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Abstract
Principal component analysis (PCA) is one of the key techniques in functional data analysis. One
important feature of functional PCA is that there is a need for smoothing or regularizing of the
estimated principal component curves. Silverman's method for smoothed functional principal
component analysis is an important approach in situation where the sample curves are fully
observed due to its theoretical and practical advantages. However, lack of knowledge about the
theoretical properties of this method makes it difficult to generalize it to the situation where the
sample curves are only observed at discrete time points. In this paper, we first establish the
existence of the solutions of the successive optimization problems in this method. We then provide
upper bounds for the bias parts of the estimation errors for both eigenvalues and eigenfunctions.
We also prove functional central limit theorems for the variation parts of the estimation errors. As
a corollary, we give the convergence rates of the estimations for eigenvalues and eigenfunctions,
where these rates depend on both the sample size and the smoothing parameters. Under some
conditions on the convergence rates of the smoothing parameters, we can prove the asymptotic
normalities of the estimations.

Keywords
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1. Introduction
Principal component analysis (PCA) is one of the key techniques in multivariate analysis
and functional data analysis. An important difference between classical PCA and functional
PCA is that there is a need for smoothing or regularizing of the estimated principal
component curves in functional PCA (see Chapter 9 in Ramsay and Silverman [12]). Many
methods have been proposed to estimate the smoothed functional principal components
when the sample curves are fully observed. A general overview of these methods and an
extensive list of references can be found in Ramsay and Silverman [12]. The reader can find
in Ferraty and Vieu [6] more discussions on theoretical aspects and nonparametric methods
for functional data analysis. Functional PCA has many important applications. For example,
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functional principal component regression (see for instance Cardot, Ferraty and Sarda [2]) is
a direct application of functional principal coponents analysis.

The approach proposed in Silverman [15] is an important method for smoothing functional
PCA (see Chapter 9 in Ramsay and Silverman [12]) due to its theoretical and practical
advantages. First, the weak assumptions underlying this method make it applicable to data
from many fields. Silverman [15] did not make any assumptions on the mean curves and
sample curves. Hence, in addition to data with smooth random curves, this method can be
applied to analyze data where the sample curves can be unsmooth or even discontinuous,
such as those encountered in financial engineering, survival analysis and other fields. For
covariance functions, Silverman [15] only assumed that they have series expansions by their
eigenfunctions without imposing smoothing constraint. This is attractive because the
covariance functions are continuous but unsmooth in many important models such as
stochastic differential equation models in financial engineering and counting process models
in survival analysis. Second, Silverman's method controls the smoothness of eigenfunction
curves by directly imposing roughness penalties on these functions instead of on sample
curves or covariance functions. Furthermore, this approach changes the eigenvalue and
eigenfunction problems in the usual L2 space to problems in another Hilbert space, the
Sobolev space (with a norm different from the usual norm in the Sobolev space). Therefore,
many powerful tools from the theory of Hilbert space can be employed to study the
properties of this method. Third, this approach incorporates the smoothing step into the step
for computing eigenvalues and eigenfunctions. Therefore, this method is computationally
efficient with the same computational load as the usual unsmoothed functional PCA. Fourth,
the estimates produced by this method are invariant under scale transformations. As pointed
out by Huang, Shen and Buja [8], the invariance property under scale transformations should
be a guiding principle in introducing roughness penalties to functional PCA.

Despite all these advantages, lack of knowledge about the theoretical properties of this
method makes it difficult to generalize it to the situations where the sample curves are only
observed at discrete time points. Silverman [15] only proved consistency of the estimations
as the sample size goes to infinity and the smoothing parameter goes to zero. Even the
existence of the solutions to the successive optimization problems in this method is not
established. It is not clear how the estimation errors depend on the sample size and the
smoothing parameter. Asymptotic normalities of the estimations also need to be proved. In
this paper, we aim to solve these open problems. In Section 2, we give the detailed
backgroud, basic notations and our main assumptions. In Section 3, Silverman's method is
introduced and the existence theorem for the successive optimization problems is proven.
Our main results appear in Section 4. Section 5 contains detailed proofs of our theorems.

2. Notations and main assumptions
We introduce notations and definitions used throughout the paper. Let ℕ denote the
collection of all the positive integers. We consider a finite time interval [a, b]. In this paper,
we will mainly consider functions in the following two space, the L2 space

and the Sobolev space
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where f′ and f″ donate the first and second derivatives of f, respectively. For any f, g ∈ L2([a,
b]), define the usual inner product

with corresponding squared norm ∥f∥2 = (f, f). Given a smoothing parameter α > 0, for any f,
, define

and the inner product

with corresponding squard norm . Note that is α = 0, we return to the L2([a, b])
space. For any bounded operator B from L2([a, b]) to L2([a, b]), define the norm

(2.1)

For any measurable function A(s, t) on [a, b] × [a, b], if

then  defines a bounded operator from L2([a, b) to L2([a, b]). To
simplify the notation, we just use A to denote this operator, that is

and we have

Let X(t), a ≤ t ≤ b be a measurable stochastic process on [a, b]. Under Assumption 1 below,
X(t) ∈ L2([a, b]) a.s.. Let {X1(t), X2(t), ⋯, Xn(t)} be i.i.d. sample curves from the distribution
of X(t). Assume that EX(t) = ν(t). Define Γ to be the covariance function

and Γ̂n to be the sample covariance function
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where X̄ is the sample mean curve

We will give our basic assumptions below. Silverman [15] made three assumptions in
Section 5.2 in order to prove the consistency result. Our assumptions are stronger than those
in Silverman [15].

Assumption 1

(2.2)

Remark
1. This assumption is stronger than the first assumption in Section 5.2 of Silverman

[15]. Under condition (2.2), the central limit theorem for sample covariance
function holds (see Section 2 in Dauxois, Pousse and Romain [3] and Chapter 10 in
Ledoux and Talagrand [10]).

2. Assumption 1 is satisfied by many stochastic processes used in applications. For
example, if X(t) is a bounded process, it is obvious that (2.2) is true. Gaussian
processes are an important class of stochastic processes which are widely used in
statistics and other areas. Suppose that X(t) is a Gaussian process with mean zero.
Then

Hence if Γ(t, t) is integrahle in [a, b], which is satisfied by Gaussian processes
commonly encountered in applications, (2.2) is true. Now let us consider the
standard Brovmian motion, the most widely studied Gaussian process. For the
standard Brovmian motion, Γ(t, t) = t, hence Assumption 1 is satisfied. It is well
known that its sample paths are continuous and nowhere differentiable almost
surely. For non-Gaussian processes, let us consider a Poisson process with rate 1 in
[0,1], Its sample paths are step functions only taking integer values and hence
discontinuous. It is easy to verify that Assumption 1 is satisfied by Poisson
processes.

3. Under condition (2.2), we have
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Therefore, the operator Γ is a Hilbert-Schmidt operator, hence it is a compact
operator (see Section XI.6 in Dunford and Schwartz [5] or Section 97 in Riesz and
Sz.-Nagy [13]). It follows that the set of eigenvalues of this operator are bounded
and at most countable with at most one limit point at 0. Because the covariance
operator Γ is always nonnegative-definite, all the eigenvalues are nonnegative. Let
λ1 ≥ λ2 ≥ ⋯ ≥ 0 be the collection of all eigenvalues and the corresponding
eigenfunctions are γ1, γ2, ⋯. Every eigenfunction has been scaled to have L2-norm,
1. The set of all the eigenfunctions forms an orthonormal basis of L2([a, b]).
Furthermore, we have decomposition

(2.3)

the series on the right hand side converges in the L2 sense. If Γ is a continuous
function, the series on the right hand side absolutely and uniformly converges.
Although Silverman [15] did not assume that Γ is square integrahle, he assumed the
decomposition form of (2.3).

4. We have

5. By (2.2), X(s) is square integrable a.s.. Hence, the sample covariance functions Γ ̂n
satisfies

a.s.. Then we have that the eigenvalues λ̂1 ≥ λ̂2 ≥ ⋯ ≥ 0 since the operator Γ ̂ is
nonnegative-definite. The corresponding eigenfunctions γ̂j, j ∈ ℕ satisfying

Suppose that we are interested in estimating the first K eigenvalues and eigenfunctions of Γ.

Assumption 2
Any eigenvalue λj, 1 ≥ j ≤ K has multiplicity 1, so that

Remark—This assumption is just the third assumption in Section 5.2 of Silverman [15]. If
an eigenvalue has multiplicity 1, then the corresponding eigen-function is uniquely
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determined up to a sign. If the multiplicity is larger than 1, the eigenfunctions can not he
uniquely determined up to a sign.

Assumption 3

The eigenfunctions λj, 1 ≤ j ≤ K belong to 

Remark
1. This assumption is the second assumption in Section 5.2 of Silverman [15] and is

essential in our paper.

2. If the covariance function Γ satisfies some smoothness conditions, then Assumption

3 is true. For example, suppose that Γ(s, t),  and  are all
continuous on [a, b] × [a, b] (hence they are bounded and square integrable), one
can easily verify that

Hence, by Cauchy-Schwarz inequality and ∥γk∥ = 1, we have

3. There are many important random processes whose covariance matrices are not
smooth, but the eigenfunctions corresponding to nonzero eigenvalues belong to

. The simplest examples are standard Brownian motion and Poisson
process with rate 1 in time interval [0, 1]. Their covariance functions are the same
and equal to min(s, t), 0 ≤ s, t ≤ 1 (see Page 89 in the book Glasserman [7]). The
eigenvalues and eigenfunctions are

(2.4)

The next example is the famous Black-Scholes Model in finance. Let St denote the
price of a stock at time t. Then St satisfies the following SDE,

where μ, is the instantaneous mean return, σ is the instantaneous return volatility
and Wt is a Brownian motion. The covariance function of St is smooth except at the
points on the diagonal line {(s, t) : s = t}. The same is true for the following
example. Consider the counting processes model in survival analysis. Let Nt be the
number of the occurrences of the event in [0, t]. Then Nt satisfies
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where λ(t) is a smooth intensity function and Mt is a martingale.

Silverman [15] introduced a “half-smoothing” operator which plays an important role in this
paper. We give a strict definition of this operator here. We first define an unbounded
operator L in L2([a, b]). The domain of L is L) = {f ∈ L2 ([a, b]) : f, f′ are absolutely
continous and f″ ∈ L2 ([a, b])}, and for any f ∈ L),

Then L is a closed but unbounded operator and L) is dense in L2([a, b]) (for the definition
of closed operators, see Chapter VIII of Riesz and Sz.-Nagy [13] or Chapter 13 of Rudin
[14]). Let L* be the adjoint operator of L. By the theorem in Section 118 of Riesz and Sz.-
Nagy [13] or Theorem 13.13 in Rudin [14], (I + αL*L)−1 is a bounded, positive self-adjoint
operator with norm less than or equal to 1, where α ≥ 0 is the smoothing parameter. Now it
follows from Theorem 12.33 and 13.31 in Rudin [14] that (I + αL*L)−1 has a unique positive
and self-adjoint square root Sα with norm less than or equal to 1 which is the “half-
smoothing” operator in Silverman [15]. Therefore,

(2.5)

and by Theorem 13.11 (b) in Rudin [14], the inverse  exists and is self-adjoint because (I
+ αL*L)−1 is invertible.

3. Silverman's approach to smoothed functional PCA
In this section, we always assume that the independent sample curves

are entirely observed. We first consider the usual population functional principal
components. The first population functional principal component is defined as the linear
functional ℓ1(X) of X which maximizes

over all nonzero linear functionals ℓ in L2([a, b]) with the norm ∥ℓ∥ = 1. The second
population functional principal component is defined as the linear functional ℓ2(X) of X
which maximizes

over all linear functional ℓ with the norm ‖ℓ‖ = 1 and uncorrelated with ℓ1(X). Similarly, we
can define all the other population functional principal components, ℓ3(X), …. Because X
takes values in L2([a, b]) which is a real Hilbert space, by the Riesz representation theorem,
for any bounded linear functional ℓ, there is a unique γ ∈ L2([a, b]), such that for any f ∈
L2([a, b]),
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Hence there exists γj, ∈ L2([a, b]), j ∈ ℕ, with ‖γj‖ = 1, such that the population functional
principal components ℓj(X) = (γj, X),j ∈ ℕ. γj is called the j-th principal component weight
function or j-th principal component curve. Because

γ1 is the solution of the following optimization problem,

(3.1)

The maximum value of (3.1) is just the largest eigenvalue Ai of λ1 and γ1 is the
corresponding eigenfunction (see Section 2, Chapter 3 in Weinberger [16]). γ2 is the solution
of the optimization problem,

(3.2)

The maximum value of (3.2) is just the second eigenvalue λ2 of Γ and γ2 is the
corresponding eigenfunction. Similarly, γj is the eigenfunction corresponding to the
eigenvalue λj which is also the variance of the j-th principal component.

Because the covariance function Γ is usually unknown, we can not obtain the population
principal component weight functions directly. Hence, people use the sample covariance
function Γ̂n to estimate Γ and use the eigenvalues and eigenfunctions of Γ̂n to estimate the
eigenvalues and eigenfunctions of Γ. We call them non-smooth estimators. However, the
non-smooth principal component curves can show substantial variability (see Chapter 9 in
Ramsay and Silverman [12]). There is a need for smoothing of the estimated principal
component weight functions.

Silverman [15] (see also Chapter 9 in Ramsay and Silverman [12]) proposed a method of
incorporating smoothing by replacing the usual L2 norm with a norm that takes the
roughness of the functions into account. Let α be a nonnegative smoothing parameter.

Define the estimators  of {(λj, γj) : j ∈ ℕ} to be the solutions of the

following successive optimization problems. First,  is the solution of the optimization
problem

(3.3)

Let  be the maximum value of (3.3). For any k ∈ ℕ, if we have obtained

 and ,  is the solution of the optimization
problem
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(3.4)

and  is the maximum value of (3.4). Note that  depends on both the
sample size n and the smoothing parameter α.

First of all, we need to show that the solutions  of the successive
optimization problems (3.3) and (3.4) exist.

Theorem 3.1

Under Assumption 1, the solutions  of the successive optimization
problems (3.3) and (3.4) exist for any α ≥ 0 almost surely. Moreover, we have, for any

 and j ∈ ℕ,

(3.5)

Similarly, define  to be the solutions of the successive optimization
problems (3.3) and (3.4) with Γ̂n replaced by Γ Similarly, we have the following equalities

for Γ and 

(3.6)

Note that

Theorem 1 in Silverman [15] gives the consistency of the estimators

as α → 0 and n → ∞.

4. Asymptotic theory
Fix a positive integer K. We will assume throughout this section that we want to estimates
the first K principal component curves. For any 1 ≤ k ≤ K, define
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Then under Assumption 3, Lk is finite and is a measure of roughness of the first k
eigenfunctions of Γ. For standard Brownian motion and Poisson process with rate 1 (see
remark (3) after Assumption 3),

For any 1 ≤ k ≤ K, we have decompositions

(4.1)

(4.2)

The last terms  on the right hand sides of both (4.1) and (4.2) are
nonrandom. They are the “bias terms” due to the introduction of α. We will give the upper
bounds for norms of these terms. The first terms on the right hand sides of both (4.1) and
(4.2) are the “variation terms” due to the randomness of the sample curves. We will prove a
functional central limit theorem for these terms. In order to avoid any confusion it should be
pointed out that (4.1) and (4.2) are not the bias-variance decompositions in the strict sense

because  and  are not the expectations of  and  respectively. Since it is hard to

express or characterize the exact expectations of  and , the asymptotic properties of
the usual bias and variation terms in the strict sense may not be easily studied. Heuristic
calculations of the usual bias and variation terms in the strict sense were performed in
Section 6 of Silverman [15].

Note that even if the multiplicity of λk is one, we can not uniquely determine γk because −γk
is also an eigenfunction. In the following theorem, by “Given γk”, we mean that not only γk
is an eigenfunction, but also the direction of γk is given.

Define

(4.3)

Theorem 4.1
Under Assumptions 1 – 3, for any 1 ≤ k ≤ K and 0 ≤ α ≤ α0,

(4.4)

Given γk, 1 ≤ k ≤ K, we can uniquely choose  for each α ∈ [0, α0] such that  is a

continuous function of α and  for all 0 ≤ α ≤ α0, and we have
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(4.5)

Remark
1. If K is fixed or hounded, we have

Hence, the convergence rates for eigenvalues and eigenfunctions are different.
Eigenvalues have faster convergence rates than eigenfunctions.

2. As K → ∞, we have α0 →. If we choose α in such a way that 0 ≤ α ≤ α0 and the

right hand sides of (4.4) and (4.5) converges to zero, then  and 
for all 1 ≤ k ≤ K.

3. The convergence rates for both eigenvalues and eigenfunctions depend on Lk. If the
eigenfunctions are less smooth, that is, Lk is large, then the convergence is slow.

4. (4.4) and (4.5) give the upper bounds. However, the lower bounds are 0 for any k ∈
ℕ. Here is a simple example. Without loss of generality, let k = 2. Suppose [a, b] =
[0, 2π],

Note that the right hand side in the above equality converges both uniformly and in
L2([0, 2π] × [0, 2π]) to a strictly positive definite covariance functions. Its first

eigenvalue and eigenfunction are 2 and , the second ones are 1 and .
It is interesting to note that the eigenfunctions of Γ are the same as the solutions of
the successive optimization problems (3.3) and (3.4). The first maximum value of

the successive optimization problems (3.3) and (3.4) is  and the second one is

still 1. That is, in this case, we have  and  for any α, hence the lower
bounds are zeros.

Define Cℝ[0, α0] to be the normed space of all continuous real functions in [0, α0] equipped
with norm sup0≤α≤α0. | · |. Let Π1≤j≤K Cℝ[0, α0] denote the product space of K copies of
Cℝ[0, α0] Define CL2([a,b]) [0, α0] to be the normed space of all continuous functions in [0,
α0] taking values in L2([a,b]) equipped with norm sup0≤α≤α0 ‖ · ‖. Similarly, we define
Π1≤j≤K CL2([a,b])[0, α0].

For each 1 ≤ k ≤ K and each n, we will view  as a stochastic process with

index α ∈ [0, α0] and values in L2[a, b] and view  as a stochastic process with
index α ∈ [0, α0] and values in ℝ. However, in the following subset in the probability space,
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(4.6)

 are not uniquely determined up to signs. We will show that Ω0 is measurable
and its probability goes to zero as n → ∞ in the proof of the following theorem. Hence, how

to define  in Ω0 does not affect our asymptotic results. In order to make the
development of our theory easier, we will use the following definition

(4.7)

Theorem 4.2

Under Assumptions 1 — 3 and the definition (4.7), we can properly choose  in  to
make the sequence

(4.8)

of stochastic processes is measurable and has sample paths in

a.s. . Furthermore, the sequence converges in distribution to a Gaussian random, element

with values in  and mean zero. Similarly, the sequence

(4.9)

of stochastic processes has sample paths in  a.s. and converges in

distribution to a Gaussian random, element with values in  and mean zero.

Remark
1. Recall the definition of Guassian random elements in a separable Banach space.

Suppose that X is a random element with values in a Banach space B with mean
zero. Then X is a Guassian element if for any bounded linear functional f, f(X) is a
Guassian random, variable. If X is a Guassian random, element, we can define its
covariance operator Q. Q is a bounded operator from the dual space B′ to B such
that for any f, g ∈ B′, g(Qf) = E [f(X)g(X)]. Note that the distribution of a Gaussian
element with values in a Banach space and mean zero is determined by its
covariance operator. For further properties of Guassian random elements in Banach
spaces, see Ledoux and Talagrand [10].

2. The covariance operators (4.8) and (4.9) can be characterized by the “half-

smoothing” operator Sα defined in (2.5) and the limit distribution of .
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However, the characterization involves some technical definitions. The reader can
find the characterization in the proof of this theorem.

3. The measurabilities and a.s. continuities of the sample paths of the processes (4.8)
and (4.9) are not obvious at all.

4. The convergences of (4.8) and (4.9) are weak convergences of probability measures

in spaces  and , which are stronger than the
convergences of only the marginal distributions of (4.8) and (4.9).

Now from Theorem 4.1 and Theorem 4.2, we have the following corollaries.

Corollary 4.1
Under Assumptions 1 – 3, for any 1 ≤ k ≤ K and 0 ≤ α ≤ α0

(4.10)

where

Remark—From, Corollary 4.1, it seems that smoothing (that is, α > 0) is unnecessary since

when α = 0, we get the best order . We clarify this problem by the following remarks.

1. Both Silverman [15] and this paper consider the ideal situation where every sample
curve is observed at all points in [a, b] without any noise or measurement error.
Although in this situation the estimates are consistent when α = 0, smoothing is
advantageous.

– First, because the “bias terms” and the “variation terms” are not the bias and
the variation in the strict sense, they are correlated. Since the upper bounds on
the right hand sides of (4.10) are the sums of the upper bounds for bias terms
and variation terms, the upper bounds in (4.10) are actually for the cases in
which bias terms and variation terms are positively correlated. They are the
worst cases when we introduce smoothing. In some cases such as those in
Section 6.3 of Silverman [15], the mean squared errors for some α > 0 are less
than those for α = 0. For these cases, it is possible that bias terms and variation
terms are negatively correlated and hence the estimate errors should be much
less than the upper bounds in (4.10). Section 6.4 of Silverman [15] gave an

optimal a with order  for estimates of eigenfunctions. By Corollary 4.1, if

we choose the optimal a, we obtain the best asymptotic rates . Even for

the worst cases, if we take , we can obtain the rate .
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– Second, from a practical viewpoint, it is desirable that the estimates of
principal component curves can keep main patterns of the true principal
component curves. However, the sample curves of many stochastic process are
nonsmooth or even discontinuous, such as examples in Remark (3) after
Assumption 3. Hence, their sample covariance functions have many local
variations and so do the eigenfunctions of those sample covariance functions.
In these cases, the local variations can be removed by using an appropriate
amount of smoothing, that is, choosing an appropriate positive α.

2. In practice, people cannot observe the entire sample curves. The observations can
only be made at discrete points often with noise or measurement error. The
observation points could he dense or sparse. If the sample curves are smooth and
the observation points are dense, we can obtain smoothed estiamte of each sample
function and perform the usual functional PC A. This method cannot be applied to
other situations. However, Silverman's method can be generalized to all these
situations (see Qi and Zhao [11]). In our generalization, smoothing is essential and
the smoothing parameters must be positive. The theoretical results in this paper has
been applied to prove the consistency results in Qi and Zhao [11].

If α goes to 0 fast enough as n → ∞, we have the following asymptotic normalities.

Corollary 4.2

Under Assumptions 1 – 3, for any sequence {αn, n ≥ 1} with , the joint
distributions of

converge to the same Gaussian distribution with mean zero. For any sequence {αn, n ≥ 1}

with , the joint distributions of

converge to the same Gaussian distribution with mean zero.

Remark—Dauxois et al. [3] gave the asymptotic normalities of the eigenvalues and
eigenfunctions of Γ̂n and characterized the covariance operators of the limit Gaussian
random elements. Those results are special cases of Corollary 4.2 with all αn equal to zeros.
Therefore, by Corollary 4.2, all the limit Guassian distributions in Corollary 4.2 are the same
as those in Dauxois et al. [3].

5. Proofs
Proof of Theorem 3.1

By Remark (3) after Assumption 1, ∥Γ ̂n∥ < ∞ a.s.. Fix a sample and α ≥ 0 such that ∥Γ ̂n∥ <
∞. Consider the Hilbert space  equipped with the inner product (·,·)α. For any f,

, the functional (f, Γ̂ng) define a bilinear form in  and
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Hence, there is a unique bounded operator Ra in , such that for any f,
,

(see Section 84 in Riesz and Sz.-Nagy [13]). It is easy to see that Ra is symmetric and
nonnegative-definite. We want to show that Ra is a compact operator (note that a compact
operator is called completely continuous operator in Riesz and Sz.-Nagy [13]). By definition
4 in Section 85 of Riesz and Sz.-Nagy [13], we only need to show that for any bounded

sequence , one can select a subsequence {fmk} such that

(5.1)

as k, l → ∞. Because Γ̂n is a compact operator in L2([a,b]) (see Remark (2) after
Assumption 1) and {fm} is also a bounded sequence in L2([a, b]), one can select a
subsequence {fmk} such that {Γ̂nfmmk} converges, then (5.1) is true for {fmk}. Hence Ra is a

compact operator. It has eigenvalues and eigenfunctions  with

. They are the solutions of the successive optimization problems (3.3)
and (3.4) (see Chapter 3 of Weinberger [16]). Now for any  and any j ∈ ℕ,
because

we have

Proof of Theorem 4.1

The proof of the existence and uniqueness of the choices of the signs of , 1 ≤ k ≤ K
making them continuous functions of α will be postponed to the proof of Theorem 4.2
because we need some technical lemmas in the proof of Theorem 4.2. We will assume that

we can choose the signs of , 1 ≤ k ≤ K such that they are continuous function of α for all

0 ≤ α ≤ α0 and , 1 ≤ k ≤ K.

For any 1 ≤ k ≤ K, let Pk be the orthogonal projection operator in L2([a,b]) onto the space
spanned by {γ1,… ,γk} and I be the identity operator in L2([a, b]). Then (I − Pk) is the
orthogonal projection operator onto the closed subspace spanned by {γj,j ≥ (k + 1)}.

Lemma 1—For any k ∈ ℕ, and α1 ≥ α2 ≥ 0
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Proof. It follows Theorem 8.1 in Chapter 3 of Weinberger [16].

Lemma 2—For any 1 ≤ k ≤ K and α ≥ 0, we have

(5.2)

Proof. For any j < k, by (3.6), we have

So

By Assumption 2 and Lemma 1, . Therefore,

and we have

where the last inequality in the second line follows from Cauchy-Schwarz in-equality.

Lemma 3—For any 1 ≤ k ≤ K and any

(if k = 1, the right hand side is defined to be infinity), we have
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(5.3)

Furthermore, if

(if k = 1, the right hand side is defined to he infinity), we have

(5.4)

For any α ≥ 0, we have

(5.5)

Hence, as α → 0, .

Proof. Let span(γ1, … , γk) denote the linear subspace spanned by

From Theorem 5.1 (Poincare's Principle) in Chapter 3 of Weinberger [16], we have

(5.6)

where the equality in the third line of (5.6) is true because that (I − Pk−1) is the orthogonal
projection operator onto the closed subspace spanned by {γj,j ≥ k} which is orthogonal to
span(γ1, … , γk-1), and both of them are invariant subspaces of Γ. The last inequality in (5.6)
holds because the largest eigenvalue of Γ restricted to the closed subspace spanned by

{γj,j≥k} is λk and the L2 norm of  is less than 1. On the other hand, we have
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(5.7)

The equality in the last line follows from the fact that the smallest eigenvalue of Γ in
span(γ1, … , γk) is λk. The last inequality holds because that, for any β ∈ span(γ1, … , γk), let

, where c1, … , ck are some real numbers, then we have

where the inequality in the second line is due to Cauchy-Schwarz inequality. Now from
(5.6), (5.7) and Lemma 1, we have

From these inequalities, it can be derived that

Therefore,  as α → 0.

Again by (5.6), (5.7), and note that , we have

Then

hence,
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.

Now by (5.2), we have

After rearranging the terms, we then obtain

When the expression in braces on the left of the above inequality is positive, which is
equivalent to

(if k = 1, the right hand side is denned to be infinity), we have

(5.8)

When

(if k = 1, the right hand side is denned to be infinity), it can be shown that

and then it follows from (5.8) that

Lemma 4—For any 1 ≤ k ≤ K and any
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(5.9)

we have

(5.10)

Proof. By the following orthogonal decomposition

(5.11)

we have

(5.12)

where the last inequality follows from the fact that  belongs to the closed
subspace spanned by {γj, j ≥ k + 1} in which the largest eigenvalue of Γ is λk+1. On the other
hand, by (3.6), we have

(5.13)

From (5.12) and (5.13),

then

(5.14)

It follows from (5.9) that . Then by (5.5), we have
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hence,

(5.15)

Because

we have

(5.16)

From (5.14), (5.15) and (5.16),

Now by Lemma 2,

Now we can prove Theorem 4.1. It follows from the definition (4.3) of α0 that all the
conditions in Lemmas 3 and 4 are satisfied. From the orthogonal decomposition

we have

Hence, it follows from Lemma 2, Lemma 4 and (5.4) in Lemma 3 that
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(5.17)

Define

(5.18)

By solving the following inequalities,

we obtain . Since

By the definition (4.3) of α0 and (5.18), we have

Hence, for any 0 ≤ α ≤ α0, we have . Now it follows from (5.17) that, for any 0
≤ α ≤ α0,

(5.19)

Because  is a continuous function of α,  is also a continuous function of α and

. Hence, it follows from (5.19) that  for all 0 ≤ α ≤ α0.

From (5.16), (5.17) and (5.4), we have

Qi and Zhao Page 22

J Multivar Anal. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



By (5.17) and , we have

and thus

Proof of Theorem 4.2
We first study the properties of the “half-smoothing” operators Sα. At the end of Section 2,
we know that Sα is a bounded linear operator from L2([a,b]) to L2([a,b]) with norm less than
or equal to 1. Moreover, Sα is a one to one (injective) map. Hence, its inverse  exists.
When α = 0, S0 is just the identity operator I in L2([a,b]). The following lemma gives the
reason why Sα is called “half-smoothing” operators.

Lemma 5—The range of Sα (or the domain of ) is . Moreover, for any
,

(5.20)

Proof If α = 0, the results are trivial. Hence, we assume that α > 0. Since the space C∞[a, b]
of smooth functions is dense in space

for any , there exists a sequence {fm ∈ C∞[a, b], m ∈ ℕ} such that ∥fm − f∥α
→ 0. One can see that the domain of  contains C∞[a, b], hence C∞[a, b] is also
in the domain of . Now we compute
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(5.21)

as m, l → ∞. Hence,  is a Cauchy sequence in L2([a, b]). It converges to
some function, say g, in L2([a, b]). Since Sα is a bounded operator,  converges
to Sαg in L2-norm. However, fm converges to f in ∥ · ∥α norm, it also converges in L2-norm.
Therefore, Sαg = f, that is, f is in the range of Sα. Hence,  is in the range of Sα.
Because for any m ∈ ℕ, from a similar calculation as in (5.21),

and

we have .

Now we show that the range of Sα is equal to . Since we have shown that
 is in the range of Sα and Sα is a one-to-one map, we only need to show that the

range of  under  is L2([a, b]). By (5.20) and the completeness of

, the range of  under  is a closed subspace of L2([a, b]). If the
range of  under  is not L2([a, b]), then we can find 0 ≠ h ∈ L2([a, b]) such that

Since one can see that the domain of  is contained in , we have

Then

However, because the range of  is the whole L2([a, b]), we have Sαh = 0. Hence h = 0
since Sα is a one-to-one map. We get a contradiction. Therefore, the range of Sα is equal to

.
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Lemma 6—  and  are eigenvalues and
eigenfunctions of the compact operators SαΓ ̂nSα and SαΓ ̂Sα in L2([a, b]) respectively.
Moreover, there are no other eigenvalues for SαΓ ̂nSα and SαΓ ̂Sα.

Note that the L2 norms of  and  may not be 1.

Proof. If α = 0, the results are trivial. Hence, we assume that α > 0. Because

 are solutions of the successive optimization problems (3.3) and (3.4),
then by Lemma 5,

Hence,  are the first eigenvalue and the corresponding eigenfunction of
SαΓ ̂nSα. Similarly, we can prove the conclusions for other eigenvalues and eigenfunctions.

Define

(5.22)

For the definition and properties of compact operators in Banach spaces, we refer reader to
Chapter 21 in Lax [9]. Define a sequence of stochastic processes

which is indexed by α and takes values in H because both Γ̂n and Γ are compact operators

and Sα is a bounded operator. Note that . We follow the notations in
Dauxois et al. [3]. Let F denote the space of Hilbert-Schmidt operators from L2([a, b]) to
L2([a, b]). Then F is a Hilbert space with a inner product denoted by < ·, · >F. By
Assumption 1,

Thus Γ ̂n, Γ ∈ F. It follows from Proposition 5 in Dauxois et al. [3] that {Zn(0), n ∈ ℕ},
regarded as a sequence of random elements with values in F, converges in distribution to the
Gaussian random element in F with mean 0 and covariance operator Q, where

(5.23)

X ⊗ X denotes the bounded operator from L2([a, b]) to L2([a, b]) with (X ⊗ X) (γ) = (γ, X)X
for any γ ∈ L2([a, b]). Γ⊗̃Γ denotes the bounded operator from F to F with (Γ⊗̃Γ)(Λ) =
〈Λ,Γ〉F Γ for any Λ ∈ F. The other terms in (5.23) are denned similarly. Note that according
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to the definition (5.23), Q is an operator from F to F. However, because F is a Hilbert space,
there is an isometry between F and its dual space F′. Hence, Q can be regarded as a bounded
operator from F′ to F and then it satisfies the definition of covariance operators in Remark
(1) after Theorem 4.2. However, in this paper, we will consider the space H of compact
operators which is larger than the space F of Hilbert-Schmidt operators (every Hilbert-
Schmidt operator is compact). In the proof of Proposition 6 in Dauxois et al. [3], the authors
used the fact that if A is a Hilbert-Schmidt operator, then (A − zI)−1 is also a Hilbert-
Schmidt operator, where z is a complex which is not an eigenvalue of A and I is the identity
operator. However, this is not true in general. But (A − zI)−1 is a bounded operator. Because
the norm (2.1) in H is smaller than the norm in F, the embedding map i : F ↪ H (i maps
any Hilbert-Schmidt operator to itself) is a bounded operator. Then we have

Lemma 7—{Zn(0), n ∈ ℕ}, regarded as a sequence of random, elements with values in H,
converges in distribution to a Gaussian random element in H with mean zero and covariance
operator iQi*, where i* is the adjoint operator of i and Q is defined in (5.23).

Proof. It follows immediately from the following lemma.

Lemma 8—Suppose that {Xn, n ≥ 1} is a sequence of random, elements with values in a
Banach space B. If Xn converges in distribution to a Gaussian random element X with mean
zero and covariance operator Λ. Let T be a bounded operator (that is, a continuous linear
function) from B to another Banach space C. Then T(Xn) converges in distribution to T(X)
which is also a Guassian random element with mean zero and covariance operator TΛT*,
where T* is the adjoint operator of T.

Proof. Since T is a continuous map from B to C, by continuous mapping theorem, T(Xn)
converges in distribution to T(X). Now we show that T(X) is an Guassian random element.
For any bounded linear functional f ∈ C′, fοT ∈ B′. Hence, f(T(X)) = f ο T(X) is a Gaussian
random variable since X is Gaussian. Thus T(X) is Guassian and obviously its mean is zero.
In order to compute it covariance operator, we intruduce the following notations. For any x
∈ B, y ∈ C and f ∈ B′, g ∈ C′, define 〈x, f〉B = f(x), 〈y, g〉C = g(y). By the definition of
covariance operators (see Remark (1) after Theorem 4.2) and the definition of adjoint
operators, for any g, h ∈ C′,

Therefore, the covariance operator of TX is TΛT*.

Lemma 9—For any finite 0 ≤ α1 < … < αk ≤ α0, the sequence

converges in distribution to a Gaussian random element with values in Hk and mean zero,
where Hk is the product space of k copies of H.

Proof. This lemma follows from Lemma 8 and the fact that

is a continuous and linear function of Zn(0) since Sα1, i = 1,… , k are bounded operators.
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Unfortunately, Sα is not continuous as α → 0 under the norm (2.1). For example, let

By (5.20),

Define . Then ∥gn∥ = 1 and

Therefore, ∥Sα − I∥ ≥ 1 for all α. Note that S0 = I. However, we have the following results.

Lemma 10—For any f ∈ L2([a, b]), α → Sαf is a continuous map from [0, α0] to L2([a, b]).

Proof. Let E be the resolution of the identity for the self-adjoint operator Sα0 (for reference,
see Chapter 12 of Rudin [14]). Because Sα0 is a positive operator with ∥Sα0∥ ≤ 1, Ef, f is a
bounded positive Borel measure in [0, 1]. Fix α ∈ [0, α0].

Now define a family continuous functions on [0, 1],

then Sα = φα(Sα0). Let α′ ∈ [0, α0] and α′ → α. It follows from Theorem 12.21 and 12.23 in
Chapter 12 of Rudin [14] that

The integrand on the right hand side is bounded. If α ≠ 0, the integrand converges to 0 at
each point in [0, 1] as α′ → α. By the bounded convergence theorem, ∥(Sα′ − Sα)f∥2 → 0. If α
= 0, the integrand converges to 0 at each point in [0, 1] except 0. If we can show that the
measure value Ef, f({0}) of Ef, f on the set {0} is zero, then by the bounded convergence
theorem, we still have ∥(Sα′ − Sα) f∥2 → 0. In fact, for any g ∈ L2([a, b]),
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Hence, Sα0 E({0})f = 0. Because Sα0 is a one-to-one operator, E({0})f = 0. Therefore,

Lemma 11—For any compact operator Λ in L2([a, b]), α → SαΛSα is a continuous map
from [0, α0] to H.

Proof. By Lemma 11 in Section XI.9 of Dunford and Schwartz [5], there exists a sequence
Λm of bounded operators having finite-dimensional range, such that ∥Λm − Λ∥ → 0. If we
can show that for each m, α → SαΛmSα is a continuous map, then since ∥SαΛmSα − SαΛSα∥
≥ ∥Λm − Λ∥ → 0 uniformly, α → SαΛSα is continuous. Now fix m and 0 ≤ α ≤ α0. Let {e1,
…, ek} be an orthonormal basis of the range of Λm and α′ → α. For any f ∈ L2 ([a, b]) with
∥f∥ ≤ 1,

Because

which converges to 0 uniformly for all f ∈ L2([a, b]) with ∥f∥ ≤ 1 by Lemma 10. Now

which converges to 0 uniformly for all f ∈ L2([a, b]) with ∥f∥ ≤ 1 by Lemma 10, where Λm*
is the adjoint operator of Λm. Hence, ∥Sα′ΛmSα′ − SαΛmSα∥ → 0.

In the next lemma, we assume that all the eigenfunctions have norms 1.

Lemma 12—Suppose that α → Λ(α) is a continuous map from [0, α0] to the suhspace of
positive compact operators in L2([a, b]) in H. Assume that the first K eigenvalues of Λ(α)
for any α ∈ [0, α0] are positive and mutually different, and each of them has multiplicity 1.

Then given the first K eigenfunctions  of Λ(0), there exist unique choices of
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the first k eigenfunctions  of Λ(α) for any α ∈ (0, α0] such that  is a
continuous map from [0, α0] to L2([a, b]) for any 1 ≤ k ≤ K.

Note that for each 1 ≤ k ≤ K and 0 ≤ α ≤ α0, there exist two eigenfunctions with norm 1 of
Λ(α) corresponding its k-th eigenvalues and any one of the two eigenfunctions is equal to
the other one multiplied by −1.

Proof. Let  be the first K eigenvalues of Λ(α). Let Ek(α) be the orthogonal

projection onto the space spanned by the , 1 ≤ k ≤ K, 0 ≤ α ≤ α0. Note Ek(α) does not

depend on the sign of .

We first show that for any 1 ≤ k ≤ K, Ek(α) is a continuous function of from [0, α0] to H. For
any fixed α ∈ [0, α0], we can find a small positive number εα such that the K + 1 intervals

are disjoint. Since Λ(α) is a continuous function, we can choose a neighborhood ℳα of α in
[0, α0], such that for any α′ ∈ ℳα

where the first inequality follows from Corollary 4 in Section XI.9 of Dunford and Schwartz
[5]. Now we define K circles on the complex plane ℂ,

Then one can see that for any α′ ∈ ℳα, the disk bounded by the circle Ck only contains the k-

th eigenvalues  of Λ(α′). Hence, we have (see Section VII.3 of Dunford and Schwartz
[4] or Definition 10.26 in Rudin [14])

for any α′ ∈ ℳα. Since (zI − Λ(α′))−1 is a continuous function of z ∈ Ck Ck is a compact set,
we have

(5.24)

Since Λ(α) is a continuous function of α, for any 0 < δ < 1, we can find a neighborhood α
of α such that

(5.25)
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Now for any α′ ∈ ℳα ⋂ α,

(5.26)

by (5.24) and (5.25)

Since δ can be arbitrarily small, Ek(α) is continuous at α.

Now we show that for any given α ∈ [0, α0], and given , there exists a neighborhood [α1,

α2] of α such that for any α′ ∈ [α1, α2], we can uniquely choose  such that  is
continuous in this neighborhood. Because Ek(α′) is a continuous function of α′,

 is a continuous function of α′ and its value is 1 at α′ = α. Hence, we can find a

neighborhood [α1, α2] of α such that  for α′ ∈ [α1, α2]. Then

are eigenfunctions and continuous in [α1, α2]. Now we show the uniqueness. Suppose , α′

∈ [α1, α2] is another choice of the eigenfunctions such that it is continuous and . If

for some , , we have . Since both the inner products

 and  are continuous functions for α′ ∈ [α1, α2]. By the choice of [α1,

α2], . Because , one of them must

be negative. Without loss of generality, we assume that . Since
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, it follows from the intermediate value theorem that there is at least one

point α‴ between α and α″ such that . However, it is impossible because

Hence we have proved the uniqueness.

Fix . Let the set

By the arguments in the last paragraph, is nonempty. Now we show that the set is an
open set. Suppose that α* is any point in  It follows from the last paragraph that there
exists a neighborhood [α1, α2] of α* such that given e[α*], we can uniquely choose the sign
of e[α] for any α ∈ [α1, α2] to make e[α], α ∈ [α1, α2] a continuous function. We show that
[α1, α2] ⊂  Let α** be any point in [α1, α2]. It is easy to see that we can choose the signs
of e[α] for all α ∈ [0, α**] such that e[α] is a continuous function of α in [0, α**]. We only
need to show the uniqueness of e[α]. The uniqueness is obvious if α** ≥ α* since α* ∈ 
Hence we assume that α** < α*. We will proceed by contradiction. Assume that there are

two different continuous functions  and , 0 ≤ α ≤ α**. By the definition of [α1, α2],
we can choose a continuous function , α** ≤ α ≤ α*. Define

and

Then  and  are two different continuous functions in [0, α*], which contradicts to α* ∈
 Hence, is an open set.

Now if we can prove that is also a closed set, we have  [0, α0]. Let αm ∈ be a sequence
of positive numbers converging to α ∈ [0, α0]. If for some m, αm ≥ α it is obvious that α ∈ 

Hence we assume that αm < α for all m. Then we can uniquely choose the signs of of 
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such that  is continuous in [0, α). Let  be one of the two eigenfunctions with norm 1.
Because for any α′ < α

goes to zero as α′ → α, . Since  continuous in [0, α). 

converges either to 1 or −1. In the latter case, we change  to . Hence, without loss of

generality, we assume that  as α′ → α. Now one can see that  is
continuous on [0, α] and its uniqueness is obvious. Hence, α ∈  We have proven that is a
close set.

Define CH [0, α0] to be the space of all the continuous function from [0, α0] → H (see
Chapter 3 of Billingsley [1]). For any {Λ(α) : 0 ≤ α ≤ α0} ∈ CH[0, α0], define a norm

(5.27)

Under the norm (5.27), CH[0, α0] is a Banach space. Recall the definition

By Lemma 11, we can regard the stochastic processes Zn in [0, α] as random elements with
values in CH [0, α0]. Define a linear map Θ: H → CH[0, α0] such that for any compact
operator U ∈ H,

(5.28)

Lemma 13—Θ is a bounded operator and the sequence {Zn, n ∈ ℕ} of stochastic processes
with sample paths in CH[0, α0] converges in distribution to the Gaussian random, element
with mean zero and covariance operator ΘiQi*Θ*.

Proof. Since the norm of Sα is less than or equal to 1, for any V ∈ H,

Hence, the map (5.28) is continuous and hence a bounded operator. Since Zn = Θ(Zn(0)), the
lemma follows from Lemmas 7 and 8.

Now for any 1 ≤ k ≤ K, define
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(5.29)

Note that by Lemma 6,  and  are the eigenfunctions of SαΓ ̂Sα and SαΓSα with norms

1. By (5.29) and because  and , we have

(5.30)

and

(5.31)

Define , 1 ≤ k ≤ K, and εK = min1≤k≤K ε̃k. Then the K + 1 intervals

(5.32)

are disjoint. By the definition (4.3) of α0 and (5.5) in Lemma 3, for any 0 ≥ α ≥ α0 and 1 ≥ k
≥ K,

(5.33)

Hence,  are different mutually for all 0 ≥ α ≥ α0. Now given γk, 1 ≤ k ≤ K, by
Lemma 11 and Lemma 12, we can uniquely choose the first K eigenfunctions

 of SαΓSα such that  and , 1 ≤ k ≤ K, are continuous functions of

α. We have proved the claims about the continuity of , 1 ≤ k ≤ K at the beginning of the
proof of Theorem 4.1.

Now we define K circles in the complex plane ℂ,

(5.34)

Note that the K discs bounded by Ck, 1 ≤ k ≤ K are disjoint and the intersections between
these discs and the real line in the complex plane are just the first K intervals in (5.32). Let

Ek(α) be the orthogonal projection onto the space spanned by the , 1 ≤ k ≤ K, 0 ≤ α ≤ α0.
Now because it follows from (5.33) that for any 0 ≤ α ≤ a0, 1 ≤ k ≤ K, the disk bounded by

Qi and Zhao Page 33

J Multivar Anal. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the circle Ck only contains the k-th eigenvalues  of SαΓSα for any 0 ≤ α ≤ a0, 1 ≤ k ≤ K,
we have

(5.35)

By Lemma 11, SaΓSα is a continuous function of α. Hence, by a similar calculation as in
(5.26), it can be shown that Ek(α) is a continuous function of α.

Recall that we define in (4.6)

Lemma 14—Ω0 is a measurable set and P(Ω0) → 0 as n → ∞.

Proof. Consider the subset

ε is an open subset of the space of all positive compact operators which is closed in H, hence
it is measurable. Let (Ω, ℱ) be the probability space and ([0, α0], ℬ[0, α0]) be the Lebesgue
space. Since SαΓ ̂Sα has continuous sample paths, it is jointly measurable in (Ω × [0, α0], ℱ ×
ℬ[0, α0]). One can see that  is the projection of the set {(ω, α) : SαΓ ̂nSα ∈ ε} to Ω.
Therefore,  is measurable, so is Ω0. By (5.33) and the definition of εK (just above (5.32)),
we have

By Corollary 4 in Section XI.9 of Dunford and Schwartz [5],

(5.36)

Hence,

(5.37)

by the law of large numbers.

For any ω ∈ Ω0, define  to be zero. For any ω ∉ Ω0, define  to be the orthogonal
projection onto the space spanned by the k-th eigenfunction  of SαΓ ̂nSα (note that 

does not depend on the sign of ). By the same argument as in the proof of Lemma 12, we
can show that  is a continuous function of SαΓ ̂nSα, so it is measurable and continuous
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in α. Now let {em, m ∈ ℕ} be a set of complete orthonormal basis functions in L2([a, b]), we
choose

(5.38)

in  and 0 in Ω0, where χ is the indicator function. Then  is measurable and

(5.39)

Now by Lemma 11, Lemma 12 and the definition of Ω0, for any ω ∉ Ω0, we can uniquely

choose , 1 ≤ k ≤ K, such that , 1 ≤ k ≤ K are continuous functions of α.  is

measurable by the following lemma. By (5.31), , 1 ≤ k ≤ K are continuous and

measurable with .

Lemma 15—If for any 1 ≤ k ≤ K,  is a measurable map to CL2([a,b][0, α0].

Proof. In ,  is a continuous function of α. Since , let

 in . In Ω0, define T ̂(1) = 0. Then T ̂(1) is a nonnegative
random variable. By Lemma 12, we have in , if α ≤ T ̂(1),

Define a random element

in  and 0 in Ω0. Define a random variable  and a
random element

in  and 0 in Ω0. Similarly, we can define (T ̂(3), ζ3), …. One can show that for any ω ∈ Ωc,
there are only finite T ̂(m)(ω) < α0, m =0, 1, 2, …, where T ̂(0)(ω). Hence in Ωc, we have
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where  and χ is the indicator function. Hence,  is measurable.

By (5.33) and (5.36), in the event , for any 0 ≤ α ≤ α0, 1 ≤ k ≤ K, the
disk bounded by the circle Ck only contains the k-th eigenvalues for SαΓ ̂Sα and SαΓSα.

Hence, in the event , for any 0 ≤ α ≤ α0, 1 ≤ k ≤ K, we have

(5.40)

The proofs of the following Lemma 16 and Lemma 17 follows the ideas of Section 2 in
Dauxois et al. [3]. Define linear maps ϕk : CH[0, α0] → CH[0, α0], 1 ≤ k ≤ K such that for
any Λ ∈ CH[0, α0 and 0 ≤ α ≤ α0,

(5.41)

where (ϕk(Λ))(α) denotes the value of ϕk(Λ) at the point α. Then define ΦK = (ϕ1, ϕ2, …,

ϕK) which is a linear map from CH[0, α0] to . One can verify that ϕk's are
continuous. Hence ΦK is a bounded operator.

Lemma 16—The sequence  of stochastic processes has sample

paths in  a.s. and converges in distribution to a Gaussian random, element
with mean zero and covariance operator .

Proof. In the event , for each z ∈ CK,

(5.42)

If

where
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then by (5.42), we have an absolutely convergent series expansion

Hence,

(5.43)

where

Hence, in the event ,

(5.44)

Now in the event , by (5.42) and (5.43),

(5.45)

Now we have from (5.44) and (5.45), for any δ > 0,

(5.46)

as n → 0. By Lemmas 8 and 13, ΦK(Zn) = (ϕ1(Zn), ϕ2(Zn), … ϕK(Zn)) converges in
distribution to the Gaussian element with mean zero and covariance operator .
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Now by (5.46),  converges in distribution to the same
distribution.

Define linear maps Ψk : CH[0, α0] → CL2([a,b) [0, α0], 1 ≤ k ≤ K such that for any Λ ∈ CH[0,
α0],

(5.47)

Then we define a linear map  such that for any

,

(5.48)

It is easy to see that ψK is a bounded operator.

Lemma 17—The sequence  of stochastic processes has

sample paths in  a.s. and converges in distribution to a Gaussian random
element with mean zero and covariance operator .

Proof. By the definitions (5.29) of . In , we
have

By (5.46),  and ϕk(Zn) have the same limit distribution. Because for any
Λ ∈ CH[0, α0],

(5.49)

where we use the facts that
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So we have

in probability. By (5.39) and the continuities of  and , we have

(5.50)

in probability. Now

(5.51)

By (5.50), the first term in the last line converges to 0 in probability and  in

probability. Hence,  has the same limit distribution as

 which converges to a Gaussian random element with mean zero
and covariance operator  by Lemmas 8 and 16.

Define linear maps ϕk : CH[0, α0 → CH[0, α0], 1 ≤ k ≤ K, such that for any Λ ∈ CH[0, α0],

where Ψk is defined in (5.47) and (Ψk(Λ))(α) denotes the value of Ψk(Λ) at α. Define a liner
map  such that for any (Λ, …, ΛK),

(5.52)

It is easy to see that ℧K is a bounded operator.

Lemma 18—The sequence  of stochastic processes has

sample paths in  and converges in distribution to a Gaussian random,
element with zero and covariance operator .

Proof. The continuities of  and  follow from Lemma 11 and the inequalities
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for any 0 ≤ α, α′ ≤ α0. In ,

(5.53)

By Lemmas 16 and 17,  and  in probability. Hence by (5.53),

 has the same limit distribution as

which, by (5.51), has the same distribution as

Hence,  has the same limit distribution as

 which converges to a Gaussian random
element with mean zero and covariance operator  by Lemmas 8 and 16.

Define a linear map  such that for any

,

(5.54)

ℑK is a bounded operator.

Lemma 19—The sequence  of stochastic processes has

sample paths in  a.s. and converges in distribution to a Gaussian random
element with mean zero and covariance operator .

Proof. By (5.31),
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Therefore,

(5.55)

Because

in probability, by the definition (5.54) of ℑK, (5.55) and Lemma 17,

 has the same limit distribution as

 which converges to a Gaussian random element with
mean zero and covariance operator .

Proof of Corollary 4.1

By Lemma 18 and Lemma 19, the stochastic processes  and

 convergence in distribution, hence they are tight by Theorem
5.2 in Billinsley [1] since CH[0, α0] and CL2[a,b][0, α0] are both complete and separable.
Therefore, for any ∈ > 0, one can find a positive number M depending on ∈ such that

In other words,

uniformly in α, which combines Theorem 4.1 to get our corollary.

Proof of Corollary 4.2
First, we have decompositions
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Under the conditions on αn for eigenvalues and eigenfunctions respectively, by Theorem

4.1, we have  and  respectively. Since

 and 
converge in distribution by Theorem 4.2, they are tight. Hence, the asymptotic normalities of

 and  follows from Theorem 4.2 and the following lemma.
Then the corollary follows at once.

Lemma 20—Suppose that F is a metric space with distance d. Let CF[0, α0] denote the
continuous function on [0, α0] taking values in F. Suppose we have a sequence {Yn(α), 0 ≤ α
≤ α0, n ∈ ℕ} of stochastic processes has sample paths in CF[0, α0]. Assume that Yn is tight
and Yn(0) converges in distribution to a random element Y in F, then for any sequence αn of
positive numbers converging to 0, Yn(αn) also converges in distribution to Y.

Proof. First, we show that for any ∈ > 0 we can find δ > 0 such that

Since Yn is tight, we can find a compact subset Χ of CF[0, α0] such that

We can find a finite number of Λ1, … Λm ∈ Χ such that for any Λ ∈ Χ, we can find i such

that . Furthermore, we can find δ > 0 such that,

Now it is easy to see that for any Λ ∈ Χ,

Hence,

If αn ≤ δ, we have

Qi and Zhao Page 42

J Multivar Anal. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since ∈ is arbitrary, d(Yn(0), Yn(αn)) → 0 in probability.
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