Skip to main content
. 2011 Apr 19;6(4):e18844. doi: 10.1371/journal.pone.0018844

Figure 3. Epigenetic profile of ZNF genes on chr19 in human bronchial epithelial cells.

Figure 3

A. Genes located on chr19 sorted by CpG density in gene bodies and by percentage of gene body length covered by H3K9me3. B. Distribution of ZNF genes in the human genome. The number of ZNF genes on individual chromosomes is shown. C. Representative epigenetic profile of ZNF genes. Gene names, directions of transcription and gene coordinates on the chromosome are indicated. Note the simultaneous occupation of ZNF gene bodies by H3K9me3 and H3K36me3. D. Composite profile of genes with gene bodies marked by H3K36me3 and H3K9me3 over at least 20% of gene body length. Each gene body was divided into 20 and the 5 kb upstream of the TSS and 5 kb downstream of the 3' gene end were divided into 10 bins. The average signal for each single bin is indicated. E. Gene bodies marked by H3K9me3 and H3K36me3 on human chr19 in HBEC. The number of genes with gene bodies marked by H3K36me3 or H3K9me3 or by both marks over at least 20% of gene body length is shown (pā€Š=ā€Š0.02; Chi square test). Ninety percent of the dual-occupied genes are zinc finger genes. F. Genes marked by H3K36me3 on chr19 in HBEC. The diagram represents the distribution of H3K9me3 and DNA methylation in gene bodies containing H3K36me3. Genes were assumed to carry a specific modification if at least 20% of gene body length was covered by the analyzed mark. Co-occupancy of H3K9me3 and H3K36me3 is a hallmark of ZNF genes.