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Abstract

Background: The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of
membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent
endocytosis and degradation upon addition of a good nitrogen source, e.g., ammonium. It comprises 12 transmembrane
domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for
ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).

Principal Findings: We used alanine-scanning mutagenesis to isolate 64 mutant Gap1 proteins altered in the NT, the CT, or
one of the five TM-connecting intracellular loops (L2, -4, -6, -8 and -10). We found 17 mutations (in L2, L8, L10 and CT)
impairing Gap1 exit from the ER. Of the 47 mutant proteins reaching the plasma membrane normally, two are unstable and
rapidly down-regulated even when the nitrogen source is poor. Six others are totally inactive and another four, altered in a
16-amino-acid sequence in the NT, are resistant to ammonium-induced down-regulation. Finally, a mutation in L6 causes
missorting of Gap1 from the secretory pathway to the vacuole. Interestingly, this direct vacuolar sorting seems to be
independent of Gap1 ubiquitylation.

Conclusions: This study illustrates the importance of multiple intracellular regions of Gap1 in its secretion, transport activity,
and down-regulation.
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dans l’Agriculture) fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bran@ulb.ac.be

Introduction

The general amino acid permease Gap1 of Saccharomyces cerevisiae

[1] has emerged over the last fifteen years as one of the most

studied yeast plasma membrane proteins. Several aspects have

been particularly well investigated, including its folding and exit

from the endoplasmic reticulum (ER) [2], association with lipid

rafts [3–5], nitrogen-regulated membrane trafficking [6,7], post-

translational modifications [8–10], and ability to activate signaling

pathways in response to substrate loading [11]. The 602-amino-

acid Gap1 protein comprises a hydrophobic core of twelve

transmembrane domains (TM) flanked by intracellular N- and C-

terminal tails (NT, CT) [12]. Gap1 is a member of a family of

amino acid transporters highly conserved in bacteria and fungi

[13] and belonging to the APC superfamily of transporters [14].

The recent elucidation of the crystal structure of two bacterial

APC proteins, the AdiC arginine-agmatine antiporter [15,16] and

the ApcT broad-specificity amino-acid transporter [17], revealed

that APC proteins are members of an even broader superfamily of

transport proteins often named ‘‘5+5’’ transporters [18]. These

proteins share a structural fold comprising two inversely repeated

blocks of 5 TM domains and likely catalyze transmembrane solute

transport via similar structural dynamics [19]. In yeast, no less

than 24 APC transporters have been inventoried, most of which

are amino acid permeases exhibiting various substrate-range

specificities and regulations [13]. The particularity of Gap1 is that

it can mediate uptake of all protein amino acids as well as

citrulline, ornithine, c-aminobutyrate (GABA), b-alanine and even

D-isomers such as D-histidine. Furthermore, Gap1 shows very

high affinity for most of its natural substrates, with apparent Km

values in the micromolar range [20]. These properties are well

suited to the physiological role of Gap1, which is synthesized and

most active under conditions of poor nitrogen supply. The role of

Gap1 under these conditions is to scavenge external amino acids to

be used as nitrogen sources or directly as building blocks for

protein synthesis. Transcription of the GAP1 gene is promoted by

two GATA-family factors, Gln3 and Gat1, which are mostly active

when the nitrogen supply conditions are cell growth limiting.

When cells shift to more favorable nitrogen supply conditions, the

Gln3 and Gat1 factors are inhibited by the mechanisms of

Nitrogen Catabolite Repression (NCR), thus causing a strong

reduction of GAP1 expression [21].

The intracellular trafficking of Gap1 has been the subject of

intense investigation. Proper folding of newly synthesized Gap1

involves an integral membrane protein of the ER, Shr3 [22],

which interacts with the first five TMs of the permease and
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prevents its aggregation [2]. Loading of Gap1 into COPII vesicles

requires a di-acidic sequence in the CT that likely interacts with

the Sec23/Sec24 COPII coat protein complex [23]. Normal

folding of Gap1 also requires tight coupling with sphingolipid

(SL) biogenesis. If Gap1 is assembled under conditions preventing

ER-associated SL biogenesis, the protein exits the ER normally

and reaches the plasma membrane, but is improperly folded and

inactive, fails to associate with SL- and sterol-rich membrane

fractions, and is subject to rapid down-regulation [5]. Under

normal conditions, the Gap1 permease is subject to tight control

by nitrogen, a process involving the Npr1 kinase and ubiquitin

(Ub). On poor nitrogen media, e.g. when urea or proline is the

sole nitrogen source, the Npr1 kinase is active and the Gap1

permease reaching the late Golgi is sorted to the plasma

membrane and accumulates there in a highly active and stable

form [24,25]. When a good nitrogen source is added to the

medium, Npr1 is proposed to be inactivated via the TOR

signaling pathway [26]. This loss of Npr1 function triggers sorting

of cell-surface Gap1 into endocytic vesicles, followed by delivery

into the vacuole where it is degraded [24,27]. Furthermore, newly

synthesized Gap1 reaching the Golgi is sorted to the vacuole

without passing through the plasma membrane [8,25,28].

Delivery of Gap1 into the vacuolar lumen involves its prior

sorting into vesicles budding into the lumen of the late endosome

via the multivesicular body (MVB) pathway [9,29]. Ub is the

signal triggering down-regulation of Gap1. The permease is

ubiquitylated on lysines 9 or 16 (in the NT) by the Rsp5/Npi1

ubiquitin ligase [8,27,30]. Although linkage of a single Ub moiety

to Gap1 is a sufficient signal for its internalization from the cell

surface [9], the permease is modified by short Ub chains built

through linkage to the K63 residue of Ub [31]. This poly-

ubiquitylation was recently found to provide a specific signal for

sorting into the MVB pathway [7,9].

The membrane trafficking and regulation of Gap1 are mainly

governed by interactions with several intracellular factors and by

post-translational modifications of its residues exposed to the

cytosol. As a further step towards getting a comprehensive view of

these mechanisms, we here report the results of systematic

mutagenesis of the predicted intracellular Gap1 regions.

Materials and Methods

Strains and growth conditions
The S. cerevisiae strains used in this study (Table S1) derive from

the S1278b wild type [32]. Cells were grown at 29uC in minimal

buffered medium, pH 6.1 [33]. In all experiments, the main

carbon source was galactose or raffinose (3%) and a low

concentration of glucose (0.3%) was also added to more readily

initiate growth. Nitrogen sources were proline (10 mM), urea

(10 mM), ammonium (20 to 100 mM), citrulline (1 mM), or

phenylalanine (1 mM). D-histidine was added at 0.5% final

concentration. The leu2 auxotrophy was compensated by addition

of leucine (0.025 mM) and the arg5,6 auxotrophy by addition of

citrulline (0.5 mM).

Construction of plasmids
The plasmids used in this study are listed in Table S2. All derive

from the centromere-based pRS416 [34] or pFL38 [35] vectors

carrying the URA3 gene. The 64 mutant gap1 alleles were

constructed by recombination in yeast between two partially

overlapping PCR fragments corresponding to the 59 and 39

regions of the GAL-GAP1-GFP gene (Fig. S1). The overlapping

sequence was 40 bp long and contained the sequences so as to

introduce 3 or 4 consecutive alanine substitutions. The pCJ130

recipient plasmid, a pRS416 vector containing the GAL-YCH1-

GFP gene, was linearized with BamHI and treated with alkaline

phosphatase. Each mutant gap1 gene was purified by cloning into

E. coli and verified by sequencing. The sequences of the 128

oligonucleotides used to construct the 64 mutant genes are

available upon request.

Permease assays
Gap1 activity was determined by measuring the initial uptake

rate of 14C-labelled citrulline (20 mM) [36]. All assays were

carried out in exponentially growing cells, during the state of

balanced growth [37]. For the mutants of low transport activities,

we measured the linear accumulation of citrulline during

60 minutes.

Fluorescence microscopy
The steady state subcellular location of Gap1-GFP proteins was

determined in cells growing exponentially in liquid galactose-

proline medium. Glucose was added (final concentration: 3%)

2 hours before the cells were visualized so as to arrest Gap1-GFP

neosynthesis. Labeling of the vacuolar membrane with FM4-64

was performed as described previously [29]. Cells were laid on a

thin layer of 1% agarose and viewed at room temperature with a

fluorescence microscope (Eclipse E600; Nikon) equipped with a

1006differential interference contrast NA 1.40 Plan-Apochromat

objective (Nikon) and appropriate fluorescence light filter sets.

Images were captured with a digital camera (DXM1200; Nikon)

and ACT-1 acquisition software (Nikon) and processed with

Photoshop CS (Adobe Systems).

Protein extracts and Western blotting
Proteins were immunodetected in total protein extracts [30].

After transfer to a nitrocellulose membrane (Schleicher & Schüll,

catalog nbr NBA085B), the proteins were probed with a

monoclonal antibody raised against GFP (Roche, catalog nbr 11

814 460 001) or Pma1 [24]. Primary antibodies were detected with

horseradish peroxidase–conjugated anti–mouse IgG secondary

antibody (GE Healthcare, catalog nbr NA931V) followed by

enhanced chemiluminescence (Roche, catalog nbr 12 015 196

001).

Results

Construction of 64 gap1 alleles
By site-directed mutagenesis we isolated a collection of 64 genes

encoding Gap1 proteins having three to four consecutive amino

acids replaced with alanines. The mutagenized regions cover the

N-terminal tail (NT), the C-terminal tail (CT), and the five

intracellular loops (L2, L4, L6, L8 and L10) connecting

transmembrane (TM) domains (Table 1), i.e. all the Gap1

sequences facing the cytosol (Fig. 1). The limits of the NT, the

CT, and of loops L2 to L10 were determined on the basis of

sequence and structural comparisons between Gap1 and two

related bacterial amino acid transporters, AdiC and ApcT (our

unpublished data), whose crystal structure has been recently

reported [15–17]. Each mutant gene was constructed by

recombination in yeast between two PCR-amplified DNA

fragments. The coding region of each mutant allele was cloned

behind the galactose-inducible GAL1 promoter and its 39 end fused

to the GFP coding region. Each plasmid was purified by cloning in

E. coli and verified by sequencing before being introduced into

various yeast mutants for phenotypic characterization (see

Materials and methods).

Mutagenesis of Gap1 Intracellular Regions
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Table 1. Functional analysis of 64 Gap1 mutants.

Mutated Gap1 region gap1 allele Mutated sequence Mutant class
Amino acid
utilization Intoxication by D-His Localization

gap1-105 2-SNT-4 F + + pm

gap1-101 5-SSY-7 F + + pm

gap1-106 8-EKNN-11 F + + pm

gap1-107 12-PDNL-15 F + + pm

gap1-108 16-KHNG-19 F + + pm

gap1-109 20-ITID-23 F + + pm

gap1-110 24-SEFL-27 F + + pm

gap1-111 28-TQEP-31 F + + pm

gap1-112 32-ITIP-35 F + + pm

gap1-113 36-SNGS-39 F + + pm

N-terminal gap1-114 40-AVSI-43 F + + pm

tail gap1-115 44-DETG-47 F + + pm

gap1-116 48-SGSK-51 F + + pm

gap1-117 52-WQDF55 F + + pm

gap1-118 56-KDSF59 F + + pm

gap1-119 60-KRVK-63 F + + pm

gap1-120 64-PIEV-67 F + + pm

gap1-121 68-DPNL-71 F + + pm

gap1-122 72-SEAE-75 F + + pm

gap1-123 76-KVAI-79 F + + pm

gap1-124 80-ITAQ-83 F + + pm+v

gap1-125 84-TPLK-87 NF 2 2 pm

gap1-126 88-HHLK-91 NF 2 2 pm

gap1-127 92-NRH-94 NF 2 2 pm

gap1-140 143-GELA-146 NF 2 2 ER

gap1-141 147-VIFP-150 PF + 2 ER+pm

gap1-142 151-ISGG-154 NF 2 2 pm

Loop 2 gap1-143 155-FTTY-158 NF 2 2 ER

gap1-144 159-ATRF-162 NF 2 2 ER

gap1-145 163-IDE-165 NF 2 2 ER

gap1-166 166-SFG-168 PF + 2 ER+pm

gap1-167 219-NMF-221 F + + pm+v

Loop 4 gap1-168 222-GVK-224 PF + 2 pm

gap1-146 225-GYGE-228 NF 2 2 pm

gap1-151 307-SESV-310 NF 2 2 pm

Loop 6 gap1-152 311-EPRK-314 PF + 2 pm+v

gap1-153 315-SVPK-318 PF + 2 pm

gap1-157 405-AEQR-408 F + + pm

gap1-158 409-FLPE-412 NF 2 2 ER

Loop 8 gap1-159 413-IFSY-416 PF + 2 ER + pm

gap1-160 417-VDRK-420 NF 2 2 ER

gap1-169 421-GRP-423 NF 2 2 ER

gap1-170 424-LVG-426 F + + pm

gap1-161 473-RFRK-476 NF 2 2 ER

gap1-162 475-ALAA-480 F + + pm

Loop 10 gap1-163 481-QGRG-484 NF 2 2 ER

gap1-164 485-LDEL-488 F + + pm

gap1-165 489-SFK-491 F + + pm

Mutagenesis of Gap1 Intracellular Regions
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Mutated Gap1 region gap1 allele Mutated sequence Mutant class
Amino acid
utilization Intoxication by D-His Localization

gap1-171 492-SPTG-495 PF + 2 ER+pm

gap1-139 548-KIYK-551 NF 2 2 ER

gap1-138 552-RNWK-555 NF 2 2 ER

gap1-137 556-LFIP-559 NF 2 2 ER

gap1-136 560-AEKM-563 F + + pm

gap1-104 564-DID-566 NF 2 2 ER

gap1-103 T-567 F + + pm

C-terminal gap1-135 568-GRRE-571 F + + pm

tail gap1-134 572-VDLD-575 F + + pm

gap1-133 576-LLKQ-579 F + + pm

gap1-132 580-EIAE-583 F + + pm

gap1-131 584-EKAI-587 F + + pm

gap1-130 588-MATK-591 F + + pm

gap1-129 592-PRWY-595 F + + pm

gap1-128 596-RIWN-599 F + + pm

gap1-102 600-FWC-602 F + + pm

Strains gap1D ura3 and gap1D ssy1D ura3 transformed with the centromere-based plasmids carrying the indicated gap1 allele were tested for growth on solid media
containing citrulline or phenylalanine, respectively, as sole nitrogen source. The gap1D ura3 cells were also tested for growth on a proline medium containing D-
histidine. The + and 2 signs mean that transformed cells are able to utilize citrulline and phenylalanine (column ‘‘Amino acid utilization’’) or to be intoxified by D-
histidine (column ‘‘Intoxication by D-His)’’). Transformed cells of the gap1D ura3 strain were also grown on proline as sole nitrogen source and examined under the
fluorescence microscope. The Gap1-GFP proteins were localized at the cell surface (pm, plasma membrane), vacuolar lumen (v), or endoplasmic reticulum (ER), or in
several of these cell membranes. Mutant classes: F: functional, NF: non functional; PF: partially functional.
doi:10.1371/journal.pone.0018457.t001

Table 1. Cont.

Figure 1. Schematic topology model of the Gap1 protein. Residues shown in black or gray in the N-terminal tail (NT), C-terminal tail (CT) and
intracellular loops (L2, L4, L6, L8, L10) are those which, when replaced with alanines, cause Gap1 to be inactive or partially active, respectively (see
text). The short lines delineate the mutagenized blocks of 3 or 4 amino acids. The position of the ubiquitin-acceptor lysines (K9 and K16) and of
specific, more deeply analyzed, mutations is shown.
doi:10.1371/journal.pone.0018457.g001
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Functionality of the mutant Gap1 permeases
Plasmids harboring the native GAP1 allele, one of the 64 mutant

gap1 alleles, or no GAP1 gene were introduced individually into

different mutant strains suitable for assessing the functionality of

Gap1 by means of growth tests on solid media. The media

contained galactose as a carbon source, and their nitrogen

composition varied according to the recipient strain. For instance,

the gap1D strain transformed with the different plasmids was tested

for growth on citrulline as sole nitrogen source (Cit medium). As

uptake of this amino acid is mediated mainly by Gap1 [20], the

gap1D mutant is unable to grow on this medium (Fig. 2 and Fig.

S2A). The same strains were tested for growth on a medium

containing proline as sole nitrogen source (Pro medium), to which

the D isomer of histidine (D-His) was added or not. As uptake of

proline is mediated mainly by the Put4 permease [38], strains

grow normally on Pro medium even if Gap1 is inactive. As for D-

His, it is toxic to cells and its uptake is solely mediated by Gap1

[20]. Hence, cells expressing the native Gap1 protein do not grow

on Pro + D-His medium, whereas those expressing no Gap1

protein grow well on this medium (Fig. 2 and Fig. S2B). The

plasmids were also introduced into a gap1D ssy1D strain. In this

mutant, the Ssy1 permease-like amino-acid sensor responsible for

the activation of several amino acid permeases (such as AGP1,

BAP2, GNP1…) [39–41] is inactive, making Gap1 essential to

growth on media containing a single amino acid such as

phenylalanine (Phe) as sole nitrogen source [41] (Fig. 2 and Fig.

S2C).

The results of these growth tests are presented in Table 1 and

the growth phenotypes displayed by representative clones are

shown in Figure 2. Among the 64 mutant proteins, 38 (59%)

behaved like the native Gap1 permease and can thus be

considered functional. Nineteen other mutant proteins (30%)

appeared totally non-functional. The seven remaining mutant

proteins (11%) conferred to cells an intermediary phenotype. Cells

expressing these Gap1 forms (e.g. Gap1-141) grew normally on Cit

and Phe media (suggesting functionality) and also on Pro + D-His

medium (suggesting non-functionality) (Fig. 2). The transport

activity of these Gap1 mutants might be low enough to protect

cells against the toxic effect of D-His yet high enough to enable

cells to grow normally on Cit or Phe used as sole nitrogen source.

In support of this view, a five-fold increase in D-His concentration

impaired growth of these Gap1-expressing clones without affecting

that of cells expressing no Gap1 (data not shown). Furthermore,

these gap1 mutants proved able to fulfill the amino-acid

requirements of arginine (gap1 arg5–6) and leucine (gap1 agp1

bap2 leu2) auxotrophs (Fig. 2 and data not shown), in keeping with

the fact that even partially active permeases are typically able to

sustain growth in this type of growth assay.

The results of these growth tests thus suggest that the mutant

Gap1 proteins can be classified as functional, non-functional and

partially functional (Table 1). This conclusion was supported by

direct assay of Gap1 activities. The initial rate of 14C-citrulline

uptake was measured in cells growing on urea medium, where

Gap1 is normally active and stable at the plasma membrane. The

functional Gap1 mutant proteins displayed uptake activities

ranging from 25% to 120% of the activity of native Gap1

(Table 2 and data not shown). The 14C-citrulline uptake activity

displayed by the non-functional Gap1 mutants did not exceed the

basal level measured in the gap1D strain (less than 2% of the

activity of native Gap1). The partially functional Gap1 mutants

displayed very low uptake activities, ranging from 2% to 11% of

the activity of native Gap1 (Table 2 and data not shown). This

suggests that even very partially active Gap1 mutants can promote

the utilization of amino acids as sole nitrogen source. We have also

quantified the immunoblot signals of the different Gap1 mutants

shown in Table 2 and found that none was present at a level less

than two-fold compared to the native Gap1 protein (Fig. S3 and

data not shown), i.e. their reduced or lack of activity is not due to

non-expression.

The overall data show that mutations in Gap1 regions close to

the membrane generally impair the permease function (Fig. 1). For

instance, mutations in the 11 amino acids preceding the first TM

Figure 2. The mutant gap1 genes confer three types of growth phenotype. Representative results of growth tests on solid minimal medium
obtained with strains EK008 (gap1D), 32501d (gap1D ssy1D), 30788b (gap1D arg5,6), and FB097 (gap1D agp1D bap2D leu2D) transformed with the
empty vector YCpFL38 (2), the pJOD10 (YCpGAL-GAP1-GFP) plasmid expressing the native permease (Gap1), or one of three derived plasmids
encoding representative Gap1 mutants. Cells were incubated at 29uC for 4 to 7 days, depending on the nitrogen source.
doi:10.1371/journal.pone.0018457.g002
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abolish Gap1 activity, and the same is true for the 12 amino acids

directly following the last TM. Mutations in the remaining

regions of the NT and CT apparently do not impair Gap1

activity. One exception, however, is the replacement of the Asp-

Ile-Asp tripeptide in the CT (Table 2). This result was expected,

as this sequence is known to promote recognition of Gap1 by the

Sec23/Sec24 COPII coat complex, an essential step for exit of

the permease from the ER [23]. A large proportion of the

mutations in intracellular loops also cause total or partial loss of

Gap1 function, this being particularly true for mutations in L2

and L6.

Subcellular locations of the mutant Gap1 permeases
Mutations causing loss of Gap1 activity might impair

secretion of the permease to the plasma membrane, its stability,

and/or its transport activity. To determine the subcellular

locations of the mutant Gap1 proteins, gap1D mutant cells

expressing a native or mutant Gap1-GFP construct were grown

in liquid proline medium and examined by fluorescence

microscopy. Under these conditions, the native Gap1 is known

to accumulate at the plasma membrane, and its fluorescence

signal was indeed present solely at the cell surface (Fig. 3). Three

main subcellular location patterns were observed among the 64

mutant Gap1 proteins. A mutant representative of each pattern

is presented in Figure 3.

A majority of Gap1 mutants (44 out of 64) were found at the cell

surface, e.g. Gap1-101 and Gap1-126 (Fig. 3). Of these, 6 proved

inactive, suggesting a loss of transport activity. These mutants were

those altered in the eleven residues preceding the first TM (e.g.

Gap1-126) or in intracellular loops L2, L4 and L6 (Table 1 and

Fig. 3).

Seventeen other gap1 mutants (e.g. Gap1-139 and -141)

displayed a fluorescence signal around the nucleus and at the cell

surface, the latter signal often being discontinuous (Fig. 3 and data

not shown). This double staining is typical of proteins present in

both the nuclear and cortical ER [42]. This pattern was previously

observed in cells expressing the inactive Gap1-92 mutant

containing a single glutamate-to-lysine substitution at position

300 and shown by membrane fractionation to be stacked in the

ER [4]. The native Gap1 also displays this location pattern when

expressed in cells lacking the ER-associated Shr3 chaperone [2].

These seventeen mutant Gap1 proteins thus apparently fail to

properly exit the ER (Table 1). As expected, these notably include

the inactive Gap1 altered in the Asp-Ile-Asp tripeptide of the CT

known to promote Gap1 loading into COPII vesicles [23]. The 16

others are altered in L2, L8 or L10 and are inactive (11 mutants)

or partially active (5 mutants) (Table 1). In the latter mutants, a

fraction of the permease must thus be able to reach the plasma

membrane and to confer some level of amino-acid uptake.

Accordingly, in cells expressing these Gap1 forms (e.g. Gap1-141,

Fig. 3), the fluorescence signal present at the surface is more

continuous and resembles that of cells expressing native Gap1,

suggesting that a fraction of the permease does indeed localize to

the plasma membrane. We also carried out growth tests and

localization experiments to determine whether the function or

localization of the 17 ER-trapped Gap1 mutants could be rescued

by overproduction of Shr3, but the results were negative (Fig. S4

and data not shown).

Finally, the fluorescence conferred by the last three Gap1

mutants (Gap1-124, -152, and -167) appeared distributed between

the cell surface and the lumen of a large internal compartment

corresponding to the vacuole, as confirmed by co-staining with

FM4-64, a fluorescent marker accumulating at the vacuolar

membrane (Fig. 3 and Fig. 5A). It thus seems that these three

Gap1 mutants are targeted to the vacuole even when cells grow on

a poor nitrogen source. As they are functional (Gap1-124 and

Gap1-167, altered in NT and L4, respectively) or partially

functional (Gap1-152, altered in L6) (Table 1), the fraction of

the three proteins detectable at the cell surface is at least partially

active.

Table 2. The mutant Gap1 proteins display variable uptake activities.

Mutagenized region Mutant class Uptake activity (nmoles.min21.mg prot21)

None 0.4

Gap1 F 33.2

Gap1K9,16R K9, K16 F 38.7

Gap1-101 NT F 33.8

Gap1-124 NT F 10.7

Gap1-112 NT F 40.1

Gap1-167 L4 F 9.4

Gap1-126 NT NF 0.6

Gap1-143 L2 NF 0.4

Gap1-146 L4 NF 0.4

Gap1-104 CT NF 0.6

Gap1-141 L2 PF 3.6

Gap1-168 L4 PF 0.7

Gap1-152 L6 PF 3.4

Gap1-171 L10 PF 1.2

The gap1D ura3 strain transformed with the centromere-based plasmids carrying the indicated gap1 alleles were grown on a medium containing galactose as a carbon
source and urea as nitrogen source. Uptake activities have been determined by assaying the rates of 14C-citrulline uptake (20 microM). Uptake activities correspond to
averages of two independent experiments. Variations did not exceed 20%. Mutant classes: F : functional; NF : non functional; PF : partially functional. Mutated regions:
NT: N-terminal tail; CT: C-terminal tail; L2, -4, -6, -10: intracellular loops 2, 4, 6 and 10.
doi:10.1371/journal.pone.0018457.t002
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Down-regulation by ammonium of the mutant Gap1
permeases

When ammonium (Am) is added to cells growing on a medium

with urea or proline as sole nitrogen source, the Gap1 permease

present at the plasma membrane is internalized by endocytosis and

delivered into the lumen of the vacuole, where it is degraded. This

down-regulation requires ubiquitylation on lysine 9 or lysine 16 in

the NT of Gap1 [8]. Normal down-regulation of Gap1 in the

presence of Am results in a growth phenotype easily discernable on

a solid medium: cells expressing the GAP1 gene under the GAL

promoter are resistant to the toxic effect of D-His. In contrast,

those expressing the Gap1K9,16R form resistant to down-regulation

are sensitive to D-His (Fig. 4A). Cells expressing the Gap1K9,16R

form are also unable to grow on Cit medium. This growth defect is

not due to non-assimilation of citrulline but to some toxic effect, as

shown by the inability of these cells to grow on a medium

containing both citrulline and urea as nitrogen sources (Fig. 4A).

Figure 4. Four gap1 mutants altered in the N-terminal tail resist ammonium-induced down-regulation. (A) Strain EK008 (gap1D ura3)
transformed with the pJOD10 (YCpGAL-GAP1-GFP) plasmid expressing the native permease (Gap1) or with an equivalent plasmid expressing no Gap1
protein (2), the Gap1K9,16R form resistant to ubiquitylation, or one of the indicated Gap1 mutants was tested for growth on solid medium containing
the indicated nitrogenous compound(s). For each growth condition, the seven strains have been grown on the same plate. (B) Strain EK008 (gap1D
ura3) transformed with the pJOD10 plasmid (Gap1) or with an equivalent plasmid encoding the Gap1K9,16R or Gap1-112 mutant was grown on
galactose-proline medium and examined by fluorescence microscopy before and two hours after addition of ammonium (20 mM). (C) Western blot
analysis of Gap1-GFP constructs in total cell extract prepared before (t0) and several times after addition of ammonium. Strains and growth
conditions were as in (B).
doi:10.1371/journal.pone.0018457.g004

Figure 3. Subcellular locations of the mutant Gap1 proteins. Strain EK008 (gap1D ura3) was transformed with the pJOD10 (YCpGAL-GAP1-
GFP) plasmid or with an equivalent plasmid encoding one of several representative mutant Gap1 proteins of the collection. Cells were grown on
galactose-proline medium and examined by fluorescence microscopy.
doi:10.1371/journal.pone.0018457.g003
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To identify mutant Gap1 proteins that might be resistant to down-

regulation by Am, we expressed each of the 38 active mutant

proteins (i.e. those able to mediate D-His incorporation on proline

medium) in gap1D cells and compared the growth phenotypes

obtained on Am medium with or without D-His. Interestingly,

four Gap1 mutants (Gap1-109 to -112) conferred sensitivity to D-

His (Fig. 4A). Furthermore, the size of colonies on Cit medium was

significantly lower for at least two of these mutants, Gap1-109 and

Gap1-110 (Fig. 4A). These four Gap1 mutants are altered in a 16-

amino-acid span of the NT (positions 20 to 35), close to lysines 9

and 16 (Table 1). We then used fluorescence microscopy to locate

the four Gap1 mutant proteins and the native and Gap1K9,16R

forms used as controls (Fig. 4B and data not shown). On Pro

medium, all Gap1 proteins were present at the cell surface. After

addition of Am, the native Gap1 was largely targeted to the

vacuolar lumen, whereas Gap1K9,16R and all four Gap1 mutants

stayed at the cell surface (Fig. 4B and data not shown). The 16-

amino-acid region of the NT thus plays an essential role in

ammonium-induced down-regulation of the Gap1 permease. An

essential step of ammonium-induced endocytosis of Gap1 is its

ubiquitylation on acceptor lysines K9 or K16 [8]. To determine

whether the 16-amino-acid region of NT is important for

ubiquitylation, we immunodetected mutant Gap1-112 in cell

extracts. Native Gap1 and the Gap1K9,16R mutant resistant to

ubiquitylation were used as controls (Fig. 4C). In keeping with

previous observations, when ammonium was added to the cells

two upper bands appeared above the main signal of native Gap1

but not of Gap1K9,16R. These ubiquitylated forms of Gap1 were

not detected for Gap1-112. In conclusion, the 16-amino acid

region present in the NT of Gap1 (residues 20 to 35) appears

essential to ubiquitylation of Gap1 on the neighbouring lysines 9

and 16.

Figure 5. Role of ubiquitin and acceptor lysines in constitutive down-regulation of mutant Gap1 proteins. (A) Strains EK008 (gap1D
ura3) and EN121 (gap1D end3D ura3) transformed with the pMA119 (YCpGAL-GAP1-124-GFP), pNG18 (YCpGAL-GAP1-152-GFP) or pNG47 (YCpGAL-
GAP1-124-GFP) plasmids were grown on galactose-proline medium and examined by fluorescence microscopy. Cells were labeled with FM4-64 to
stain the vacuolar membrane. (B) Strains EK008 (gap1D ura3) or CJ005 (gap1D npi1 ura3) were transformed with the pJOD10 (YCpGAL-GAP1-GFP)
plasmid expressing the native permease (Gap1) or with an equivalent plasmid expressing the Gap1K9,16R (pCJ038), Gap1-124 (pMA19) or Gap1-
124K9,16R (pMA142) variants. Cells were grown on galactose-proline medium and ammonium (20 mM) was eventually added for two hours together
with glucose. Cells were examined by fluorescence microscopy. (C) Strains EK008 (gap1D ura3), CJ005 (gap1D npi1 ura3) and EL002 (gap1D vps27D
ura3) were transformed with the pJOD10 plasmid (YCpGAL-GAP1-GFP) expressing the native Gap1 or with an equivalent plasmid expressing the
Gap1K9,16R (pCJ038), Gap19KR (pMA150) Gap1-152 (pNG18), Gap1-152K9,16R (pMA145), or Gap1-1529KR (pMA151) variants. Cells were grown on
medium containing raffinose as carbon source and proline or ammonium (100 mM) as the sole nitrogen source. Synthesis of the Gap1 variants was
induced for one hour by adding galactose. Glucose was then added for one additional hour to repress synthesis of the Gap1 proteins. Cells were then
examined by fluorescence microscopy. (D) Strain EL002 (gap1D vps27D ura3) transformed with the pJOD10 plasmid (Gap1) or with an equivalent
plasmid encoding the Gap1K9,16R (pCJ038) or Gap1-152 (pNG18) mutants was grown on minimal medium containing raffinose as carbon source and
proline or ammonium (100 mM) as the sole nitrogen source. Synthesis of the Gap1 variants was induced by adding galactose for one hour and
stopped by adding glucose. One hour after glucose addition, cell extracts were prepared and blotted with anti-GFP antibody. The marked upper
band (*) corresponds to an unspecific signal. It is well visible here because immunoblots have to be exposed for a longer time when the synthesis of
Gap1 is induced for only one hour.
doi:10.1371/journal.pone.0018457.g005
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Role of ubiquitin and acceptor lysines in constitutive
down-regulation of mutant Gap1 proteins

As illustrated above, the Gap1-152, -167, -124 mutants undergo

constitutive down-regulation, i.e. they are targeted to the vacuole

even on poor nitrogen media (Fig. 5A). These three Gap1 mutants

were introduced into a gap1D strain containing an end3D mutation

impairing endocytosis [43]. Under these conditions, the Gap1-124

and Gap1-167 mutant proteins were found only at the cell surface

(Fig. 4A), indicating that they reach the plasma membrane

normally but enter the endocytic pathway to be delivered to the

vacuolar lumen. In contrast, the Gap1-152 protein is distributed

between the cell surface and the vacuolar lumen even in the end3

mutant (Fig. 5A). This indicates that a fraction of the

neosynthesized Gap1-152 is deviated from the secretory pathway

to the vacuole without passing through the plasma membrane.

Interestingly, this is the typical behavior of Gap1 neosynthesized in

mutants lacking the Npr1 kinase [24].

We next sought to investigate the role of Ub in the down-

regulation of the Gap1-124 and Gap1-152 mutants. The Gap1-

124 protein with additional K9R and K16R substitutions is

stabilized at the plasma membrane (Fig. 5B). The same is true

when Gap1-124 is expressed in the npi1 mutant strain. In this

strain, the Rsp5 ubiquitin ligase responsible for Gap1 ubiquityla-

tion is expressed at a much reduced level and this impairs Gap1

ubiquitylation [27,30]. As expected, a similar stabilization has

been observed in npi1 mutant cells expressing native Gap1 and to

which ammonium has been added (Fig. 5B). Hence, down-

regulation from the cell surface of Gap1-124 seems to rely on

mechanisms similar to those induced by good nitrogen sources.

We next analyzed Gap1-152 and compared it to native Gap1

newly synthesized in the presence of ammonium, conditions

causing the permease to be directly sorted from the Golgi to the

vacuole (Fig. 5C). In the npi1 mutant, native Gap1 synthesized on

ammonium is redirected to the cell surface, in keeping with

previous observations [8]. The Gap1-152 synthesized in the npi1

mutant grown on proline medium is distributed between the cell

surface and the vacuolar membrane, showing that a normal high

level of the Rsp5 ubiquitin ligase is needed to promote constitutive

delivery of Gap1-152 to the vacuolar lumen (Fig. 5C). We then

examined the influence of K9R and K16R mutations. As

expected, the Gap1K9,16R permease neosynthesized in the

presence of ammonium was redirected to the plasma membrane.

In contrast, the Gap1-152K9,16R mutant was still delivered to the

vacuolar lumen in proline-grown cells (Fig. 5C). We thus reasoned

that the direct vacuolar sorting of Gap1-152 involves its

ubiquitylation on alternative lysines. In a previous study, we

reported that a native Gap1 newly synthesized in the absence of

sphingolipid biogenesis is misfolded, inactive and constitutively

targeted for degradation after having reached the plasma

membrane. The Gap1K9,16R mutant was still down-regulated in

this mutant context and only a Gap1 mutant with all nine lysines

present in NT replaced with arginine turned out to be protected

against degradation and stabilized at the plasma membrane [5].

Hence, under particular conditions, Rsp5-dependent down-

regulation of Gap1 relies on lysines other than K9 and K16. We

thus combined Gap1-152 to the nine K-to-R substitutions in the

NT. Remarkably, this Gap1-1529KR form was also delivered to the

vacuolar lumen on proline medium (Fig. 5C), and the same was

true in the end3 mutant (data not shown). These observations

prompted us to determine whether Gap1-152 undergoes ubiqui-

tylation. For this, we used a vps27D mutant in which Vps27, a key

protein of the multivesicular body (MVB) sorting machinery, is

lacking [44]. This mutation impairs MVB sorting and causes a

strong enlargement of the late endosome which is then referred to

as the class E compartment. In such vps mutants, Gap1 en route to the

vacuole is typically trapped in the class E compartment in a

ubiquitylated form [29]. The results of Fig. 5C show that native Gap1

newly synthesized in the presence of ammonium indeed accumulates

in the class E compartment of vps27D cells. Furthermore, native Gap1

in the class E compartment is ubiquitylated as upper bands (which are

not detected when using the Gap1K9,16R mutant) are readily detected

above the main Gap1 signal in immunoblots (Fig. 5D). The Gap1-

152 newly synthesized on proline medium also accumulates in the

class E compartment of vps27D mutant cells (Fig. 5C), indicating that

its delivery to the vacuole involves its prior sorting into the MVB

pathway, as expected. Remarkably, ubiquitylated forms of Gap1-152

could not be detected in this strain (Fig. 5D), even when the

immunoblots were overexposed. Furthermore, ubiquitylated forms of

Gap1-152 were also undetectable under steady state conditions

(growth on proline medium), conditions under which ubiquitylation

of native Gap1 is readily visible after addition of ammonium to the

cells (Fig. S6). These data, together with the observation that the

lysine-to-arginine substitutions in Gap1-152 does not impair its

vacuolar sorting, raises the interesting possibility that Gap1-152 does

not need to be ubiquitylated to be sorted to the vacuole.

Discussion

We here report the generation (by alanine-scanning mutagen-

esis) and preliminary phenotypic characterization of 64 mutations

affecting the yeast Gap1 permease. At the protein level, each

mutation involves the replacement of three to four consecutive

residues with alanine. Together these substitutions cover the

regions of the permease that are exposed to the cytosol: NT, CT,

and L2 to L10. This collection provides an invaluable tool for

investigating aspects of Gap1 in which many research teams are

interested: its intracellular trafficking, transport function, and

ability to activate signaling pathways.

All of the Gap1 forms altered in the NT appear to be properly

targeted to the cell surface, indicating that this permease region

does not play an important role in secretion. The mutants altered

in the first 83 N-terminal residues are active, whereas those

mutated in the last 11 residues are inactive (Fig. 1). The latter

region, close to the membrane, thus seems important for the

transport activity of the permease. It might notably contribute to

the conformational changes associated with amino acid transport.

When the Ile-Thr-Ala-Gln sequence just preceding this region is

mutated, the permease (Gap1-124) reaches the plasma membrane

normally and is active, but it is rapidly sorted into the endocytic

pathway and delivered into the vacuole in a manner dependent on

the Rsp5 ubiquitin ligase and the K9 and K16 acceptor lysines of

Gap1 ubiquitylation. Mutations altering this sequence might

mimic a conformational change of the permease that normally

promotes its down-regulation. They might also disturb an

interaction with a protein or with lipids that would stabilize

Gap1 at the plasma membrane. Mutagenesis of the NT also

unraveled a region spanning positions 20 to 35 that is as important

as the K9 and K16 acceptor lysines for normal Am-induced

ubiquitylation and down-regulation of Gap1. Our current

experiments aim at determining whether this region of the NT

corresponds to the interaction surface for factors promoting proper

ubiquitylation of Gap1.

In contrast to the NT, the CT of Gap1 plays an important role

in secretion to the plasma membrane. It notably contains the di-

acidic sequence Asp-Ile-Asp previously reported to promote

loading of the permease into COPII vesicles [23]. Our results

confirm that this sequence is crucial for Gap1 to exit the ER. We

further show that mutations in a 12-amino-acid region preceding
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this peptide in the CT and directly following the last TM also

cause retention of Gap1 in the ER. This retention could result

from improper presentation of the di-acidic motif and/or from

misfolding of the mutant protein. Mutations in more C-terminally

located parts of the CT did not alter the activity, secretion, or

down-regulation of the permease. In particular, these processes

were unaltered upon mutation of the last three residues, Phe-Trp-

Cys, highly conserved among yeast amino acid permeases [45]. A

recent paper reports that the cysteine of this terminal tripeptide is

palmitoylated by the Pfa4 palmitoyltransferase [10]. As we

detected no phenotype for the Gap1-102 mutant in which the

tripeptide is mutated, the role of Gap1 palmitoylation remains

unclear. We previously reported that the CT of Gap1 contains a

predicted amphipathic helix including a di-leucine motif (residues

575–576). When this di-leucine or neighboring amino acids are

mutated, Gap1 down-regulation by Am is impaired [45]. Despite

this, the Gap1-133 mutant where the LLKQ sequence has been

mutagenized did not display increased sensitivity to D-His on Am

medium. This is probably due to the fact that mutation of this di-

leucine affords less protection against Am-induced down-regula-

tion than mutation of the K9 and K16 residues or of the above-

mentioned 16-amino-acid region (our unpublished observations).

Among the 25 mutant proteins featuring amino acid substitu-

tions in the intracellular loops, about half were found to be stacked

in the ER. Most of them are altered in L2, L8, or L10. Four of

them showed weak transport activity, suggesting that a small

fraction of the synthesized protein escapes the ER and reaches the

plasma membrane. Although an active role of these sequences in

loading the permease into COPII vesicles is envisageable, we think

they are more likely to be stacked in the ER because of improper

folding. Active retention of misfolded proteins in the ER is a well-

known quality control system of the secretory pathway, which

often promotes the ubiquitin- and proteasome-dependent degra-

dation of abnormal cargoes via the endoplasmic-reticulum-

associated degradation (ERAD) pathway [46,47]. For instance,

ERAD of Gap1 occurs when the Shr3 chaperone is deficient [2]. It

will thus be interesting to determine whether the Gap1 mutants

blocked in the ER are substrates of the ERAD pathway, and if so,

which lysine(s) are targets for ubiquitylation.

Eleven Gap1 mutants altered in L2 to L10 reach the plasma

membrane normally. Among these, about half display no or very

low activity and the others, although they behave like native Gap1

in growth tests, display significantly reduced activities. This

suggests that the intracellular loops are particularly important

for the transport function of the permease. For instance, these

regions might be important for the dynamic properties of the

permease [19]. Among the Gap1 mutants altered in intracellular

loops and which are active, Gap1-167 is unstable at the plasma

membrane, just like Gap1-124. Further experiments are needed to

determine why this Gap1 mutant is constitutively sorted in the

endocytic pathway.

The Gap1-152 mutant altered in a Glu-Pro-Arg-Lys sequence

in L6 is largely sorted from the secretory pathway and delivered to

the vacuolar lumen via the multivesicular body pathway. This

direct vacuolar sorting is normally observed for native Gap1 when

the Npr1 kinase is inactive or when a good nitrogen source is

available, causing Npr1 inactivation via the TOR signaling

pathway [8,25]. Under these conditions, Gap1 reaching the late

Golgi is ubiquitylated on its lysines K9 and K16 by Rsp5. This

ubiquitylation is not needed for Golgi-to-endosome transport of

Gap1, but is essential to its subsequent sorting into the MVB

pathway [9]. Remarkably, the delivery of Gap1-152 mutant from

the secretory pathway to the vacuole seems to rely on different

mechanisms. We indeed observed that the vacuolar sorting of

Gap1-152 is not impaired by the replacement of its K9 and K16

with arginine, and the same were true when the nine lysines

present in its NT were mutated. Furthermore, we failed to detect

any ubiquitylation of Gap1-152. Although these observations

suggest that vacuolar sorting of Gap1-152 is independent of its

ubiquitylation, Gap1-152 was missorted to the vacuolar mem-

brane in the npi1 mutant in which the Rsp5 ubiquitin ligase is

expressed at an insufficient level. To account for these observa-

tions, we propose that Gap1-152 displays abnormal structural

features leading to its recognition by a quality control system

operating downstream from the ER, e.g. at a late Golgi level, as

illustrated by the case of mutant forms of the Pma1 ATPase [46].

This quality control might promote Rsp5-dependent ubiquityla-

tion of Gap1 on other lysines than those present in the NT, and

this ubiquitylation might for some reasons be less stable and barely

detectable under our experimental conditions. Alternatively,

Gap1-152 ubiquitylation might be dispensable for its down-

regulation. For instance, the quality control system might involve

recognition of Gap1-152 by another factor whose Rsp5-dependent

ubiquitylation would promote its MVB sorting together with the

associated Gap1-152 protein. Our current experiments aim at

testing the validity of these models.

In conclusion, this study describes the first systematic mutational

analysis of the intracellular regions of a transmembrane transport

protein, the yeast Gap1 permease. The phenotypic analysis of the

64 mutants opens new prospects for studying various aspects of

Gap1 function and trafficking. It will be useful to introduce single-

amino-acid substitutions within each mutagenized sequence of

interest and to extend this type of systematic mutagenesis to other

amino acid permeases or other transporters for data comparisons.

Supporting Information

Figure S1 The site-directed mutagenesis strategy used
to isolate the 64 mutant gap1 alleles. Two PCR fragments

containing the mutation were introduced into the gap1D yeast

strain together with the linearized pCJ130 (GAL-YCH1-GFP,

centromeric URA3) plasmid. Yeast transformants were selected

for the Ura3+ phenotype. The plasmids generated by recombina-

tion were purified by cloning into E. coli and sequenced.

(TIF)

Figure S2 Growth phenotype conferred by the 64
mutant gap1 alleles. (A) Strain EK008 (gap1D ura3) trans-

formed with the pJOD10 (YCpGAL-GAP1-GFP) plasmid ex-

pressing the native permease (Gap1) or with equivalent plasmids

expressing none Gap1 protein (2), the Gap1K9,16R form resistant

to ubiquitylation, or one of the 64 Gap1 mutants were tested for

growth on a solid medium containing citrulline as sole nitrogen

source. (B) Same as in (A) except that the medium contained

proline as nitrogen source to which D-histidine was added or not.

(C) Same as in (A) except that the strain was 32501d (gap1D ssy1D
ura3) and the medium contained proline or phenylalanine as sole

nitrogen source. Cells were grown at 29uC for 4 to 7 days

according to nitrogen medium.

(TIF)

Figure S3 Reduced or lack of activity of several tested
Gap1 mutants is not due to their non-expression. Strain

EK008 (gap1D ura3) transformed with the pJOD10 (YCpGAL-

GAP1-GFP) plasmid expressing the native permease (Gap1) or

with equivalent plasmids expressing the Gap1K9,16R form resistant

to ubiquitylation, or one of several Gap1 mutants (those analyzed

in Table 2) were grown on urea as sole nitrogen source. Cell

extracts were prepared and immunoblotted using antibodies
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against GFP or Pma1 (used as a loading control). The normalized

intensity of signals were: 1 (Gap1), 1.6 (Gap1K9,16R), 2.4 (Gap1-

101), 1 (Gap1-124), 2.4 (Gap1-112), 1.4 (Gap1-167), 1.1 (Gap1-

126), 0.7 (Gap1-143), 1.6 (Gap1-146), 0.6 (Gap1-104), 0.7 (Gap1-

141), 0.9 (Gap1-168), 0.5 (Gap1-152), 1.1 (Gap1-171).

(TIF)

Figure S4 Overproduction of Shr3 does not suppress the
growth phenotype of Gap1 mutants trapped in the ER.
Strain ME042 (GAL1-SHR3 gap1D ura3) transformed with the

pJOD10 (YCpGAL-GAP1-GFP) plasmid expressing the native

permease (Gap1) or with equivalent plasmids expressing none

Gap1 protein (empty vector), or one of the Gap1 mutants trapped

in the ER (see text), were tested for growth on a solid medium

containing galactose as a carbon source and proline as nitrogen

source to which D-histidine was added or not.

(TIF)

Figure S5 Gap1-152 does not seem to be ubiquitylated.
Strain EL002 (gap1D vps27D ura3) transformed with the pJOD10

plasmid (Gap1) or with an equivalent plasmid encoding the

Gap1K9,16R (pCJ038) or Gap1-152 (pNG18) variants was grown

on galactose-proline medium. Ammonium (20 mM) was added for

two hours to the cells expressing Gap1 or Gap1K9,16R. Cell

extracts were then prepared and blotted with anti-GFP antibody.

(TIF)

Table S1 Strains used in this study.

(DOC)

Table S2 Plasmids used in this study.

(DOC)
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24. De Craene J-O, Soetens O, André B (2001) The Npr1 kinase controls

biosynthetic and endocytic sorting of the yeast Gap1 permease. J Biol Chem 276:
43939–43948.

25. Roberg KJ, Rowley N, Kaiser CA (1997) Physiological regulation of membrane
protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell Biol

137: 1469–1482.

26. Schmidt A, Beck T, Koller A, Kunz J, Hall M (1998) The TOR nutrient

signaling pathway phosphorylates NPR and inhibits turnover of the tryptophane
permease. The European Molecular Biology Organization Journal 17:

6924–6931.

27. Springael J-Y, André B (1998) Nitrogen-regulated ubiquitylation of the Gap1
permease of Saccharomyces cerevisiae. Mol Biol Cell 9: 1253–1263.

28. Helliwell SB, Losko S, Kaiser CA (2001) Components of a ubiquitin ligase
complex specify polyubiquitylation and intracellular trafficking of the general

amino acid permease. J Cell Biol 153: 649–662.
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