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Abstract
The detection and characterization of circulating tumor cells (CTCs) holds great promise for
personalizing medicine and optimizing systemic therapy. However, low specificity, low sensitivity
and the time consuming nature of current approaches have impeded clinical adoption. Here we
report a new method using Surface-Enhanced Raman Spectroscopy (SERS) to directly measure
targeted CTCs in the presence of white blood cells. SERS nanoparticles with epidermal growth
factor (EGF) peptide as a targeting ligand have successfully identified CTCs in the peripheral
blood of 19 patients with squamous cell carcinoma of the head and neck (SCCHN), with a range
of 1–720 CTCs per milliliter of whole blood. Our technique may provide an important new
clinical tool for management of patients with SCCHN and other cancers.
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Introduction
Circulating tumor cells (CTCs) are a hallmark of invasive cancer cells, which are
responsible for the development of metastasis. It is imperative to develop new approaches
for the detection and quantification of CTCs, which will significantly contribute to clinical
prognosis, diagnosis, individualization and optimization of systemic therapy. Detecting rare
CTCs in complex blood samples is a major challenge, requiring an exceptionally specific
and sensitive assay for discerning and capturing CTCs with high efficiency. Some progress
has been made recently. The U.S. Food and Drug Administration (FDA) approved the use of
CellSearch™ based on immunomagnetic separation (1). A potential concern with this
method is the impurity of leukocytes, leading to a high false positive rate (2–4). More
recently, a CTC chip has been developed by Haber’s group (1,5–7) for monitoring
therapeutic response, but the flow method is time-consuming and requires ~6 hrs to process
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each sample. The majority of CTC techniques require an initial enrichment step, since CTCs
are rare events. After pre-separation, immunofluorescent labeling of captured cells is
required to further validate the presence of CTCs.

Here, we report a direct assay based on highly specific and sensitive SERS technology to
detect CTCs in peripheral blood, which requires no subsequent separation procedure. One of
the key advantages of using SERS spectroscopy rather than a fluorescence technique is that
SERS gives a sharp fingerprint-like spectral pattern, which is distinct from other
interferences within the complex biological milieu. In contrast, fluorescence spectra could
be disguised by strong scattering signals from cells and protein clusters at low signal
intensities, such as rare CTC events. The distinctive SERS spectral pattern eliminates the
need for tedious separation procedures.

Materials and Methods
Preparation of EGF-conjugated SERS nanoparticles

The bioconjugation of EGF-SERS nanoparticle was similar to previously reported
procedures (8). 60 nm citrate-stabilized gold particles (2.6×1010 particles/mL) (Ted Pella
Inc) were used. Briefly, the nanoparticles were encoded with QSY reporter molecules which
were adsorbed to the negatively charged Au nanoparticle surface through electrostatic
interaction. Au-QSY was then functionalized with a mixed layer of polymers. 85% of the
mixed layer is thiolated polyethylene glycol (HS-PEG), which ensures minimal non-specific
interaction with blood cells. Without the closely-packed PEG protection layer, nanoparticles
are prone to aggregate and induce false positive signals. The remaining 15% of the mixed
layer is a bi-functional HS-PEG-COOH; one end is tethered to the gold nanoparticle surface,
the other has a carboxyl function group for conjugation with the N-terminus of the EGF
peptide. Details of each step and characterization are shown in supplemental materials.

Cell lines
Tu212 cell line provided by Dr. Gary L. Clayman (University of Texas) has been tested
(genotyping) and authenticated by Research Animal Diagnostic Laboratory (Columbia MO).
H292, MDA-MB-231 and H460 cell lines obtained from the American Type Culture
Collection.

Patient and mouse blood sample preparation and CTC detection
Blood samples (7.5–15 ml) were collected from patients with different stages of SCCHN
and from healthy donors in BD Vacutainer® CPT™ cell preparation tubes (BD Franklin
Lakes, NJ), and were processed within 2 hrs of collection. With constant mixing for 30
minutes at room temperature, cells were incubated with 10 pM EGF-SERS nanoparticles,
followed by three PBS washes. The SERS spectra from each sample were measured and
analyzed using 785 nm laser excitation on a handheld Raman system (DeltaNu, Wyoming).
Mouse blood collection and white blood cell separation were performed according to the
manufacturer’s protocols. For details, see supplemental materials.

Immunohistochemistry staining of CTCs and primary tumor section
Immunohistochemical analysis for cytokeratin and EGFR expression on slides was
performed using Dako kit (Dako, Carpinteria, CA). The slides were incubated with anti-
cytokeratin and anti-EGFR antibody (1:100 dilution, Dako, Carpinteria, CA) according to
the manufacturer’s protocols.
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Results and Discussion
Figure 1A illustrates the preparation of SERS nanoparticles and their conjugation with EGF
peptide. SERS sensitivity was optimized by careful titration of reporter molecules. The N-
terminus of EGF peptide was conjugated to the outer layer of the gold nanoparticle polymer
coating. Figure 1B shows the characterization of EGF-SERS nanoparticles. The PEG
coating with targeting ligand is clearly observed as a thin “white” layer of ~5 nm by
transmission electron microscopy (TEM) negative staining (Left). Dynamic light scattering
(DLS) indicated a hydrodynamic size increase of ~30nm upon PEG-SH addition and peptide
conjugation (Right). Figure 1C shows the design of using EGF-SERS nanoparticle for
labeling and detecting CTCs. Briefly, lower density CTCs and leukocytes were isolated
from whole blood by density-gradient centrifugation, and then incubated with EGF-SERS
particles. Free excess nanoparticles were removed by 3 runs of gentle centrifugation (~15
min). The cell pellet was illuminated by 785 nm laser and a SERS spectrum was taken to
record the level of targeted nanoparticles. SERS signal intensity corresponds to the number
of CTCs in the presence of WBCs.

Detection sensitivity and specificity of EGF-SERS nanoparticles
It is well known that SERS spectroscopy can achieve single molecule and single
nanoparticle detection sensitivity (8–11). The main challenge of this assay was to minimize
non-specific binding of nanoparticles to host blood cells, which outnumber CTCs by 5–6
orders of magnitude.

In a proof-of-principle experiment, the SCCHN cell line Tu212, which overexpresses
EGFR, was used to test the targeting specificity of EGF-SERS nanoparticles. Tu212 cells
(10,000) were spiked into 2ml of mouse WBCs (~1×107) and incubated with EGF-
conjugated or pegylated-SERS nanoparticles. Targeting was confirmed by strong SERS
signals detected in samples incubated with EGF-SERS nanoparticle (Figure 2A, brown),
whereas only negligible SERS signals were detected in samples incubated with pegylated-
SERS nanoparticles (Figure 2A, pink), indicating minimal non-specific binding. A further
control experiment was carried out to test the non-specific binding of EGF-SERS
nanoparticles to healthy mouse and human WBCs (1×107). Figure 2A shows that SERS
intensities in healthy mouse and human blood cells (blue and green, respectively) were
reproducible and much lower compared with that in the presence of tumor cells (brown).

To determine assay sensitivity, 10, 100, 500, and 1000 Tu212 cells were spiked into 2ml of
mouse WBCs (~1×107 cells) and each incubated with 10pM EGF-SERS nanoparticle.
Figure 2B left shows SERS spectra measured in cell pellets (50 μL) with 785 nm laser
excitation and background corrected by subtracting the spectrum of pure WBCs (negative
control lacking Tu212 tumor cells). The detection specificity was greater than 104:1. Figure
2B right demonstrates the correlation between relative SERS signal intensity and the number
of spiked Tu212 cells. The relative fraction was obtained by taking the SERS signal
intensity at 1498 cm−1 from each background-corrected spectrum in Figure 2B left divided
by the peak intensity of non-specific SERS signal from the WBC negative control. The
linear correlation in Figure 2B indicates the limit of detection is in the range of 5–50 tumor
cells per ml of blood for the bulk measurement.

To further verify the specificity of this assay, we compared the SERS spectral intensity with
flow-cytometry measurements of cell surface EGFR expression on four different cell lines:
Tu212 SCCHN cells and H292 lung cancer cells (high EGFR-expression); MDA-MB-231
breast cancer cells (moderate EGFR-expression), and H460 lung cancer cells (low EGFR-
expression). As shown in Figure 2C left, the SERS intensities of different cell lines represent
the various levels of cell surface EGFR-expression. Figure 2C right shows that the contrast
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ratio between high (Tu212) and low (H460) EGFR-expression was quantified to be ~10 fold,
based on SERS measurements. Figure 2D shows EGFR-expression levels measured by
conventional flow-cytometry using pure cancer cells labeled with anti-EGFR antibody.
Flow-cytometry analysis revealed the contrast ratio between high (Tu212) and low (H460)
EGFR-expression is ~6 fold. Although the two methods reflected a similar pattern, it is
worth noting that the flow-cytometry measurement failed to report a meaningful result if a
500-fold excess of WBCs was present in the spiked tumor cells, as in the SERS
measurement. These results indicate that the newly developed EGF peptide-conjugated
SERS nanoparticle have superior targeting specificity when compared to whole antibody
targeting.

Detection of CTCs in blood samples from SCCHN patients
More than 90% of SCCHN cells overexpress EGFR (12–14). An IRB-approved clinical trial
was initiated to test whether the above optimized EGF-SERS nanoparticle assay was able to
detect CTCs in SCCHN patients’ peripheral blood. Figure 3A shows the blood sample from
patient-1 (stage: T4N3M0) incubated with both targeted (red) and non-targeted (blue)
nanoparticles. This sample showed a strong targeting effect, 44-fold greater than the non-
targeted SERS tag. Blood samples from three healthy donors were tested as controls using
EGF-SERS nanoparticle and gave reproducibly low background SERS intensity (black,
Figure 3A), which may have resulted from EGF-SERS nanoparticle remnants that were not
completely removed through the washing procedure. WBCs may express very low levels of
EGFR (15), which may also contribute to the observed background signal. Our flow-
cytometry analyses found that expression of EGFR on the surface of normal blood cells
from three healthy donors was negligible when compared to that of SCCHN cells (Suppl.
Figure 1).

To verify that the bulk measurement of the EGF-SERS signal indeed originates from CTCs,
we also examined each sample microscopically. A series of blood smear slides was prepared
from the same set of SERS nanoparticle-labeled cell pellets. Figure 3B captured a cluster of
CTCs stained with hematoxylin. To confirm that the CTCs were indeed labeled with EGF-
SERS nanoparticles, we took single-cell SERS spectra for the CTC cluster by switching the
microscope to the Raman mode with 785 nm laser excitation. As shown in inset (i) of Figure
3B, the red spectrum was recorded from the areas indicated by the arrow. All the spectral
fingerprints matched with the reference spectrum of pure SERS nanoparticles in green. The
feature of multiple peak matching serves as a cross-reference method by itself, which gives
us high confidence that the cells in this CTC cluster are indeed labeled with EGF-SERS
nanotags. As a control experiment, the laser spot was moved to a different area where only
leukocytes were present (Figure 3B, black arrow). As expected, the peak positions of the
single-cell SERS from host leukocytes (black curve of inset (ii)) did not align with the
reference spectrum in dotted lines. The fingerprint-like spectral pattern of SERS-nanotags
provides a potential system for quantitative Raman molecular profiling studies of CTCs.

Immunohistochemical studies of primary tumor and CTCs in blood
Figure 3C right shows a typical example of CTCs detected in blood samples from SCCHN
patients. Importantly, the nanoparticle-labeled cells with large nuclei were both cytokeratin-
and EGFR-positive (stained in brown, red arrows), confirming the malignant characteristics
and EGFR-overexpression of CTCs. In contrast, the smaller size hematologic cells were
cytokeratin- and EGFR-negative (stained in blue, black arrows). We also examined the
control blood samples from healthy donors with very low SERS signals, and consistently, no
cytokeratin- or EGFR-positive cells were detected (Suppl. Figure 2). To investigate
correlations between the molecular biomarker profiles of CTCs with those of primary
tumors, we analyzed serial sections of primary tumors from SCCHN patients in this trial.
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Specifically for patient-1 with late-stage SCCHN cancer, both cytokeratin- and EGFR-
expression were positive for the primary tumor (Figure 3C, left).

We further collected and examined blood samples from 20 SCCHN patients with various
histologies. One patient’s blood clotted and was not examined. We successfully detected
positive SERS signals that were greater than background in 17 of 19 (~90%) of patients.
Among 17 patients who showed positive SERS signals in the peripheral blood, 11 were
found to express EGFR in the corresponding primary carcinoma (Table 1). The other 6
patients underwent surgery or biopsy at other sites and tumor tissue blocks were not
available. Low SERS signals were detected in the specimens from patients 12 and 17.
Alternative procedures using filtration membrane to isolate CTCs confirmed the absence of
CTCs in the blood specimens from these two patients. CTC levels among the 19 patients
according to disease progression were: 2 of 19 (~10%) patients with localized disease
(median: 21 CTCs/ml; range: 7 to 36 CTCs/ml); 17 of 19 (~90%) patients with metastatic or
recurrent disease (median: 55 CTCs/ml; range: 1 to 720 CTCs/ml) (Figure 3D). Blood
samples from 3 normal controls did not show any CTCs. The data suggest a potential
association between SERS intensity and disease progression. Further inclusion of larger
numbers of patient specimens may provide valuable information validating the clinical
significance of the SERS assay described here.

Of note, patient-20 was tested when he developed an isolated, biopsy-proven spinal
metastases which was detected by PET/CT scan. At the time of the distant failure, his CTC
count was 11 cells/ml. The patient received radiosurgery followed by four cycles of
chemotherapy (paclitaxel, carboplatin and ifosfamide). Two months later, PET/CT showed
no evidence of disease and the SERS assay showed undetectable levels of CTCs.

In summary, we have developed a specific and sensitive methodology using EGF-SERS
nanoparticles that can rapidly detect CTCs in peripheral blood specimens from SCCHN
patients. Further application of this new technology could identify CTCs and analyze their
expression of specific prognostic and predictive biomarkers to predict disease progression
and monitor patient response to a given therapy, which will provide a novel approach that
may be superior to current imaging procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Design of EGF-SERS nanoparticle for labeling and detection of CTCs
(A) Preparation and schematic structures of Raman-encoded, PEG-stabilized, and EGF-
peptide–functionalized SERS nanoparticle. (B)TEM image and DLS measurement, (C)
assay principle of CTC detection from whole blood using EGF-SERS nanoparticles.
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Figure 2. Detection sensitivity and specificity
(A) Left SERS signals from EGF-SERS (brown) and non-targeted SERS (pink)
nanoparticles in Tu212 cells (1×104) spiked in 2ml mouse blood. Controls tested non-
specific binding of EGF-SERS nanoparticles to healthy blood cells of mouse (blue) and
human (green); Right: Comparing the SERS intensities for targeted and non-targeted
nanoparticles in (A). (B) Left: SERS spectra of 10, 100, 500, and 1000 Tu212 cells labeled
with EGF-SERS tags in 1×107 WBCs. Right: The correlation between relative SERS-signal
intensity and the number of spiked Tu212 cells. (C) Left: SERS spectra of 1×104 Tu212,
MDA-MB-231, H292, H460 cells in 5×106 WBCs. (D) Left: Examination of EGFR-
expression by FACS. Right: Various levels of EGFR-expression measured by SERS (C)
and fluorescence (D) intensities. Error bars represent the standard deviation of three
replicates.
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Figure 3. Detection of CTCs in patients’s blood samples and IHC staining for EGFR and
cytokeratin
(A) Blood sample from Patient-1 incubated with both targeted (red) and non-targeted (blue)
nanoparticles. Blood samples from three healthy donors were tested as controls using EGF-
SERS tags (black). (B) Image of a cluster of CTCs stained with hematoxylin. Insets: Single-
cell SERS spectra of CTC (i) and WBC (ii) recorded from the area indicated by the red and
black arrow, respectively. (C) Left: Representative IHC images of primary tumor from
Patient-1, stained with H&E, anti-EGFR, and pan-cytokeratin antibody. Right:
Representative images of CTCs (red arrows) and hematologic cells (black arrows) from
Patient-1’s blood sample. (D) CTC counts in peripheral blood samples from 20 SCCHN
patients.
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