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Abstract
Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological
accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid
beta is being challenged by new evidence for an essential function of amyloid beta at the synapse.
Amyloid beta protein exists in different assembly states in the central nervous system and plays
distinct roles ranging from synapse and memory formation to memory loss and neuronal cell
death. Amyloid beta is present in the brain of symptom-free people where it likely performs
important physiological roles. New evidence indicates that synaptic activity directly evokes the
release of amyloid beta at the synapse. At physiological levels, amyloid beta is a normal, soluble
product of neuronal metabolism that regulates synaptic function beginning early in life.
Monomeric amyloid beta 40 and 42 are the predominant forms required for synaptic plasticity and
neuronal survival. With age, some assemblies of amyloid beta are associated with synaptic failure
and Alzheimer’s disease pathology, possibly targeting the N-methyl-D-aspartic acid (NMDA)
receptor through the α7-nicotinic acetylcholine receptor (α7-nAChR), mitochondrial amyloid-β
alcohol dehydrogenase (ABAD) and cyclophilin D. But emerging data suggests a distinction
between age effects on the target response in contrast to the assembly state or the accumulation of
the peptide. Both aging and beta amyloid independently decrease neuronal plasticity. Our
laboratory has reported that amyloid beta, glutamate and lactic acid are each increasingly toxic
with neuron age. The basis of the age-related toxicity partly resides in age-related mitochondrial
dysfunction and an oxidative shift in mitochondrial and cytoplasmic redox potential. In turn,
signaling through phosphorylated extracellular signal-regulated protein kinases (pERK) is affected
along with an age-independent increase in phosphorylated cAMP response element-binding
protein (pCREB) This review examines the long-awaited functional impact of amyloid beta on
synaptic plasticity.
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1. Introduction
Alzheimer’s disease (AD) arises on a neuropathological background of amyloid plaques and
neurofibrillary tangles (NFT) characterized by ongoing neurodegeneration in areas of brain
involved in learning and memory. Synaptic pathology is an early marker of both AD and
aging [1,2,3]. The best understood AD pathogenesis could be explained by a loss of
plasticity [4,5] that may adversely affect dendritic ramifications, synaptic remodeling, long-
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term potentiation (LTP), axonal sprouting, neurite extension, synaptogenesis, and
neurogenesis. Plasticity, the process by which synapses modulate their strength and form
new connections with other neurons plays a particularly important role in response to injury
and disease [6]. Age is the most important and universal risk factor for AD perhaps because
the biological capacity for plasticity decreases with age [7,8]. With aging, a combination of
subclinical AD pathology, inflammation, Lewy bodies, microinfarcts and vascular lesions in
the cortical and hippocampal regions contribute to late-life brain atrophy and dementia in
each individual [9]. Thus, as a consequence of age, the ability to sustain learning and
memory are diminished or slowed [10]. Age could interact with other variables that
influence neuroplasticity in at least two ways. Conventionally, aging may shift the complex
balance of amyloid beta (Aβ) metabolism away from the potentially neurotrophic products
of α secretase processing and toward the production of neurotoxic moieties containing the
intact Aβ fragment [11]. Alternatively, aging could render the brain vulnerable to Aβ-protein
neurotoxicity [12] an age-related susceptibility [13]. Aβ toxicity in vivo is also highly
species-specific; toxicity is greater in aged rhesus monkeys than in aged marmoset monkeys,
and is not significant in aged rats [12]. These results suggest that Aβ neurotoxicity in vivo is
a pathological response of the aging brain, which is more pronounced in higher order
primates. Thus, longevity may contribute to the unique susceptibility of humans to AD by
rendering the brain vulnerable to Aβ neurotoxicity [12]. The pathological hallmark of Aβ
deposits appears to precede the hallmark of phosphorylated tau in the brain [14]. Aβ1-42 at
high doses impairs cognitive and memory functions in mouse models of AD. But the
relationship of Aβ deposition to synapse loss is less clear in these models. Additionally,
whether Aβ deposits might be the early symptom contributing to neurodegeneration or
whether synaptic pathology might be an early event preceding amyloid deposition in AD is
not clear. Synaptic loss might occur early in AD and molecular biomarkers such as tau
hyperphosphorylation and Aβ deposits might be indicators of prolonged disease. Moreover,
a central question is whether Aβ plays a direct role in the neurodegenerative process in AD.
There are two schools of thought on involvement of Aβ in Alzheimer’s disease. In one, Aβ
initiates the disease once produced in excess, which has motivated most AD clinical trials.
Alternatively, Aβ does not initiate but rather is secondary to other pathogenic events as a
protective response to neuronal insult [15].

Two models have emerged to explain the role of Aβ in normal and AD pathological state.
According to the most popular model, oligomeric [16] and fibrillary Aβ deposits [17,18] are
responsible for the eventual neuronal degeneration involving disruption of glutamatergic
synaptic function leading to the characteristic cognitive deficits [19,20,21,22]. The second
model dictates that Aβ may normally serve as a negative feedback signal that maintains
neuronal activity within a normal dynamic range. In vivo studies on wild-type animals [23]
and in vitro studies on wild-type [24] and knock-out [25] animals demonstrate that Aβ
production significantly increases with increase in communication between brain cells [26]
and this increased level depresses excitatory synapses and reduces neuronal activity. Aβ was
proposed as a regulator of ion channel function [27] and as essential for neuronal health
[28]. Aβ is secreted from neurons in response to synaptic activity and that Aβ, in turn, down
regulates synaptic transmission [29]. This negative feedback loop could operate as a
physiological homeostatic mechanism to limit levels of neuronal activity [30].

A youthful role for Aβ may enhance neuronal plasticity to help the remaining neural circuits
compensate for lost or broken circuits and improve overall network performance and
neurological function (Figure 1). Improving network activity may also help to prevent the
inexorable loss of neuronal processes and cell bodies that occurs in AD and other
neurodegenerative disorders. In the present paper we discuss the recent mechanistic link
between Aβ function and synaptic plasticity. This review focuses on the interface between a
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physiological role of Aβ and toxicity in terms of molecular mechanisms of synaptic
plasticity.

2. Aβ formation and assembly
The Aβ peptide is derived by proteolytic processing of the amyloid precursor protein [APP;
31,32], a type I integral membrane protein [33]. Aβ is a prominent constituent of the
amyloid plaques present in AD brain [34]. In the beginning, APP is delivered to the plasma
membrane where it is subjected to proteolytic processing by α-secretase. However, absent
the α-secretase cleavage, APP molecules are internalized into endocytic compartments
where they are subjected to cleavage by β-secretase (BACE) and γ-secretase to generate Aβ.
Therefore, inhibition of the combined action of β- and γ-secretase that leads to Aβ peptide
generation is regarded as a promising approach to treat AD. The Golgi apparatus and to a
lesser extent the endoplasmic reticulum are also sources of a distinct population of Aβ
peptides secreted into the extracellular space [35]. The majority of secreted Aβ peptides are
40 amino acids in length (Aβ40), whereas a smaller fraction of Aβ is cleaved to produce a
42 amino acid species (Aβ42). Aβ42 is the main amyloid peptide that drives production of
amyloid fibrils [36] in AD patients. Aβ in turn can be degraded by proteases such as the
insulin-degrading enzyme [37,38] and neprilysin [39]. Aβ generated from axon-transported
APP is released from presynaptic sites and subsequently accumulates close to the nerve
terminal [40].

The hydrophobicity of Aβ42 leads to a number of aggregation states [41]. This ability to
self-associate [49,50] into different assembly states ranges from dimers to soluble oligomers
to insoluble aggregates of fibrils [51]. Initially, it was assumed that toxicity was mediated by
fibrillar Aβ similar to that present in amyloid plaques. This together with the findings that
monomer is innocuous and that amyloid plaques alone cannot account for disease has lead
many to conclude, if it isn’t fibrillar Aβ and it isn’t Aβ monomer then it must be some other
form of Aβ [52]. Soluble non-fibrillar Aβ assemblies [19,53] are more toxic than the fibrillar
form, but as yet the specific form of Aβ which causes injury to neurons in vivo has not been
identified. These oligomers have been described in cultured cells [44] as well as in APP
transgenic mouse brain and human brain [45,46,47,48]. Synthetic oligomers specifically
bind to synapses of hippocampal neurons [42,43]. Soluble Aβ (sAβ) is found, at low
concentrations, as a normal constituent of biological fluids [54,55,56]. As demonstrated by
Piccini et al. [57], the composition as well as the aggregation and toxicity properties of
soluble Aβ aggregates that accumulate in AD is different from those of normal aging. One
such form of Aβ known as N-terminal truncated pyroglutamyl amyloid peptide (Aβpy3-42)
is the predominant form of early aggregates that alter the membrane permeability,
suggesting that they form pores in the membrane like other amyloidogenic peptides [57,58].
Naturally occurring Aβ peptides can begin to assemble in vivo into metastable dimers,
trimers and higher oligomers while still at low nanomolar levels [44,59,60].
Immunocytochemical approaches identified different forms of Aβ produced with age in an
APP transgenic (Tg2576) mouse model of AD [61]. Initially Aβ40 and Aβ42, the most
predominant form of Aβ, occurs in its soluble form. At 6–10 months, the soluble forms of
Aβ decrease as SDS-insoluble forms of Aβ40 and Aβ42 increase exponentially. SDS-
resistant Aβoligomers develop only in older Tg2576. After 11–12 months, Aβ is converted
into diffuse plaques. At later ages, the Aβ accumulates in diffuse plaques, neuritic plaques
with amyloid cores [61]. It seems reasonable that the synaptic and neuronal compromise
seen at sites distant from plaques is mediated by an Aβ species that can readily diffuse and
access the space in and surrounding the synaptic cleft [52]. The physiological level of Aβ is
controlled by its production, degradation and clearance [23,62] while a defect in clearance
leads to the accumulation of Aβ [52].
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3. Activity-dependent Aβ production
Since synaptic loss correlates better with memory loss than plaque burden and people with
mutations in the APP gene who make more amyloid invariably develop AD, the critical
question emerges, what is the role of Aβ in synaptic activity and progression of the disease
process? The mechanism regulating Aβ production and its subsequent release by neurons is
closely linked with synaptic activity [29]. Thus, understanding the factors that regulate Aβ
levels has implications for disease pathogenesis as well as for developing therapeutics. In
animal models as well as in humans, the activation of muscarinic M1 acetylcholine receptors
increases α-secretase cleavage of APP and consequently reduces Aβ levels [63,64] whereas
activation of NMDARs decreases α-secretase cleavage, consequently increasing Aβ levels
[65]. Stimulation with muscarinic agonists or activators of protein kinase C (PKC), such as
phorbol esters causes the up-regulation of the α-secretase cleavage of APP [66]. Thus,
regulation of the α-secretase contributes to regulation of Aβ peptide and toxicity in vivo
[67]. Modulating synaptic transmission has been shown to alter extracellular soluble Aβ
levels in organotypic brain slice [29]. Synaptic activity modulates interstitial fluid Aβ levels
in vivo in APP transgenic and wild-type mice [23]. Neural activity regulates the trafficking
of proteins at synaptic sites [68,69]. Thus it is possible that the induction of neural activity
promotes the endocytosis of surface APP, enhancing the accessibility of APP to BACE in
endosomal/recycling compartments [29]. In acute brain slices, synaptic vesicle cycling
alone, in the absence of neuronal depolarization, was sufficient to drive release of Aβ from
neurons [23]. Similar increases in Aβ levels were demonstrated in hippocampal seizures
induced by electrical stimulation. However, decreasing synaptic transmission using
tetrodotoxin (TTX) or tetanus toxin rapidly reduced interstitial fluid Aβ levels by 30% and
80%, respectively [26]. Cirrito et al. [26] also show that synaptic activity-induced increase
in endocytosis drives more APP into the endocytic compartment, ultimately resulting in
increased Aβ production and release. Aβ produced in the endocytic pathway is then brought
to the cell surface where it is released into the extracellular fluid [70]. Inhibition of
endocytosis reduces APP internalization and reduces Aβ production and release in cell lines
[71]. Support for a casual link between synaptic activity and Aβ levels in humans comes
from recent brain imaging studies of regions that contain the most metabolic activity
throughout life (and presumably have the highest levels of neuronal activity) are the same
regions that degenerate and accumulate Aβ [72]. The increased synaptic activity enhances
both oligomer formation and localization at synaptic sites in rat and mouse hippocampal
slices and primary human cortical neurons in culture [73]. These oligomers appear to bind to
NMDARs at the synapse [74] and induce internalization of NMDAR [75] and deregulation
of NMDA signaling pathways [76]. In this regard, neuronal activity not only enhances
oligomer targeting but also facilitates oligomer formation at synaptic sites [73]. These
findings indicate that sustained synaptic activity causes an increase in oligomeric Aβ which
accumulates with age and leads to synaptic dysfunction and neuronal death. There seems to
be a homeostasis of a normal negative feedback function under normal physiological
conditions where an increased neuronal activity produces more Aβ; the enhanced Aβ
production depresses synaptic function; the depressed synaptic function will decrease
neuronal activity [29]. Disturbances in this homeostatic mechanism of Aβ could produce the
problems of AD patients. Persistently elevated neuronal activity if it is unchecked could lead
to excitotoxicity [77], as well as higher levels of secreted Aβ peptides, which may convert to
neurotoxic fibrils with consequent synaptic depression and neuronal toxicity [78,79]. Thus
Aβ toxicity might represent a disturbance of normal function with the net balance of
production versus clearance determining a beneficial synaptic or toxic fate.
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4. A normal physiologic role for Aβ
Aβ has been extensively studied because of its association with plaques in AD brains,
interference with synaptic functionand possible pathogenesis of AD [60]. However, Aβ
exists in normal individuals without any known pathology. Therefore, there has been a
conscientious search for its normal physiological role in the brain, particularly its possible
involvement in synaptic plasticity and neuronal survival. Aβ at physiological levels is
essential for synaptic plasticity in normal individuals [80]. The physiological functions of
Aβ, as well as the primary mechanisms that initiate early Aβ-mediated synaptic plasticity are
now being revealed. We hypothesize that the protective or destructive effects of Aβ are
determined by its relative concentration in addition to the age-related cellular environment.
Physiologically low regulated concentrations of Aβ would play a critical function in
mediating synaptic plasticity and improve cognitive functions whereas, accumulation of
higher concentrations of Aβ together with age effects cause disruptions of this regulation
with consequent synaptic dysfunction and loss, as seen in AD [76]. Other factors such as
structural changes of Aβ due to pathological processing and/or post-translational
dysregulations as well as age related changes in Aβ clearance cannot be excluded. The large
body of evidence for activity-dependent production of Aβ strongly suggests a normal
function for this peptide. Proposed functions of Aβ include control of synaptic activity and
memory consolidation, trophic and neuronal survival, cholesterol transport and antioxidant
functions.

4.1. Lower levels of Aβ modulate synapticplasticity
It is generally believed that plasticity, such as LTP and long-term depression (LTD), is
important for learning and memory. Multiple signaling pathways, including several protein
kinases and phosphatases, are required for the generation of LTP and LTD [81]. These same
pathways have been shown to influence in vivo phenomena, such as learning and memory
[82]. Aβ is released in lower amounts in normal brains throughout life during synaptic
activity and seems to be beneficial for normal brain synaptic functions [83]. Aβ is normally
produced in the brain, where the in vivo concentration in the rodent brain has been estimated
to be in the picomolar range [84]. Picomolar Aβ is present in both cerebrospinal fluid and
plasma of healthy individuals throughout life [55]. Recent results indicate that Aβ serves an
essential role at the synapse and in synaptic structure-functional plasticity critical to learning
and memory. A necessary role of Aβ in synaptic plasticity and memory in normal brain is
supported by the observation that APP knock-out (KO) mice show impaired LTP and
memory [85]. The impaired synaptic plasticity and memory found in BACE1 KO mice also
suggest a necessary role of Aβ [86]. Similarly, the necessary role of Aβ in synaptic plasticity
and memory is seen from loss of presenillin function (γ-secretase) [87]. Puzzo et al. [83]
show thatpicomolar concentrations (200 pM) of both Aβ42 monomers and oligomers cause
a marked increase in long-term potentiation, whereas high nanomolar concentrations (200
nanomolar) lead to the well established reduction of potentiation in the hippocampus.
Picomolar levels of Aβ42 also produce a pronounced enhancement of both reference and
contextual fear memory. Thus, lower concentrations play a novel positive modulatory role
on neurotransmission and memory, whereas high concentrations are associated with
neuronal cell death. The lower concentrations of aged Aβ42used by Puzzo et al.[83] are
close to those found in the normal brain [88,89,90,91] and shown to enhance LTP and
memory. Increase in synaptic activity will increase Aβ production [29] while lowering
synaptic activity minimizes Aβ production. Similarly specific stimulation of NMDA
receptors promotes Aβ production [65] and Aβ in turn depresses synaptic activity. Thus
indirectly Aβ also plays a role in suppressing excessive glutamate release. Interestingly, Aβ
may play an important role during synapse elimination [92] and stimulatation of
neurogenesis in the hippocampus during brain development [93]. These studies provide
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convincing evidence to show that physiological levels of Aβ have a role in controlling
synaptic activity.

4.2. Neuronal survival
Aβ42 is normally produced and secreted by cells in much lower quantities than Aβ40, which
represents ~90% of the total secreted Aβ [94]. However both species of Aβ are necessary for
neuronal survival. Both Aβ40 and Aβ42 at physiological concentrations are important in
neuronal survival and memory (Table 1). Physiological levels of Aβ also have trophic and
neuroprotective actions in trophic deprived conditions [95]. Many Aβ has a physiological
role in normal synapse function. In organotypic hippocampal slices, BACE activity is
increased by synaptic activity and the resulting Aβ peptides depress excitatory transmission
through α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and N-methyl-D-
aspartic acid (NMDA) receptors, suggesting a role for Aβ in homeostatic plasticity [29]. Aβ
may have an important physiological role in synapse elimination during brain development
[reviewed in reference 92]. Inhibition of endogenous Aβ production by exposure to
inhibitors either of β- or γ-secretases in primary neuronal cultures caused neuronal cell death
[28]. Thus targeting Aβ formation pharmacologically, or immunologically, could be
deleterious [96]. Both Aβ40 and Aβ42 have been shown to be protective. Synthetic Aβ42
monomers at 30–100 nM support the survival of developing neurons under conditions of
trophic deprivation and protect mature neurons against excitotoxic death [97]. In cultured
neural stem cells, Aβ42 increased the number of newborn neurons [93]. Aβ42 exhibited
highly protective effects not only when combined with NMDA (100 nM), but also when
applied before or after the NMDA pulse [97]. The later evidence excludes a direct
interaction between Aβ42 monomers and NMDARs. Monomers of Aβ40 were also fully
protective against NMDA toxicity. Neurotrophic function of Aβ40 was obtained in a cell
culture treated with picomolar levels of Aβ40 [98,28]. Cells treated with such picomolar
levels of Aβ40 reverse the toxicity of secretase inhibition. These findings provide
compelling evidence for a role for Aβ in neuronal survival. The pro-survival role of Aβ is
summarized in Fig. 1.

4.2.1. Insulin like growth factor-I (IGF-I) and insulin signaling—The underlying
mechanism of neuronal survival with Aβ is emerging. Neuronal synapses and astrocytes of
memory-processing brain regions possess insulin receptors (IRs) [99] which when activated
by insulin facilitate synaptic plasticity in normal brain [100]. IR and Insulin-like growth
factor I (IGF-I) receptors consist of α-subunits and transmembrane β-subunits. Binding of
insulin or IGF-I to the α-subunit increases the intrinsic tyrosine kinase activity of the β-
subunit, and causes autophosphorylation of the β-subunit, thus triggering tyrosine
phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2, as well as Shc [101] as an
important pathway of cell survival. To protect against Aβ toxicity, the tyrosine-
phosphorylated sites create binding sites for various signal-transducing molecules containing
Src homology-2 domain, such as phosphoinositide 3-kinase (PI3K) and growth factor
receptor-bound protein 2 (Grb2), thus activating PI3K/phosphoinostide-dependent kinase 1
(PDK1)/Akt (protein kinase B)/glycogen synthase kinase (GSK)-3α/-3β and Ras/Raf-1/
mitogen-activated protein kinase/extracellular-signal regulated kinase (MEK/ERK)
signaling pathways [101]. In normal brain, IGF-I and insulin promote glucose utilization,
energy metabolism, and neuronal survival [102], largely through PI3K/Akt/GSK-3β
signaling [103,104]. Consistent with positive effects of insulin on synaptic plasticity [105],
acute insulin treatment improved memory in rats [106] and also in normaladults and AD
patients [107] by strongly activating ERK and Akt and blocking c-Jun N-terminal kinase
(JNK) activation in a PI3K-dependent manner [108]. The mechanism involves many steps
beginning with Aβ activation of IGF-1/insulin receptors by locally produced IGF-1 or,
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possibly, Aβ monomers may bind to IGF-1/insulin receptors, as already shown for Aβ
oligomers [109,110].

4.2.2. The PI3K/Akt signaling—PI3K, a membrane-associated second messenger
protein, and its downstream kinase, Akt, are associated with neuronal survival [111] and
plasticity [112] via activation of transcription pathways and protein synthesis. PI3K
pathway, which required the activation of IGF-1/insulin receptors, is the most convincing
prosurvival effect of Aβ42 monomers. The PI3K signaling pathway is important in the
transmission of survival signals in many cell types including neurons [113,114]. The PI3K-
Akt signaling cascade, initiated by IRS, is phosphorylated by stimulated insulin- andIGF-
receptor tyrosine kinases [115]. One of the kinases known to lie downstream of PI3K is Akt,
which can be directly activated by products of PI3K [116] by promoting its phosphorylation
at Ser473 and Thr308 [117]. Activated Akt, in turn, phosphorylates a wide range of
substrates activating anti-apoptotic (survival) factors and inactivating pro-apoptotic factors
[114,117]. Certain proapoptotic mediators, such as the transcription factor forkhead
(FOXO), the tau kinase GSK-3β, and the Bcl2 antagonist BAD proteins, are inactivated by
Akt [118,119]. Akt substrates such as mammalian target of rapamycin (mTOR; Ser2448)
and decreased levels of cell-cycle inhibitors (p27kip1) are found in AD temporal cortex when
compared to controls [120]. Akt downregulates the activities of GSK-3α and GSK-3β by
phosphorylating the former at Ser21 and the latter at Ser9 [118]. GSK-3α has been
implicated in the production of Aβ peptide [117,121] while increased GSK-3β activity has
been implicated in tau hyperphosphorylation [122,123,124] and neuronal cell death
[124,125]. Phosphorylation/inactivation of GSK-3β, suppresses GSK-3β-dependent
phosphorylation of tau at residues overphosphorylated in AD and prevents apoptosis of
confluent cells. Treatment of cortical neurons with Aβ42 monomers increased Ser9
phosphorylation (inhibition) of the Akt substrate, GSK- 3β [97]. Inhibition of GSK-3β
promotes cell survival through a variety of mechanisms including a reduced degradation of
β-catenin, which then translocates into the nucleus and activates the transcription of
protective genes [126].

4.2.3. Extracellular-signal regulated kinase 1/2 signaling (ERK1 and ERK2)—
The mitogen-activated protein kinase (MAPK) family of protein kinases is traditionally
viewed as important kinases in transmitting extracellular membrane signals intothe nucleus.
The 44 kDa ERK1 and 42 kDa ERK2 are members of the MAPK superfamily that
specifically respond to Aβ in brain cells [127]. ERK1 and ERK2 are known to be activated
through dual phosphorylation by the MAPK/ERK on threonine and tyrosine in the Thr-Glu-
Tyr sequence of the activation loop [128,129]. ERK signaling is critical for memory and
tightly regulated by many proteins. ERKs are critical for human learning as revealed by
human mental retardation syndromes [130]. They are also known to contribute to molecular
information processing in dendrites, to stabilize structural changes in dendritic spines and to
interact with scaffolding and structural proteins at the synapse [131]. ERK is an important
neuronal marker for activity through activation by cytosolic calcium and depolarization of
the membrane [132,133]. On phosphorylation and activation, ERKs phosphorylate other
cytoplasmic effectors and are translocated into the nucleus where they phosphorylate
transcription factors such as Myc, Fos, Jun, and Elk1 [104,134]. Direct substrates of the
ERKs includetwo members of the RSK family of protein serine-threonine kinases, RSK1
and RSK2. The transcription factor CREB is phosphorylated on serine 133 in vivo by RSK2
in NGF-stimulated PC12 cells [135]. The dependence of CREB phosphorylation on
activation of the ERK pathway is suggested by inhibition of Aβ-induced phosphorylation of
CREB by piceatannol and the MEK inhibitor PD98059. Other kinases, such as protein
kinase A (PKA) or Ca2+/calmodulin-dependent protein kinases [CAM kinases; 136] may
also contribute to phosphorylation of cyclic AMP response element (CRE)-binding protein
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(CREB) in response to Aβ but the complete inhibition of CREB phosphorylation by
PD98059 suggests that the ERK pathway is the main signaling pathway elicited by Aβ
leading to transcriptional activation through CREB [137]. These data provide a mechanism
by which Aβ alters gene expression through the transcription factor CREB [137], possibly
resulting in a ceiling of activation that limits further formation of new memories.

4.2.3. Protein kinase C—PKC is part of a multigene family of serine-threonine kinases
central to many signal transduction pathways [138] with a prominent role in memory [139].
It is likely that Aβ-induced increases in cytosolic Ca2+ signals are transmitted to PKC for
PKC-mediated transcriptional activation. In addition, PKC activates ERK by interacting
with Ras or Raf-1 [140] to initiate CREB phosphorylation. While PKC levels decline in AD
[141], their activation restores K+ channel function in cells from AD patients [142]. In
addition, activation of PKC directly or indirectly enhances the α-processing cleavage of APP
[143]. The activation of PKC has also been shown to prevent Aβ toxicity in rat primary
hippocampal neurons [144].

4.2.4. Calcium signaling—Synaptic activity is required for neurons to survive[145] by
entry of appropriate amounts of Ca2+ through synaptic NMDA receptors and other Ca2+

channels [146]. The process implicates key protein effectors, such as CaMKs, MAPK/ERKs,
and CREB. Properly controlled homeostasis of calcium signaling not only supports normal
brain physiology but also maintains neuronal integrity and long-term cell survival. Ca2+

signaling pathways can suppress apoptosis and promote survival through two
mechanistically distinct processes. One process involves the PI3K/AKT signaling pathway
which promotes survival [147]. The other pathway requires the generation of calcium
transients in the cell nucleus which offers long-lasting neuroprotection [146,148].
Malfunctioning of calcium signaling to the cell nucleus may lead to neurodegeneration and
neuronal cell death [149].

Dysregulation of intracellular calcium signaling has been implicated in the pathogenesis of
Alzheimer’s disease [150]. Aβ is known to act through multiple targets [151] including Ca2+

channels and various receptors in membranes. Synthetic Aβ binds to the calcium permeable
nAChRs with high affinity [152]. Aβ42 administered in the low picomolar range activates
nAChRs at presynaptic nerve endings of synaptosomes [83,153]. Under normal conditions,
activation of nAChRs is necessary for the Aβ-induced increase in synaptic plasticity and
memory [23]. However, it remains to be determined whether these effects are mediated by a
direct physical interaction of the peptide with the nAChR. In addition, Aβ enhances
transmitter release by transient increase of glutamate release from the presynaptic terminal
that results from brief periods of high frequency stimulation with Ca2+ buildup within the
terminal that triggers mechanisms of short-term synaptic plasticity [154].

Aβ directly interacts with Ca2+ channels such as voltage-dependent calcium channels
(VDCC) and TRP cation channels (TRPC) to produce a transient increase in Ca2+ necessary
for synaptic plasticity and neuronal survival. Aβ interacts directly with the recombinant L-
type Ca2+ channel (α1C) subunit to increase Ca2+ channel protein at the cell membrane and
hence increased Ca2+ conductance [80]. Within the TRPC subfamily, TRPC3 and 6 have
been shown to protect cerebellar granule neurons against serum deprivation–induced cell
death in cultures and promote neuronal survival in rat brain [155]. A neuronal survival
mechanism of Aβ may also involve altered expression of K+ channels [80]. In cerebellar
granule neurons, 24-h pre-incubation with 1 μM unaggregated Aβ protein resulted in a 60%
increase in the ‘A’-type component of K+ current possibly reflecting Ca2+-mediated gene
expression [156]. A full understanding of these signal transduction pathways of Ca2+ may
lead to refined pharmacological strategies that minimize deadly effects of Ca2+ entry and
optimize its growth- andsurvival-promoting properties.
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4.2.5. Transcriptional activation—CREB is one of the best characterized stimulus-
induced transcription factors that activate transcription of target genes in response to a
diverse array of stimuli, including neuronal activity, a variety of protein kinases such as
protein kinase A (PKA), MAPK/ERKs, pp90 ribosomal S6 kinase (RSK), and Ca2+/
calmodulin-dependent protein kinases (CaMKs). These kinases all phosphorylate CREB at a
particular residue, serine 133 (Ser133) which is required for CREB-mediated transcription
[157]. In contrast to CaMKs, ERKs cannot directly phosphorylate CREB. Two related RSKs
and mitogen- and stress-activated protein kinases (MSKs) transmit the signal from activated
ERKs to CREB [158]. CREB has been shown to be involved in certain types of
hippocampal LTP as well as long-term memory, neurogenesis and synaptogenesis
[159,160]. Transcriptional activation of CREB recruits a multiprotein assembly called a
transcriptional co-activator complex. These often include proteins with intrinsic
acetyltransferase activity [161]. Among the best characterized transcriptional co-activator
proteins is CREB binding protein (CBP) [162]. A role for CBP in memory storage was first
demonstrated in a mouse model of Rubinstein-Taybi Syndrome [163]. There is no direct
evidence indicating how lower levels of Aβ might initiate CREB phosphorylation
principally by Ca2+ signaling and/or through PKA/Atk/ERK pathways. However, exceeding
physiological levels of Aβ could deregulate Ca2+ signaling mechanism by excessive
accumulation of Ca2+ in the cytoplasm and cytoplasmic organelles such as mitochondria.
Since hippocampal neuronal calcium is one of the most potent signals in neuronal gene
expression [149], Aβ-induced Ca2+ deregulation may lead to compromised synaptic
function. Consistence with this hypothesis, AD has been associated with impaired cAMP
signaling which may contribute to the pathophysiology of the disease. Levels of the
activated (i.e. phosphorylated) form of CREB are reduced in AD compared to that of an age-
matched healthy control group [164]. Calcium signaling to the cell nucleus is the key
inducer of CREB phosphorylation on its activator site serine 133 [165]. Experiments in aged
neurons show altered calcium signaling at the level of either calcium signal generation and/
or calcium signal propagation [166]. These studies indicate a critical role of calcium in Aβ-
induced synaptic activity and memory formation by regulating specific signal transduction
pathways.

4.3. Cholesterol transport
High cholesterol levels have been linked to overproduction of Aβ and are a risk factor for
AD. One of the physiological functions of Aβ has been suggested to control cholesterol
transport [167]. Prevalence of AD is reduced among people treated with inhibitors of
cholesterol biosynthesis, statins [168,169] and animal studies support these results [170]. In
vitro and in vivo studies have shown that cholesterol modulates APP processing and affects
APP mRNA expression [171]. Another mechanism is the increased binding of Aβ to ApoE4
over non-E4 alleles. ApoE is a lipid and cholesterol transport protein responsible for the
efflux of cholesterol from neurons to form stable complexes both in vitro and in vivo [172].
Allele ApoE4 is a major risk factor in AD [173]. This relationship might promote
synaptogenesis, since in vitro studies have demonstrated that cholesterol released by
astroglia increases synaptogenesis [174,175] with resulting modulation of spike rates [176].
Together, this evidence indicates that one of the physiological functions of APP might be to
control cholesterol movement across neuronal membranes [167].

4.4. Antioxidant
The three histidine residues in Aβ control the redox activity of iron, indicating that Aβ is
likely to be an important antioxidant. Aβ40 at 5 μM was found to protect primary neuronal
cultures from the neurotoxicity of iron [94]. Nakamura et al. [177] found that Aβ40 or Aβ42
inhibits Fe3+ or Cu+2-catalyzed ascorbate oxidation and hydroxyl radical generation.
Nanomolar concentrations of Aβ can block neuronal apoptosis following oxidative damage,
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which suggests that Aβ has a protective role against oxidative stress [178] and is essential
for neuronal survival [28,94]. Monomeric Aβ40 was found to protect neurons cultured in a
medium containing 1.5 μM Fe2+ without antioxidant molecules. However, the antioxidant
protection of monomeric Aβ40 depends on the type of oxidant used. Aβ40 inhibits cultured
neurondeath caused by Cu2+, Fe2+, and Fe3+ but does not protect neurons against H2O2-
induced damage [94]. In cerebral cortical neuronal cultures, monomeric Aβ40 inhibits the
reduction of Fe3+ induced by vitamin C and the generation of superoxides and prevents lipid
peroxidation induced by Fe2+ [94]. Moreover, monomeric forms of Aβ42 also exhibited
antioxidant and neuroprotective effects. However, oligomeric or aggregated Aβ40 and Aβ42
were devoid of such antioxidant activity and their neuroprotective activity was demolished.
Thus, depriving neurons of the protective activity of Aβ42 monomers may also be an
important factor in neurodegeneration [97]. These findings provide novel insights on a
normal antioxidant role of Aβ and indicate that monomeric Aβ protects neurons by
quenching metal-inducible oxygen radical generation and thereby inhibits neurotoxicity.

5. Effects of Aβ on dendritic spine plasticity and synaptic function
Synapse loss is thestrongest anatomical correlate of the degree of clinical impairment in AD
[179]. Loss of dendritic spines at the sites of excitatory synaptic transmission may be the
major pathological mechanism in Alzheimer’s disease. However, issues regarding the level
of Aβ concentration, type of Aβ species as well as the mechanisms of its production and
actions that lead to synaptic loss remained poorly understood. Continuous overproduction of
Aβ at dendrites or axons acts locally to reduce the number and plasticity of synapses
[76,180]. The majority of excitatory synapses in the brain are made on the heads of dendritic
spines [181]. Initially, synapse degeneration begins at the level of dendritic spines, the loci
of memory-initiating mechanisms [182,183,184]. As seen in AD and transgenic mouse AD
models, significant decreases occur in spine density [185,186,187,188], molecules involved
in spine signaling [189,190] and control of filamentous actin (F-actin) [191]. In a mouse
model for AD, the vicinity of amyloid plaques is characterized by highly dysmorphic
neurites and spine turnover [192,193] causing a net loss of spines. These abnormalities in
dendritic spines develop even before appearance of clinical symptoms in AD, likely because
of cognitive reserve [187]. This phenotype could be caused by Aβ oligomers, which have
been shown to block LTP and directly induce LTD, spine loss and memory loss [50].
Soluble oligomers of Aβ have a direct synaptotoxic effect at nanomolar concentrations [51].
In hippocampal culture, the soluble Aβ produced abnormalities in spine composition, shape,
and abundance that strongly support the hypothesis that soluble Aβ initiates toxic
mechanisms in AD brains that account for synaptic damage [74]. Continued exposure to Aβ
caused abnormal spine morphology, with induction of long thin spines, loss of spine
cytoskeletal protein drebin and a significant decrease in spine density [74]. In a direct
investigation of the acute effects of extracellular and intracellular Aβ42 peptides on synaptic
transmission, Moreno et al. [194] noticed inhibition of synaptic transmission by nanomolar
concentrations of intra-axonal oligomeric Aβ42, but not oligomeric Aβ40 or extracellular
oligomeric Aβ42. Similar nanomolar levels of Aβ disrupt hippocampal LTP [60,195].
Importantly, physiological concentrations of Aβ in extracellular fluids are picomolar [196].
Thus, local dendritic and axonal abnormalities associated with amyloid deposits lead to loss
of synapses and the breakage of dendrites and axons in AD [187,193]. As dendritic spines
are the major connecting elements of one neuron with another in the brain, changes in spine
plasticity would have a detrimental impact on disease pathogenesis and progression. Overall,
the accumulation of soluble or fibrillar amyloid deposits in AD causes disruption of synaptic
connections on a permanent basis and this likely contributes to the cognitive decline and
memory [197]. This decreased synaptic activity leads to the elimination of synapses and loss
of network activity [198,199].
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The molecular mechanism of spine loss by Aβ is not clear. Electron microscopic studies
demonstrate that oligomeric Aβ is localized within the synaptic compartment [200] or that it
is bound to the extracellular surface of the spine suggesting that oligomeric Aβ may interact
directly at the synapse to cause dysfunction and spine collapse [201]. Soluble Aβ causes
abnormal expression of Arc, a synaptic memory related protein that causes abnormal spine
shape and glutamate receptor trafficking [42,202]. Aβ treatment of cultured hippocampal
neurons leads to the inactivation of PKA and persistence of its regulatory subunit PKAIIα
[203]. Since glutamate treatment reduces phosphorylated CREB phosphorylation and the
decrease is reversed by rolipram (a phosphodiesterase inhibitor that raises cAMP and leads
to the dissociation of the PKA catalytic and regulatory subunits), a similar mechanism may
inhibit LTP by Aβ. Later studies confirmed the activation of the PKA/CREB pathway in
both cultured neurons and murine hippocampal slices after inhibition of LTP by Aβ
[204,205]. Interestingly, the toxicity of micromolar fibrillar Aβ on cultured neurons
correlates with an age-related increase in phosphorylated extracellular signal-regulated
kinase (pERK) as well as an age-independent over-activation of pCREB [7]. Aβ-induced
activation of ERK1/2 may reduce mitochondrial respiration and ATP production by
decreasing complex I activity and substrate oxidation through complex I [206]. Oligomers
can also compromise synaptic function by altering the permeability of neuronal membranes
and disrupting ion homeostasis [207,208]. None of these studies of action of Aβ on protein
kinases have identified the proximal target of Aβ. However, these observations suggest that
Aβ acts directly on the pathways involved in the formation of late LTP. Agents that enhance
the cAMP/PKA/CREB-signaling pathway have potential for the treatment of AD [203].
These studies clearly support the emerging view that impaired synaptic function may be
more important for the development of AD than neuronal cell death which occurs at later
stages of the disease [199]. However, the major question of how abnormal spine dynamics
and alterations in spine plasticity contribute to the disease progression in AD is still not very
clear. The major challenge to prevent such loss in spine plasticity could prove invaluable for
the treatment of neurodegenerative diseases.

6. Molecular targets of Aβ induced synaptic dysfunction
The search for a mechanism by which Aβ impairs synaptic plasticity has led to the
identification of the cell surface receptors and signaling pathways mediating Aβ-induced
synaptoxicity. Cell surface interaction sites reported for Aβ include receptor for Advanced
Glycation End products (RAGE) and NMDAR [152,209]. Aβ has been variously reported to
directly affect the activity of NMDAR, possibly by binding to nAChRs, or intracellular
mitochondrial cyclophilin D (CypD), mitochondrial Aβ alcohol dehydrogenase (ABAD) or
certain protein kinases. Examination of the evidence for these multiple activities of Aβ and
their affinity constants may distinguish direct binding partners from downstream effectors.

6.1. NMDA receptors
It is well known that excitatory synapses contain AMPA and NMDA ionotropic glutamate
receptors as well as metabotropic type glutamate receptors (mGluRs) positioned on dendritic
spines [210,211]. Aβ-induced synaptic dysfunction has been attributed to the synaptic
removal of AMPA receptors (AMPARs); however, it is unclear how Aβ induces this loss
[212]. Glutamatergic processes are strongly implicated in causing and mediating the
symptoms of AD [213]. The clinical use of memantine in treatment of AD provides direct
support for the involvement of NMDARs in the cognitive deficits [214]. Memantine acts as
a low-to-moderate affinity open channel uncompetitive inhibitor of NMDARs at therapeutic
concentrations [215,216]. Aβ promotes glutamatergic excitotoxicity and potently disrupts
glutamatergic synapses and plasticity providing an explanation for the cognitive deficits in
AD [217]. Aβ alters the glutamatergic transmission system by inducing marked reductions
in levels of AMPA and NMDA receptors at the neuronal plasma membrane [74,75,218,219].
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At physiological levels, Aβ selectively enhances NMDAR-mediated currents and synaptic
transmission [220,221]. While increased Aβ application promotes endocytosis of NMDARs
in cortical neurons and produces a rapid and persistent depression of NMDA-evoked
currents in cortical neurons [75]. This reduction of NMDAR-dependent currents is thought
to result from Aβ-mediated activation of nAChRs [75]. Aβ can also promote increased Ca2+

influx and elevate the levels of potentially toxic reactive oxygen species in an NMDAR-
dependent manner [221,222]. In general, brief periods of high synaptic activity open
NMDARs, leading to a long-lasting increase in postsynaptic AMPAR number, spine growth
and LTP of synaptic transmission [223,224,225]. Snyder et al. [75] reported a pathway by
which Aβ reduces glutamatergic transmission and NMDAR – dependent LTP. The
application of Aβ42 to cultured cortical neurons promoted endocytosis of NMDARs,
effectively reducing the density of NMDARs at synapses. At higher concentrations, Aβ is
known to enhance activation of NMDARs [226] and cause NMDAR agonist-induced
delayed cognitive dysfunction [227]. It is apparent that excessive or inappropriate activation
of NMDAR can block LTP [228,229].

Alternatively, low levels of synaptic stimulation can activate NMDARs to produce NMDA-
dependent or mGluR-dependent LTD. These two forms of LTD can induce removal of
postsynaptic AMPARs and loss of spines [230,231,232,233]. Interestingly, sublethal
NMDAR activation increased the production and secretion of Aβ [65,234]. However, some
of the conceptually and biomedically most important questions that have arisen from these
novel insights concern the molecular mechanisms by which Aβ and the glutamatergic
transmission system cooperate at the synapse to synergistically regulate and control synaptic
transmission. Is excitotoxicity that results from excessive glutamate receptor activation the
main trigger that increases the secretion of Aβ during synaptic transmission or is Aβ solely a
pathologic product directing cell demise? It is possible that the increased Aβ production
causes an increase in NMDA activation and increased NMDA activation in turn increases
the Aβ production within limits. This process would have a negative impact on synaptic
function if there were a homeostatic balance between NMDA activation and Aβ production.
However, excess NMDA activation or excess Aβ generation both are harmful for synaptic
plasticity that could lead to the cognitive impairment in AD.

Treatment with Aβ oligomers also causes reduction of post-synaptic density-95 (PSD-95),
an adaptor protein that plays a critical role in synaptic plasticity and in the stabilization of
AMPAR and NMDAR at synapses [218]. Dysregulation of NMDAR function causes
excessive neuronal Ca2+ influx, oxidative stress [222], and inhibition of the Wnt/β-catenin
signaling pathway [235,236].

6.2. Nicotinic acetylcholine receptors (nAChRs)
Activation of the neuronal pentameric nAChRs is involved in diverse brain functions
including synaptic plasticity and memory [237,238] and enhances transmitter release in
several brain regions including the hippocampus [239], the spinal cord dorsal horn [240], the
olfactory bulb, and the amygdala [241]. The increase of synaptic plasticity by Aβ requires
activation of nAChRs [242]. Because activation of nAChRs is necessary for the Aβ-induced
increase of synaptic plasticity and memory under normal conditions, Aβ may modify
glutamate release with a mechanism dependent upon activation of nAChRs [83]. However,
several reports of the effect of Aβ42 on nAChRs are conflicting. Some studies have reported
that Aβ42 activates nAChRs [243,244], while others indicate that Aβ42 inhibits nAChRs
[245,246]. For example, physiological levels of Aβ can activate while toxic levels inhibit
presynaptic nAChR and evoke changes in presynaptic Ca2+ levels in rat hippocampus and
neocortex [244]. Interestingly, picomolar concentrations of Aβ42 were effective in
activating nAChRs while higher levels of Aβ produced inhibitory action. The disparity may
depend on the nanomolar Aβ1–42 inhibition of nicotine-induced Ca2+ responses while
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picomolar Aβ42 directly evokes sustained increases in presynaptic Ca2+ via nAChRs [244].
Aβ42 binds to the nAChR with picomolar affinity [247]. This binding can modulate
presynaptic, glutamate-mediated synaptic transmission or glutamate release, suggesting that
Aβ42-dependent cholinergic modulation activates signal transduction mechanisms that
ultimately result in synaptic transmission and memory consolidation [248]. However, it
remains to be determined whether these effects are mediated by a direct physical interaction
of the Aβ peptide with the nAChRs. Immunohistochemical studies on human sporadic AD
brains show that Aβ42 and nAChR, are both present in neuritic plaques and co-localize in
individual cortical neurons suggesting that Aβ could be tightly associated with nAChR
[247]. Alternatively, Aβ might be responsible for regulation of nAChR function through
strong binding with membrane lipids [249]. Picomolar or higher Aβ42 acting through
nAChRs, can elicit ERK MAPK activation in hippocampal cultures [245,250] possibly
triggered by Ca2+ influx [243,251]. ERK is known to regulate transcription factors such as
CREB and Elk-1 by phosphorylation [140], which help initiate transcription of memory-
associated genes that contain their respective regulatory elements [252]. Therefore, over-
activation of nAChRs and excessive Ca2+ influx or dysregulation of Ca2+ homeostasis
provide a molecular mechanism for the cholinergic dysfunction that is a hallmark of AD
[253,254].

6.3. Mitochondrial cyclophilin D
Mitochondria serve as direct targets of neuronal toxicity in which Aβ associates with the
outer mitochondrial membrane, inter-membrane space, inner mitochondrial membrane, and
the matrix [255]. Progressive accumulation of Aβ in cortical mitochondria in AD patients
and also in brains from transgenic AD type mouse models suggests a role for mitochondrial
Aβ in the pathogenesis or development of the disease. Once inside the mitochondria, Aβ is
able to interact with a number of targets, including the mitochondrial proteins ABAD and
cyclophilin-D (CypD) [256]. Opening the mitochondrial permeability transition pore
(MPTP) to depolarize mitochondria and release cytochrome C may be central to
mitochondrial and neuronal malfunction in AD patients [257]. CypD, an integral part of the
MPTP, whose opening leads to cell death, interacts with Aβ peptide within the mitochondria
of AD patients and a Tg mouse model of AD [258]. MPTP causes mitochondrial swelling,
outer membrane rupture, release of cell death mediators and enhances production of reactive
oxygen species (ROS). Computer simulation studies show that Aβ interacts with both ANT
and CypD [259]. CypD/Aβ interaction causes an oxidative stress and increased MPTP
opening that triggers neurodegeneration [258]. CypD-deficient cortical mitochondria are
resistant to Aβ- and Ca2+-induced mitochondrial swelling and MPTP opening [257].
Adenine nucleotide translocase (ANT) is a transport protein for ADP and ATP and
component of MPTP that binds directly to CypD [260]. This interaction may facilitate its
anchoring in the inner membrane and disturbance of the mitochondrial membrane potential,
mitochondrial swelling and cell death [259]. Interestingly, the MPTP also requires the
participation of members of the Bcl-2 family proteins but a clear understanding of the
interaction of Aβ with CypD together with both proapoptotic or antiapoptotic Bcl-2 family
proteins in AD has not been made. The ability of CypD to protect neurons from Aβ- and
oxidative stress-induced cell death and its role in improvement of synaptic and cognitive
functions has been suggested to provide a new therapeutic approach for the treatment of
conditions associated with AD. Together these studies provide new mechanisms for Aβ
targets that link the MPTP to synaptic stress and the neurodegeneration seen in AD.

6.4. Mitochondrial Aβ-binding alcohol dehydrogenase (ABAD)
ABAD is a member of the short chain dehydrogenase reductase family in mitochondria that
binds Aβ [261]. Binding of Aβ to ABAD distorts the enzyme’s structure, rendering it
inactive. Binding also promotes mitochondrial generation of free radicals. In neurons,
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ABAD is predominately localized to mitochondria. Upon binding ABAD, Aβ triggers events
leading to neuronal apoptosis through a mitochondrial pathway [262,263]. Mitochondrial Aβ
levels in the 3xTg-AD mouse increase significantly at 9 months and temporally correlate
with increased levels of Aβ binding to ABAD [264]. Interestingly, mitochondrial ABAD is
upregulated in neurons from AD patients [263]. The ABAD-Aβ complex has been
hypothesized to induce oxidant stress and mitochondrial dysfunction [265]. Increased
expression of ABAD exacerbates Aβ-mediated mitochondrial and neuronal stress [263,266].
Aβ binding to ABAD causes free radical production and neuronal apoptosis [267]. Neurons
cultured from transgenic mice with targeted overexpression of a mutant form of amyloid
precursor protein and ABAD (Tg mAPP/ABAD) displayed spontaneous generation of
hydrogen peroxide and superoxide anion, and decreased ATP, as well as subsequent release
of cytochrome c from mitochondria and induction of caspase-3-like activity followed by
DNA fragmentation and loss of cell viability [266]. In addition, cytochrome c oxidase
(COX) activity was selectively decreased in neurons cultured from mAPP/ABAD mice. In
vivo, mAPP/ABAD mice displayed reduced levels of brain ATP and COX activity,
diminished glucose utilization, as well as electrophysiological abnormalities in hippocampal
slices compared with mAPP mice [266]. ABAD-Aβ binding and enhanced generation
ofoxidants in brain mitochondria of transgenic mice results in exaggerating neuronal stress
and impaired learning and memory [268]. Analysis of hippocampal slices from mAPP/
ABAD mice were shown to display diminished LTP compared with other genotypes [266].
However, positive effects of low levels of Aβ have not been studied. Similar to CypD, the
ABAD-Aβ interaction may also represent a novel treatment target against AD. Other intra-
mitochondrial targets of Aβ remain to be discovered. These data suggest that mitochondrial
ABAD, ordinarily a contributor to metabolic homeostasis, has the capacity to become a
pathogenic factor in an Aβ rich environment.

7. Redox and phosphorylative energetic exhaustion: Aβ-induced
mitochondrial and synaptic dysfunction

Increasing evidence indicates that the mitochondrial dysfunction is an important early factor
in the development of AD-like pathology [264]. Mitochondria are known to accumulate in
synapses [269,270] and mitochondrial trafficking to synapses is dynamic and regulated by
synaptic activity [271]. However, increasing evidence indicates that accumulation of Aβ in
mitochondria occurs before extracellular amyloid deposition and increases with age. Aβ has
been found in the mitochondria of both AD brain and transgenic mouse models of AD
overexpressing Aβ [255,256,272,]. Aβ has been detected in mitochondria from postmortem
brain specimens of AD patients [255] and also in isolated mitochondria from the cerebral
cortex of APP transgenic mice [272]. APP and its derivatives, monomeric and oligomeric
forms of Aβ, interact with mitochondrial membranes [263,272,273,274] or mitochondrial
matrix protein ABAD [264] leading to mitochondrial dysfunction. Accordingly, Aβ is linked
to the mitochondrial malfunction observed in the Alzheimer’s disease brain and mouse
models of AD [255,272]. Substantial evidence indicates that mitochondria serve as direct
targets for Aβ protein mediated neuronal toxicity.

Studies of postmortem brains from AD patients and transgenic mouse models of AD suggest
that mitochondria are involved in oxidative damage induced by Aβ early in AD progression
[reviewed in reference 275]. Lower levels of ROS are required for synaptic signaling with
ROS acting as messenger molecules in the process of LTP [276]. However, high levels of
ROS have been implicated as damaging toxic molecules in the age-related impairments of
LTP [276,277]. Our previous work shows that ROS levels increase with age of neurons in
parallel with an age-related decline in transmembrane potential [278]. As mitochondrial
transmembrane potential is a driving force for cellular production of ATP, its decline in
neurons will have a long term effect in many important energy driven reactions. Increased
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oxidative stress, coupled with dysregulation of calcium homeostasis and resulting apoptosis
of vulnerable neuronal populations, are proposed to underlie the loss of synaptic activity and
associated cognitive decline [275]. From these deficiencies emerges the concept of synaptic
energy exhaustion in AD, both phosphorylative (ATP) and redox (NAD[P]H) energies. Our
previous work shows that hippocampal NAD(P)H and glutathione (GSH) decline with age
in association with increased susceptibility to glutamate toxicity in neurons of old-age [279].
Thus, an age-related decline in neuronal reducing currency (NAD[P]H) and reducing buffer
(GSH) will surely promote oxidative stress and excess ROS. It is noteworthy that in the
early stages of AD, there is already a reduction in the number of mitochondria [280] and the
activities of tricarboxylic acid cycle enzymes [281] and cytochrome C oxidase [282].
However, how ROS are produced at the synapse in response to Aβ oligomers is not fully
known. Excessive ROS are locally generated in response to synaptic Aβ oligomer binding
[222]. This ROS formation can be totally blocked by the mitochondrial uncoupler, 2,4-
dinitrophenol which suggests a central role of mitochondria in Aβ-induced oxidative stress
[222]. Many studies suggest the possible involvement of oxidative stress and calcium
dysfunction in Aβ toxicity [283,284]. Experiments with Caenorhabditis elegans containing
inducible Aβ42 indicate that oxidative stress can precede fibrillogenesis [285]. These reports
were strengthened by findings that Aβ toxicity at the synapse is dependent on the presence
of a functional mitochondrial electron transport chain which is a principal site of ROS
formation as well as a major target for their deleterious effects [286].

The question as to why brain synaptic ROS levels increase with age is uncertain, but may
involve lack of use [287] followed by acute overstimulation of excitatory NMDARs that
leads to excessive ROS, related to excess Ca2+ entry into mitochondria [288]. Dysregulation
of NMDAR function induced by Aβ binding to neuronal synapses may lead to synaptic
mitochondrial dysfunction and excessive ROS formation [222,289]. Memory mechanisms
might be directly compromised by elevated ROS, which could explain the connection
between AD and oxidative stress [222]. The increase in oxidative damage exhibited by
synaptic mitochondria will damage synapses, affect neurotransmission and might be
ultimately responsible for cognitive decline in AD patients. Taken together these studies
provide convincing evidence for the concept that mitochondria have a pivotal role in Aβ-
induced synaptic dysfunction and neuronal stress. Improved function of mitochondria is an
effective way of reducing effects of aging and may inhibit neuronal cell death in AD [287].

8. Conclusions
The present review highlights some important physiological roles for Aβ in the CNS during
normal function and AD pathogenesis. Given the important role that Aβ plays in various
activities at the synapse, Aβ should not be regarded merely as a toxic factor that requires
eradication to avoid dementia. There is enough evidence to suggest an essential activity-
dependent role of Aβ in modulation of synaptic activity and neuronal survival. However,
dissociation of the synaptic effects of aging from Aβ remains to be investigated. Several
extracellular and intracellular synaptic receptors are important targets of Aβ oligomers.
Alterations in receptor characteristics and synaptic dysfunction are crucial to the early
memory deficit and cognitive decline in AD. Alterations in synaptic plasticity,
mitochondrial function and neurotransmission by Aβ can affect activity-dependent signaling
and gene expression, resulting in the disintegration of neural networks and, ultimately, the
failure of neural functions [290]. These ongoing discussions provide new insights into
strategies for development of AD therapy that not only reduce the amount of Aβ but also
inhibit Aβ aggregation and restore mitochondrial and redox energy for synaptic function.
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Abbreviations

ABAD mitochondrial Aβ-binding alcohol dehydrogenase

Ca2+CAM Calcium calmodulin

CAMKIV Calcium/calmodulin-dependent protein kinase type IV

CREB Cyclic AMP response element (CRE)-binding protein

CBP CREB binding protein

CypD cyclophilin D

ERK extracellular signal-regulated kinase

Fas FS7-associated cell surface antigen

FOXO forkhead transcription factor

GSK glycogen synthase kinase

Grb2 growth factor receptor-bound protein 2

IR insulin receptor

IRS-1 insulin receptor substrate-1

IRS-2 insulin receptor substrate-2

LTP Long term potentiation

mitDH mitochondrial dehydrogenases

MEK MAPK kinase, MAPK, mitogen-activated protein kinase

MPTP membrane permeability transition pore opening

mTOR mammalian target of rapamycin

α7-nAChR α7-nicotinic acetylcholine receptor

NMDAR N-methyl-D-aspartic acid receptor

PDK1 3-Phosphoinositide-dependent kinase 1

PI3K phosphoinositide 3′ kinase

PKB/Akt protein kinases B

ROS reactive oxygen species

VDCC voltage-dependent calcium channels

TRPC TRP cation channel
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Fig. 1. Model of picomolar Aβ-induced insulin-PI3K-Akt-ERK signalling plus mitochondrial
targets of intracellular Aβ
Extracellular Aβ at picomolar concentration binds to the insulin receptor (IR) and activates
PKB/Akt via PDK-1. PKB/Akt translocates into the nucleus and phosphorylates CREB.
Activation of the lipid kinase PI3K is critical for the activation of PKB by PDK. PDK1
phosphorylates the activation loop of a number of protein serine/threonine kinases of the
AGC kinase superfamily, including protein kinase B (PKB α; also called Akt1). Akt may
also maintain the integrity of the mitochondria by a unknown mechanism or by a specific
mechanism of Bad phosphorylation. Akt can also inhibit apoptosis by phosphorylation and
inactivation of caspase-9. ERK1/2 are activated by upstream MAPKK, such as MEK1/2, and
MAPKKK, such as c-Raf. MEK1/2 induce ERK1/2 activation via dual phosphorylation on
threonine 202 and tyrosine 204 residues. Phosphorylation of ERK leads to the activation of a
number of transcription factors, important in controlling differentiation, neuronal survival,
learning and memory plasticity. For example, ERK activates pro-survival transcription
factor CREB, by activating both p90RSK and MSK1/2.
Picomolar extracellular Aβ also binds nAChR, glutamate receptors (NMDAR) and Ca2+ ion
channels (e.g. VDCCs, TRPC) and causes Ca2+ influx at controlled rates into the cytoplasm
and mitochondria. Increased cytosolic calcium concentrations initiate the activation of
several kinase-dependent signalling cascades including activation of PKC leading to CREB
activation and phosphorylation at Ser133, a process critical for protein synthesis-dependent
synaptic plasticity and LTP. PKC-α also activates ERK by interacting with Ras or Raf-1.
Mitochondria are critical targets of intracellular Aβ. Aβ interacts with CypD, a protein
component of the membrane permeability transition pore (MPTP). The interaction of CypD
with Aβ causes functional modification of this protein leading to MPTP opening. Aβ also
binds with another mitochondrial protein, ABAD to distort the enzyme’s structure, rendering
it inactive. This causes an increase in reactive oxygen species and oxidative stress leading to
initiation of apoptosis.
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