are allowing the number of change points to be random, the dimension of our
parameter space varies in each MCMC iteration, therefore we use the reversible jump
MCMC (RJMCMC; Green 1995). Our RJMCMC sampler involves 3 kinds of moves:
BIRTH, in which we add a new segment; DEATH, in which we delete a segment location;
and MOVE, in which we relocate a segment location, with corresponding prior probabilities
(pB, pD, pM) where pM = 1 − (pB + pD). Our RJMCMC algorithm proceeds by iterating
among the following steps:

a. Initially, select K change points and location parameters c⃗K.

b. Generate a uniform(0, 1) random number U.

i. If U < pB, perform the BIRTH step;

ii. If pB < U < pB + pD, perform the DEATH step;
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iii. Otherwise perform the MOVE step.

c.
Update other model parameters, , from their full conditionals

Because of the conjugacy in our model, it is possible to integrate out the random effect
parameters when updating the segment parameters in the reversible step of the algorithm,
resulting in fast calculations and a MCMC sampler with good mixing properties. The full
MCMC scheme and the full conditionals are included in Supplementary Material. Usual
convergence diagnostic methods, such as Gelman and Rubin (1992) do not apply here since
we are moving within a (potentially) infinite model space and the parameters are not
common to all models. Instead we assess MCMC convergence via trace plots of K and the
log likelihoods, which have a coherent interpretation throughout the model space (Brooks
and Giudici, 2000). Detailed information on implementation and convergence assessment of
our MCMC algorithm can be accessed via the Supplementary Material.

4 FDR-Based Determination of Shared Aberrations
The MCMC samples explore the distribution of possible change point configurations
suggested by the data, with each configuration leading to a different segmentation of the
population level aCGH profile. Some change points that are strongly supported by the data
may appear in most of the MCMC samples, while others with less evidence may appear less
often. There are different ways to summarize this information in the samples. One could
choose the most likely change point configuration and conduct conditional inference on this
particular segmentation. The benefit of this approach would be the yielding of a single set of
defined segments, but the drawback is that the most likely configuration might still only
appear in a very small proportion of MCMC samples. Alternatively, one could use all of the
MCMC samples and, using Bayesian Model Averaging (BMA) (Hoeting et al. 1999) mix
the inference over the various configurations visited by the sampler. This approach better
accounts for the segmentation uncertainty in the data, leads to estimators of the mean
population aCGH profile μg(•) with the smallest mean square error, and should lead to better
predictive performance if class prediction is of interest (Raftery et al. 1997). We will use
this Bayesian model averaging approach.

To summarize the overall population level mean aCGH profiles μ̂g(x), we will compute the
posterior mean of each μg(x) across all samples and plot them along with their 95%
pointwise credible intervals. Recall that by our prior structure (3), for each iteration of the
MCMC a certain number of markers x ∈ Δk, for which  are considered copy number
neutral and will have μg(x) be close to zero. We can define a marker-based indicator of gain,
loss, or neutral state λ*(x) = 1, −1, or 0 if x ∈ Δk and , or , respectively.
From these, we will compute p−(x) = P(λ*(x) < 0|Y), p+(x) = P(λ*(x) > 0|Y), and p0(x) =
P(λ*(x) = 0|Y) = 1 − p−(x) − p+(x), to summarize the probability of the population average
copy number state being a loss, a gain or neutral, respectively, for the marker at position x.
These can be displayed as probability plots as a function of genomic location x, with the
vertical axis plotted on a logit scale to make the endpoints of the [0, 1] interval show more
clearly (see Figure 7 where we plot p+(x) and p−(x) in green and red respectively).

We will then consider any marker at genomic location x with p0(x) < φ for some threshold φ
to contain a true shared alteration in the population of interest. Let  = {x: p0(x) < φ}
represent the set of all genomic locations considered to be shared aberrations. Note that p0(x)
summarizes the posterior probability that marker x is, in fact not a shared aberration, and
thus is a Bayesian q-value, or estimate of the local FDR (Storey 2003; Newton et al. 2004)
and is appropriate for correlated data as shown by Morris et al. (2008a) and Ji et al. (2007).
The significance threshold φ can be determined based on classical Bayesian utility
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considerations, such as in Müller et al. (2004), based on the elicited relative costs of false
positive and false negative errors, or can be set to control the average Bayesian FDR. For
example, suppose we are interested in finding the value φα that controls the overall average
FDR at some level α, meaning that we expect only 100α% of the markers declared as shared
aberrations are in fact false positive. For all markers xj, j = 1, …, n, we first sort pj = p0(xj) in
ascending order to yield p(j), j = 1, …, n. Then φα = p(ξ), where

. The set of regions  then can be claimed to be shared
aberrations based on an average Bayesian FDR of α. These regions can be marked on the
probability plot in a different color to set them apart from the neutral regions.

The posterior samples can also be used to perform FDR-based inference to determine
differential aberrations between different populations by using the FDR-based pointwise
functional inference approach described in Morris et al. (2008a). Suppose we are interested
in detecting regions of the genome at least 15% different between two groups in terms of
their average genomic alteration. After running separate Bayesian hierarchical segmentation
models for each group, we take the posterior samples for the mean aCGH profiles for the
two groups, say μ1(x) and μ2(x), respectively, and at each position x containing a marker to
compute the posterior probabilities of at least a 1.15-fold difference between the means,
which is p12(x) = P(|μ1(x) − μ2(x)| > log2(δ)) for δ = 1.15. These quantities measure the
probability that the two groups have mean aCGH profiles that differ by at least 15% at
position x in the genome. The quantities 1 − p12(x) are then q-values for assessing
differential aberrations between the two populations because they measure the probability of
a false positive if position x is called a “discovery” defined as a region with at least a 1.15-
fold difference in the population aCGH profiles. A threshold φ12,α on the posterior
probabilities can be determined so that markers with 1 − p12(x) < φ12,α are flagged while
controlling the expected Bayesian FDR at level α, as described above. Probability plots can
be generated for each group comparison to highlight the probability of each genomic region
being differentially aberrated (see Figure 8).

5 Simulations
We performed simulation studies to evaluate the operating characteristics of our method
under various scenarios and to compare with other existing approaches in the literature. We
generated a series of array cGH data sets with prespecified known regions of aberration of
various sizes and prevalences and white noise added. We generated 20 array CGH profiles
consisting of 2000 markers, with 10 regions of aberration. These 10 regions included one
region of loss and one region of gain for each of five prevalence levels ω ∈ {0.2, 0.4, 0.6,
0.8, 1.0} representing the proportion of samples in the population containing this aberration.
For example, an aberration with ω = 0.2 would appear in 20% of the samples, while an
aberration with ω = 1.0 would appear in all of samples. The widths of shared aberrations
were generated from a gamma distribution with parameters (a, b) and mean a/b. We set (a,
b) = (2.5, 0.5) such that the mean of the distribution was 50 and the 99% interval
corresponded to (5, 168) rounded to the nearest integer. Thus the range of shared aberrations
could vary substantially, accommodating both large and short segments. The aberrations
were centered at equispaced locations along the genome.

We then added white noise to these noiseless array CGH profiles. The estimated value of the
noise variance, τ, in the real aCGH data introduced in the next section was around 0.2. To
investigate scenarios with higher or lower noise, we varied the noise variance within the
range τ = {0.1, 0.2, 0.3}, corresponding to the low, medium, and high levels of noise in the
log2 ratios. The effect sizes for individual gains and losses were drawn uniformly from [0.1,
0.25]. Considering these effect size distributions, this yielded signal to noise ratios (SNR) in
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the ranges of [1, 2.5] for the low noise scenarios, [0.5, 1.25] for the medium noise scenarios
and [0.33, 0.83] for the high noise scenarios. Since our effect sizes were not the same across
the genome, our SNR varied across individual profiles as is typical in array CGH data.
Figure 3 shows three aCGH profiles for each of the noise scenarios. One can see that the
signal is increasingly blurred with increasing noise variance, and the aberrations in the test
cases look realistic and non-trivial to detect. We generated 10 datasets for each value of τ,
leaving us with a total of 30 datasets with 20 profiles each.

We fit the BDSAcgh model with default priors and parameterizations as described in
Section 2.2 except that we set  ∀i i.e. common variance across all arrays. We
compared our method to two approaches for estimation of copy number for multiple
samples, the cghMCR algorithm of Aguirre et al. (2004) and the hierarchical hidden markov
model (H-HMM) of Shah et al. (2007).

The cghMCR algorithm locates the minimum common regions (MCRs), or regions of a
chromosome showing common gains/losses across array CGH profiles derived from
different samples. In this algorithm, the profiles are first segmented individually; highly
altered segments are then compared across samples to identify positive or negative valued
segments. MCRs are then defined as contiguous spans having at least a recurrence rate
defined by a parameter (recurrence) across samples that is calculated by counting the
occurrence of highly altered segments. Thus, this is an example of a two-step approach
where segmentation is done at the sample level and independently of the calling. For our
analysis we used the R package - cghMCR available from the Bioconductor project at
http://www.bioconductor.org/packages/2.3/bioc/html/cghMCR.html. The segmentation for
cghMCR was done via the CBS algorithm of Olshen et al. (2004) for the individual samples
with the tuning parameter α = 0.01. The cghMCR is controlled by 4 user defined parameters:
(1) upper and lower threshold values of percentile above and below for which the segments
are identified as altered, (2) the number of base pairs that separate two adjacent segments
(gap parameter), and (3) rate of recurrence for a gain or loss that is observed across samples.
We fix the gap parameter and rate of occurrence and vary the threshold in order to compute
the sensitivities and specificities. We set the gap parameter to 50 which was the mean length
of the altered segments we considered in our simulation. We set the rate of recurrence to
50%, which corresponds to a central location in our range of aberration prevalences, ω.

The H-HMM model extends the single sample HMM to multiple samples to infer shared
aberrations, by modeling the shared profile by a master sequence of states that generates the
samples. The H-HMM, in spirit, is closer to BDSAcgh in terms of borrowing strength across
samples to infer shared regions of aberrations, but is based on different probability model -
the hidden markov model. The H-HMM model assumes that the samples are conditionally
independent given an underlying hidden state and follows a Gaussian observation model.
The hidden states in the H-HMM are loss, gain, neutral and undefined and the probability of
being at particular state is estimated by pooling information across samples. The model
parameters are estimated using an MCMC algorithm. For H-HMM model, we used the
MATLAB implementation of the method provided by the authors at
http://people.cs.ubc.ca/~sshah/acgh/index.html. The exact implementation details of the H-
HMM method is included in the Supplementary Materials.

All the three methods, cghMCR, H-HMM and BDSAcgh, flag regions of the genome as
shared aberrations based on the chosen thresholds - upper and lower thresholds for cghMCR
and posterior posterior probabilities, for the latter methods. Varying these parameters across
their ranges (0.01 to 0.50 for cghMCR and 0 to 1 for H-HMM and BDSAcgh), we
constructed receiver operating characteristic (ROC) curves that summarize the ability of
each method to correctly detect the true shared aberrations in the simulated data sets. At
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each threshold parameter value, we computed the sensitivity (true positive rate) and 1-
specificity (false positive rate) of the shared aberration detection by computing the
proportion of truly aberrated probes that were detected by the method and the proportion of
probes that were not aberrated but were mistakenly deemed so by the method. Figure 4
shows the overall averaged ROC curves across all simulation runs and values of prevalences
(ω) for the three methods cghMCR (in blue), H-HMM (in red) and BDSAcgh (in black) for
the three noise levels (top to bottom). As a measure of performance, we calculated the area
under the curve (AUC, Fawcett, 2006) for each ROC curve and is shown in Table 1, broken
down for the three noise levels. The third column displays the mean overall AUCs along
with the standard errors in parentheses.

The BDSAcgh consistently outperformed cghMCR under all noise scenarios with the
difference increasing with the noise level in the data. The p-value for a two-sided Student’s
t-test for the difference between the AUC for the two methods was less than 10−6 for all
noise levels. H-HMM performed marginally better than BDSAcgh in the low noise scenario,
but BDSAcgh performed consistently better in the medium and high noise scenarios. For τ =
0.3 we noticed that H-HMM performed worse than cghMCR in terms of AUC. To focus on
the region of the ROC curve of most interest, we also compared the partial area under the
AUC curve, truncated at the 1-specificity value of 0.20 and normalized to be on a [0,1] scale
(AUC20), which is shown in the fourth column of Table 1. The relative results of the three
methods are similar to the overall AUC results, with the BDSAcgh outperforming the
cghMCR for all noise scenarios and H-HMM in medium and high noise scenarios.

In order to explore the performance of the methods as a function of the prevalence of
aberration, we plotted the ROC curves for varying values of ω, as shown in Figure 5. The
columns correspond to the varying noise levels in the data with leftmost column for τ = 0.1,
the middle column for τ = 0.2 and the rightmost column for τ = 0.3. The 5 rows from top to
bottom correspond to increasing values of ω = (0.1, 0.2, 0.3, 0.4, 0.5). The corresponding
mean AUC and AUC20 for each level of the prevalence in shown in the upper and lower
panels of Figure 6, respectively. The red bars are for the BDSAcgh, orange for cghMCR,
and yellow for H-HMM, with the whiskers indicating the (±1) standard errors. Several
interesting features can be deduced from this figure. First, we find that the BDSAcgh
outperforms cghMCR, most strongly for aberrations with low/medium prevalences of (0.4,
0.6) and in low SNR scenarios (τ = 0.2, 0.3). For higher prevalences the results are very
similar for the the two methods, as expected, since in those circumstances most shared
aberrations are not too difficult to detect. Further, the BDSAcgh is more robust at low SNR
scenarios than the cghMCR. In the lowest prevalence group (ω = 0.2), both methods
performed poorly for low SNR (τ = 0.2, 0.3); however the BDSAcgh performed quite well
and remarkably better than the cghMCR when the SNR was high (τ = 0.1). For the high
SNR scenario H-HMM performed remarkably well for all prevalences, while its
performance deteriorated under low SNR(τ = 0.2, 0.3), in which case its performance
increased moderately with increasing prevalence. In terms of AUC20, the relative
performance of the methods was same as that of AUC, but we see a much better
performance by cghMCR as compared to H-HMM especially at the low SNR scenario (τ =
0.3).

Table 2 contains the sensitivities of the three methods by prevalence and noise level for
various cutoff values of the false positive rate (1-specificity=0.05, 0.10, 0.20). Again, the
BDSAcgh performed much better than cghMCR for all values of τ and H-HMM for τ = 0.2,
0.3. Again, the H-HMM performed remarkably well for τ = 0.1 but the performance
degraded with increasing τ. For higher prevalences, the BDSAcgh was competitive to the
cghMCR for τ = 0.1, 0.2 and performed much better at the high noise levels τ = 0.3.
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We also assessed the performance of the cghMCR algorithm on the tuning parameters: rate
of recurrence and α (the parameter that controls the number of segments in CBS - higher α
more number of segments). The varied the rate of recurrence across 5 levels
(0.2,0.4,0.5,0.8,1) and α across 5 levels as (0.01,0.05,0.2,0.5,0.9). The corresponding AUC
are shown in Table 3. The performance of the cghMCR algorithm is somewhat robust to
specification of α but drastically changes with recurrence rate, especially for higher values
(0.8,1). Thus, the cghMCR algorithm is not robust to mis-specification of recurrence rate,
while in contrast, our proposed method does not require such arbitrary guesswork.

In conclusion, our simulation studies suggest that our method outperforms the cghMCR, a
two-stage approach for detecting shared CNAs, yielding larger areas under the ROC curves
for all the noise levels studied here, with the greatest differences seen in higher noise
settings. Separated out by prevalence, we see that the BDSAcgh method has dramatically
greater sensitivity than the cghMCR in lower prevalence settings. The increased sensitivity
of the BDSAcgh likely comes from the fact that it jointly models all arrays together and
borrows strength between arrays in detecting the shared aberrations, while cghMCR
involves segmenting the individual arrays separately and then comparing the segments
across samples. Further, since our method is is based on a unified hierarchical model,
appropriately accounts for the variability of change point configuration and segmentation as
well as array-to-array variability in our inference. Thus, the probabilities summarizing our
level of evidence of aberration are based upon all of these various sources of variability,
which is another possible explanation for its increased accuracy in calling the truly aberrated
regions as compared to H-HMM which only models the measurement error and does not
account for sample to sample variability.

To assess the calibration of the Bayesian FDR threshold we use to determine significant
CNAs, for each simulated data set we computed the threshold corresponding to a nominal
FDR=0.10 and then assessed the true FDR of the regions flagged according to this rule. We
found that, across the 10 data sets, the median true FDR was 0.0993, with an interquartile
range of [0.0789, 0.1481], suggesting that the Bayesian FDR estimates were well calibrated.

6 Data analysis
We applied the BDSAcgh to a lung cancer data set originally published in Coe et al. (2006)
and Garnis et al. (2006) which is available at http://sigma.bccrc.ca/. The data consists of
array CGH samples from 39 well-studied lung cancer cell lines. The samples are subdivided
into four subgroups of small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC): NSCLC adenocarcinoma (NA), NSCLC squamous cell carcinoma (NS), SCLC
classical (SC), and SCLC variant (SV). Eighteen samples are NA, seven are NS, nine are
SC, and five are SV. This data has been studied in depth and shared patterns have been
further validated biological experiments across groups (Coe et al. 2006; Garnis et al. 2006).
The prior and hyper-prior settings we use to analyze these data are the same as in Section 3.
We ran 10,000 MCMC samples after a burn-in of 5,000 samples, at which point our chains
had converged reasonably. We fit each of the groups separately using our proposed method
and compared our results to those reported in Coe et al. (2006). We analyzed the aCGH
profiles from chromosome 1 and 9 to illustrate our method.

Figure 7 shows the posterior probabilities for chromosome 9 of shared aberrations as a
function of the genome position, p+(x) and p−(x) for gain (green) and loss (red) respectively,
for the population level profile for the four phenotypic groups (NA, NS, SC, SV). The
horizontal blue dashed line is the threshold on the posterior probabilities 1 − φ0.10 that
controls the expected Bayesian FDR at 0.10, as described in Section 4, which were φ0.10 =
{0.3752, 0.3613, 0.3353, 0.2974} for the respective phenotypic groups. Any probes with 1 −
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p0(x) > 1 − φ0.10 were then flagged as significant aberrations within their group. The probes
that exhibit a gain are shown in green, the probes that exhibit a losses are in red with the
non-significant probes are in grey. Note that the patterns of shared aberrations were quite
different across different cancer subtypes, with the loss of copy number mostly in groups
NA, NS, and SV and copy number gains in group SC. We find that for groups NA and SV
there was a loss of copy number in a significant portion of chromosome 9. This fact was also
illustrated in the study of Coe et al. (2006) and Garnis et al. (2006), who used this
chromosome as an example.

To follow up on these results, we constructed a list of the genes at genomic locations
exhibiting a shared aberration using theMapViewer tool from the National Center for
Biotechnology Information (NCBI) website
(http://www.ncbi.nlm.nih.gov/projects/mapview), and explored their known relationships to
cancer or lung cancer using the Online Mendelian Inheritance in Man (OMIM) database and
PubMed database on the NCBI website. Table 3 summarizes the total number of genes with
losses (gains) in each phenotype group with known links to lung cancer (LR), cancer in
general (CR), or with a function that is either unknown or unrelated to cancer (NR/U). Table
4 lists the genes we found to be directly related to lung cancer for each of the cancer
phenotypes. We found a total of 34 genes within the 4 phenotype groups. Shah et al. (2007)
identified only 2 genes related to lung cancer in chromosome 9 as having CNA, namely CA9
(identified as gain) and CDKN2A (indentified as loss). Here, gene CA9 was identified as
belonging to a region of gain only for cancer type I, and gene CDKN2A was identified as
belonging to a region of loss for cancer types NA, NS, and SV.

In order to further investigate the differences between the four lung cancer subtypes, we
plotted the contrasts between the four groups in Figure 8. The left panel of the figure plots
the difference between the posterior mean population mean curves i.e., βi(x) − βj(x) for
groups (i, j) as a function of the genomic location x, along with the 95% (pointwise) credible
intervals. We are interested in detecting probes whose mean copy number profiles differ
between groups by more than 15%, which we consider meaningful, from a practical
standpoint. The green dashed lines indicate 15%, or 1.15-fold differences, between the
groups. The right panel contains the pointwise posterior probabilities of at least a 1.15-fold
difference between the phenotypic groups, with red and green marking the probes identified
as differentially aberrated (exceeding a threshold 1 − φ0.10 to control the Bayesian FDR at
0.10, the blue dashed line). We find that the group SC is the most different from the other
phenotypic groups, because a large number of probes are differentially aberrated. This is not
surprising because most areas in chromosome 9 of group SC exhibit a gain in copy number
while the other groups had mostly losses of copy number. These results suggest a strongly
different gene copy number profile for classical small cell lung cancer and its variants and
the non-small cell lung cancers.

To qualitatively compare the relative performance of our method with the performance of
the cghMCR, we investigated the aCGH profiles from chromosome 1 for the SC group. The
posterior probability plot of the shared aberration for chromosome 1 for the SC group,
presented in Figure 9, reveals a number of regions of high posterior probability of gains at
the genomic locations corresponding to the following genes: TNFRSF4, TP73, TNFRSF9,
E2F2, FGR, DMAP1, RAB13. This agrees with the findings by Shah et al. (2007), who also
found that the expression level of these genes were known to be altered in lung cancer. We
also ran the cghMCR method on this data using the default specifications (Aguirre et al.
2004); the aberration regions obtained are plotted in yellow at the top of each panel of
Figure 9. For this case study, the cghMCR determined all the aberrated regions as gains with
no regions being determined as losses. The cghMCR failed to detect the small frequency
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aberrations near the p-arm of chromosome 1 (0–40 Mb), thus failing to detect most of the
genes at that location that were determined using our method.

7 Discussion and Conclusions
We propose a novel method, the BDSAcgh, based on a Bayesian segmentation model for
detecting shared aberrations in aCGH data. The model moves beyond the classical approach
of segmenting individual arrays by introducing a functional mixed effects model to borrow
strength between samples, to infer shared regions of aberration. Our method yields mean
aberration profiles for different specified groups that can be individually analyzed using
FDR-based methods to detect CNAs characterizing the population; the specified groups can
be formally compared to each other to detect group differences while controlling the FDR.
The results can be presented using posterior probability plots that are highly interpretable to
a practitioner because the shared regions of aberration or group differences are summarized
in terms of probababilies rather than segmented means.

Our simulation studies suggest that our method outperforms the cghMCR, a two-stage
approach for detecting shared CNAs, yielding larger areas under the ROC curves for all the
noise levels studied here, with the greatest differences seen in higher noise settings.
Separated out by prevalence, or percentage of individuals in the population with the
aberration, we see that the BD-SAcgh method has dramatically greater sensitivity than the
cghMCR in lower prevalence settings. This is important, because the genetic heterogeneity
of cancer suggests considerable variability, even within a well-defined population, and
because there may be alterations with moderate to low abundance that could still be said to
characterize the population.

The increased sensitivity of the BDSAcgh likely comes from the fact that it jointly models
all arrays together and borrows strength between arrays in detecting the shared aberrations,
while the commonly-used two-step approaches like the cghMCR involve segmenting the
individual arrays separately and then comparing the segments across samples. BDSAcgh
estimates the underlying mean aCGH profiles for the population using a hierarchical model,
which automatically reinforces any signals shared across samples while reducing the noise
levels in the data, thus providing greater power to detect shared aberrations. The principle of
gaining increased power for feature detection in functional data by borrowing strength
across multiple functions has been shown in other settings, such as mass spectrometry
(Morris, et al. 2005) and 2d gel proteomics (Morris, et al. 2008b); the same principles
transfer to this setting.

Also, the BDSAcgh method, based on a unified hierarchical model, appropriately accounts
for the variability of change point configuration and segmentation as well as array-to-array
variability in our inference. Thus, the probabilities summarizing our level of evidence of
aberration are based upon all of these various sources of variability, which is another
possible explanation for its increased accuracy in calling the truly aberrated regions.

Our underlying prior structure partitions the mean profile into regions of gain, loss, and no
change, automatically yielding a straightforward and intuitive measure from which we can
infer which genomic regions are CNAs in the population while controlling the FDR. Further,
the posterior samples from the Bayesian method can be used to compare different
populations to assess which genomic regions are differentially aberrated between the
populations.

Since our primary goal is to detect common regions of aberrations across multiple samples
the number and locations of the change points are assumed to be identical across samples.
This further engenders computational feasibility for such high-dimensioanal aCGH data and
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allows borrowing strength across samples. Given our biological goal, we surmise that this
formulation is sufficient based on our simulations. Our method can be easily extended to the
case where different samples have different number and location of changepoints but this
will lead to substantial added computational burden since effectively, we will be estimating
N + 1 sets of changepoints hence a further N + 1 RJ steps in our MCMC algorithm, where N
is the number of samples. This scenario would be especially useful if the goal is to cluster
samples based on their aCGH profiles and we leave this task for future consideration.

Some aspects of our model could benefit from further development. We assume a Gaussian
distribution for our random effects, which might be suspect, especially in the presence of
outliers. Robust specifications of distribution on the random effect via parametric
distributions, such as a t-distribution or scale mixture of normals, might be a viable
alternative. Another attractive approach would be to specify a completely nonparametric
distribution on the random effects and/or the overall mean levels Dirichlet process priors.
Another advantage of our hierarchical Bayesian model is that it can easily be embedded into
a larger modeling scheme involving other types of data. For example, one useful and natural
extension of our Bayesian model is to jointly model gene expression data, copy number
aberrations, and their relationships. These models can be used to integrate data across
various sources to draw a systems-based biological inference.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Lung cancer data: plot of array CGH profiles from 6 samples from the lung cancer data set.
On the vertical axis are plotted the log2 ratios against their genomic position in Mb on the
horizontal axis for Chromosome 1. The horizontal dashed line in red indicate zero log2 ratio
level. The parallel vertical dashed bars indicate common regions of shared aberrations that
are of interest.
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Figure 2.
Prior distribution: plot of the three component mixture prior on the population level
coefficients. The loss component is (−4, −0.1) in red, the neutral component is N(0, 0.10)
in grey and the gain component is (0.1, 4) in green. The convolved prior using equal
weights is plotted as a solid black line.
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Figure 3.
Simulation study: Array CGH profiles for (a) τ = 0.1 low noise, (b) τ = 0.2 medium noise,
and (c) τ = 0.3 high noise. The probes in green are gains and the probes in red are losses.
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Figure 4.
Simulation study: Overall ROC curves across all values of prevalences (ω) for the three
methods cghMCR (in blue), H-HMM (in red) and BDSAcgh (in black). The vertical axis is
the sensitivity (true positive rate) and the horizontal axis is 1-specificity (false positive rate).
The top panel is for τ = 0.1, the middle panel for τ = 0.2 and the bottom panel for τ = 0.3.
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Figure 5.
Simulation study: ROC curves for the three methods cghMCR (in blue), H-HMM (in red)
and BDSAcgh (in black) broken down by prevalence (ω). The vertical axis in each plot is
the sensitivity (true positive rate) and the horizontal axis is 1-specificity (false positive rate).
The columns correspond to the varying noise levels in the data with leftmost column for τ =
0.1, the middle column for τ = 0.2 and the rightmost column for τ = 0.3. The 5 rows from top
to bottom correspond to increasing ω = (0.1, 0.2, 0.3, 0.4, 0.5).
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Figure 6.
Simulation study: top panel are the bar graphs of the mean area under the curves (AUCs)
with the standard error bars for the BDSAcgh (in red), cghMCR (in orange) and HHMM (in
yellow). The vertical axes are the mean AUC with the horizontal axes sorted by increasing
prevalence. The leftmost panel is for τ = 0.1 (low noise), middle panel is for τ = 0.2 (medium
noise), and rightmost panel is for τ = 0.3 (high noise). Bottom panel: similar to top panel
with the vertical bar being the mean AUC20
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Figure 7.
Group profiles for chromosome 9: shown are the pointwise posterior probabilities of shared
regions of aberration as a function of the genomic position, p+(x) and p−(x), for the four
phenotypic groups: NA, NS, SC, and SV (top to bottom). The blue dotted lines indicate the
threshold for flagging a location as significant, controlling the expected Bayesian FDR to be
less than 0.10. The locations that show a gain in copy number are shown in green, losses are
showin in red and neutral locations are shown in gray.
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Figure 8.
Contrast of group mean profiles: the left column shows the pointwise differences of the
population mean functions of the 4 cancer phenotypes: NA, NS, SC, and SV along with the
95% credible intervals. The green lines indicate the 1.15-fold difference between the mean
profiles. The right column is corresponding pointwise posterior probability of a 1.15-fold
difference. The blue dotted lines indicate the threshold for flagging a location as significant,
controlling the expected Bayesian FDR to be less than 0.10. The locations that show a
relative increase in copy number are shown in green, decrease in copy number in red and no
difference are shown in gray.
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Figure 9.
Group profile for group SC: shown are the pointwise posterior probabilities of shared
regions of aberration as a function of the genomic position, p+(x) and p−(x), for the
phenotypic group SC. The blue dotted lines indicate the threshold for flagging a location as
significant, controlling the expected Bayesian FDR to be less than 0.10. The locations that
show a gain in copy number are shown in green, losses are shown in red and neutral
locations are shown in gray. Also shown are significant genes identified to related to lung
cancer. Marked in yellow are the corresponding locations identified as shared aberrations by
the cghMCR algorithm.
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Table 1

Simulation Study: Shown here are the mean area under the curves (AUCs) for the three methods, cghMCR, H-
HMM and BDSAcgh for various levels of noise (τ). The 3rd column shows the full AUCs and the 4th column
shows the partial area under the curves (AUC20) truncated at false positive rate of 0.2. Also shown are the
standard errors in parentheses.

τ Method AUC AUC20

0.10 cghMCR 0.8326 (0.0402) 0.7170 (0.0850)

H-HMM 0.9746 (0.0079) 0.8870 (0.0331)

BDSAcgh 0.9599 (0.0152) 0.8644 (0.0288)

0.20 cghMCR 0.7072 (0.0779) 0.5111 (0.0911)

H-HMM 0.7571 (0.0407) 0.3825 (0.0952)

BDSAcgh 0.9450 (0.0128) 0.7872 (0.0378)

0.30 cghMCR 0.6755 (0.0839) 0.4306 (0.0985)

H-HMM 0.6160 (0.0711) 0.1636 (0.0777)

BDSAcgh 0.9149 (0.0270) 0.7554 (0.0337)
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Table 4

Number of genes identified in the regions of shared copy number aberrations (CNA) with loss of copy number
for each cancer type. The numbers in parentheses correspond to the genes located in regions of gain of copy
number. NR/U is non-related or unknown function, CR is cancer related (except for lung cancer), and LCR is
lung cancer related.

Phenotype NR/U CR LCR Total

NA 544 (36) 46 (5) 19 (2) 609 (43)

NS 218 (0) 15 (0) 11 (0) 244 (0)

SC 4 (288) 0 (37) 0 (12) 4 (337)

SV 716 (2) 65 (0) 19 (0) 800 (2)
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Table 5

List of lung cancer related genes for each phenotypic group. All genes correspond to regions of loss of copy
number except the ones marked with an asterisk(*), which correspond to gain in copy number

NA NS SC SV

CD274 CDKN2A CD274* CD274

CDKN2A CDKN2B DAB2IP* CDKN2A

CDKN2B ELAVL2 DBC1* CDKN2B

DOCK8 IFNA17 FPGS* DOCK8

ELAVL2 IFNB1 JMJD2C* ELAVL2

FRMD3 IGFBPL1 PHF19* FRMD3

IFNA17 MTAP PRSS3* IFNA17

IFNB1 RECK PTENP1* IFNB1

IGFBPL1 RPS6 PTPRD* JMJD2C

JMJD2C SHB RAPGEF1* MIRNLET7A1

MTAP TUSC1 RPL12* MTAP

PTPRD TOPORS* NR4A3

RPS6 NTRK2

SHB PTPRD

TLE1 RPS6

TUSC1 SLC44A1

UBQLN1 TLE1

CA9* TUSC1

RAPGEF1* UBQLN1
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