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Abstract

Aberrant c-aminobutyric acid type A (GABAA) receptor-mediated inhibition in cortico-thalamic networks remains an
attractive mechanism for typical absence seizure genesis. Using the whole-cell patch clamp technique we examined ‘phasic’
and ‘tonic’ GABAA inhibition in thalamocortical neurons of somatosensory (ventrobasal, VB) thalamus, nucleus reticularis
thalami (NRT) neurons, and layer 5/6 pyramidal neurons of the somatosensory (barrel) cortex of succinic semialdehyde
dehydrogenase (SSADH) knock-out (SSADH2/2) mice that replicate human SSADH deficiency and exhibit typical absence
seizures. We found increased sIPSC frequency in both VB and NRT neurons and larger sIPSC amplitude in VB neurons of
SSADH2/2 mice compared to wild-type animals, demonstrating an increase in total phasic inhibition in thalamus of
SSADH2/2 mice. mIPSCs in both VB and NRT neurons were no different between genotypes, although there remained a
trend toward more events in SSADH2/2 mice. In cortical layer 5/6 pyramidal neurons, sIPSCs were fewer but larger in
SSADH2/2 mice, a feature retained by mIPSCs. Tonic currents were larger in both thalamocortical neurons and layer 5/6
pyramidal neurons from SSADH2/2 mice compared to WTs. These data show that enhanced, rather than compromised,
GABAA receptor-mediated inhibition occurs in cortico-thalamic networks of SSADH2/2 mice. In agreement with previous
studies, GABAA receptor-mediated inhibitory gain-of-function may be a common feature in models of typical absence
seizures, and could be of pathological importance in patients with SSADH deficiency.
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Introduction

Succinic semialdehyde dehydrogenase (SSADH) deficiency is

an autosomal recessively inherited disorder which, when

compared with other neurometabolic disorders, is relatively

common with approximately 400 identified cases worldwide [1].

Loss of SSADH activity compromises GABA degradation,

leading to the accumulation not only of GABA but also of c-

hydroxybutyric acid (GHB) in the cerebrospinal fluid [1,2].

Clinical symptoms of SSADH deficiency are variable, but

typically include delayed intellectual, speech and language

development, hypotonia, ataxia, sleep disturbances and an array

of epilepsies, including generalized tonic-clonic, absence and

myoclonic seizures [3–5]. Recently, SSADH deficient mice were

developed that replicate the GHB and GABA accumulation

exhibited in humans, and have a strikingly similar epileptic

phenotype [1,6,7]. In particular, homozygous SSADH knock-out

(SSADH2/2) mice display typical absence seizures that appear at

the beginning of the third postnatal week, evolve into myoclonic

and generalized convulsive seizures, and finally progress to lethal

status epilepticus [6,8,9]. These mice are therefore a valuable tool

in examining the pathological cellular mechanisms underlying

seizure genesis in SSADH deficiency.

Typical absence seizures characterize many idiopathic gener-

alized epilepsies and are generated in cortico-thalamic networks

[10,11]. In rodent models, spike-and-wave discharges, the EEG

hallmark of absence seizures, arise in layer 5/6 neurons of the

somatosensory cortex and propagate to the underlying thalamus

[12–14]. However, recruitment of thalamocortical neurons of the

somatosensory ventrobasal (VB) nucleus and neurons of the

nucleus reticularis thalami (NRT) is required for the full

electrographic and behavioural expression of seizures [13].

Whilst compromised GABAergic inhibition in cortico-thalamic

networks is an attractive pathological mechanism for seizure

genesis [15,16], we recently demonstrated that extrasynaptic

GABAA receptor-mediated inhibition is increased in thalamocor-

tical neurons from multiple and diverse models of absence

seizures, and that extrasynaptic GABAA receptor hyperfunction

in the thalamus is critical for seizure genesis [17]. Extrasynaptic

GABAA receptors generate a distinct type of inhibition from their

synaptic counterparts. Synaptic GABAA receptors are activated

by vesicular GABA release from GABAergic terminals and

generate classical ‘phasic’ inhibitory post-synaptic currents

(IPSCs). By comparison, extrasynaptic GABAA receptors are

activated by spillover of GABA from the synaptic cleft and

generate a persistent or ‘tonic’ GABAA current [18,19]. Previous
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studies in SSADH2/2 mice have observed altered phasic and

tonic GABAA inhibition in hippocampal CA1 pyramidal and

cortical layer 2/3 pyramidal neurons [20–22], but whilst these

findings may have relevance for the development of myoclonic

and generalized convulsive seizures, GABAA receptor-mediated

inhibition has not been examined in neurons that actively

participate in the generation of typical absence seizures, i.e.

thalamocortical neurons, NRT neurons and layer 5/6 pyramidal

neurons. We have therefore examined phasic and tonic GABAA

currents in thalamic and cortical neurons from SSADH2/2 mice

and compared them to wild-type (WT) littermates. Our data

demonstrate altered GABAA receptor-mediated inhibition in all

three neuron types that may underlie the appearance of absence

seizures in SSADH2/2 mice and be of pathological importance

in human SSADH deficiency.

Methods

All animal procedures were carried out in accordance with local

ethical committee guidelines (Cardiff University Reseach Ethics

Committee) and the U.K. Animals (Scientific Procedure) Act,

1986 (Home Office Project License Number PPL 30/2413). All

efforts were made to minimize the suffering and number of

animals used in each experiment.

Breeding pairs of heterozygous SSADH deficient mice were

obtained from Jackson Laboratories (Bar Harbor, ME, U.S.A).

Offspring were genotyped as described previously [6], and

experiments performed on postnatal day (P)23–31 SSADH2/2

and WT littermates. Despite initial reports of lethal status

epilepticus occurring in SSADH2/2 mice from the end of the

third postnatal week [6,21], inbreeding of subsequent generations

has ameliorated the severity of this phenotype so that mice are

now capable of surviving into adulthood [23].

Slice preparation and electrophysiology
Horizontal slices containing the VB thalamus and NRT, or

coronal slices containing the somatosensory (barrel) cortex were

prepared as described previously [26]. Briefly, male and female

WT and SSADH2/2 mice were anaesthetised with isoflurane

and decapitated. The brain was rapidly removed and slices cut in

ice-cold, continuously oxygenated (95% O2: 5% CO2) artificial

cerebrospinal fluid (aCSF) containing (in mM): NaCl 85,

NaHCO3 26, KCl 2.5, NaH2PO4 1.25, MgCl2 2, CaCl2 2,

glucose 10, sucrose 73.6, kynurenic acid 3, and indomethacin

0.045. Kynurenic acid and indomethacin were included in the

cutting medium in order to improve slice viability [17]. Slices

were incubated at room temperature in the above aCSF, but

without kynurenic acid and indomethacin, for 15 mins before

the sucrose-containing aCSF was gradually replaced over a

period of 4–6 hrs with continuously oxygenated aCSF containing

(in mM): NaCl 126, NaHCO3 26, KCl 2.5, NaH2PO4 1.25,

MgCl2 2, CaCl2 2, and glucose 10. Slices were further incubated

for at least 1 hr before being transferred to the recording

chamber and perfused with warmed (3361uC), continuously

oxygenated aCSF containing (in mM): NaCl 126, NaHCO3 26,

KCl 2.5, NaH2PO4 1.25, MgCl2 1, CaCl2 2, glucose 10, and

kynurenic acid 3.

Neurons were visualised using a Nikon microscope (Eclipse

E600FN; Tokyo, Japan) equipped with a 406 immersion lens

and a video camera (Hamamatsu, Hamamatsu City, Japan). The

rodent VB thalamus and NRT contain a relatively uniform

population of thalamocortical and GABAergic neurons, respec-

tively [24,25], whilst cortical layer 5/6 pyramidal neurons were

identified by their characteristic shape and the presence of a

large apical dendrite. Whole-cell patch clamp recordings were

made using pipettes pulled from standard wall borosilicate glass

(GC120F-10; Harvard Apparatus, Edenbridge, Kent, U.K.)

attached to the headstage of a Multiclamp 700B amplifier

controlled by Multiclamp Commander software (Molecular

Devices, Sunnyvale, CA, U.S.A). Pipettes had a tip resistance

of 2–4 MV when filled with solution containing (in mM): CsCl

130, MgCl2 2, Mg-ATP 4, Na-GTP 0.3, HEPES 10, and EGTA

0.1; pH 7.25–7.30, ,290 mOsm. Neurons were held at

270 mV, and since the reversal potential of Cl2 was ,0 mV

GABAA currents appeared inward. Series resistance and whole-

cell capacitance were determined in response to 5 mV voltage

steps. Series resistance was compensated by ,80%, and

recordings discarded if it increased by .30%. Data were

digitized at 20 kHz (Digidata 1322A, Molecular Devices),

acquired using pClamp 9.0 software (Molecular Devices), and

stored on a personal computer.

Data analysis
Data were analysed as described previously [17,26]. Briefly,

data were filtered at 3 kHz and converted to an ASCII format for

analysis using LabView based software (National Instruments,

Austin, TX, U.S.A.). For analysis of spontaneous and miniature

IPSCs, populations of individual IPSCs were averaged, and the

peak amplitude, charge transfer (the integral of the average IPSC),

weighted decay time constant (integral of the average IPSC

divided by peak amplitude), frequency, and total current (charge

transfer 6 frequency) measured. Tonic GABAA currents were

revealed as a shift in baseline current following the focal

application of the GABAA antagonist 6-imino-3-(4-methoxyphe-

nyl)-1-(6H)-pyridazinebutanoic acid hydrobromide (gabazine). To

measure tonic current amplitude, 5 ms epochs of baseline current

were sampled every 100 ms, and those epochs that fell on IPSCs

discarded. The average baseline current was then determined for

two 5 s periods before gabazine application (i and ii) and one

period after (iii). The background ‘drift’ of the baseline current was

then calculated as the difference between the two pre-gabazine

periods (i.e. ii-i), and the ‘shift’ in baseline current due to block of a

tonic GABAA current as the difference between the second pre-

gabazine period and the post-gabazine period (i.e. iii-ii). A tonic

current was presumed to be present for a given neuron if the post-

gabazine shift was greater than twice the standard deviation of the

pre-gabazine drift. The presence of tonic currents in a population

of neurons (i.e. pre-gabazine drift vs. post-gabazine shift) was tested

using Student’s paired t-test, with significance set at P,0.05.

Tonic current amplitude was also normalized to the whole-cell

capacitance for each neuron.

To compare the post-natal age of WT and SSADH2/2 mice,

absolute and normalized tonic current amplitudes, spontaneous

and miniature IPSC properties between genotypes, and the effects

of tetrodotoxin alone or together with (2S)-3-[[(1S)-1-(3,4-dichlor-

ophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphonic

acid (CGP55845) on tonic current amplitude and IPSC

properties within genotypes, we used Student’s unpaired t-test

with significance set at P,0.05. Differences in the distribution of

inter-IPSC intervals between genotypes were compared using the

Kolmogorov-Smirnov test, with significance set at P,0.05. Data

are presented as mean 6 s.e.m.

Gabazine was focally applied to the slice using a pipette.

Tetrodotoxin and CGP55845 were bath applied. CGP558945 was

initially dissolved in DMSO before addition to the aCSF.

Gabazine and tetrodotoxin were obtained from Ascent Scientific

(Bristol, U.K.) and CGP55845 from Tocris (Bristol, U.K.).

Increased GABAA Inhibition in SSADH Deficient Mice
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Results

Data were obtained from 19 WT and 14 SSADH2/2 mice. The

mean age was not significantly different between the two

genotypes (WT: 25.760.5 days, SSADH2/2: 25.060.5 days).

Thalamocortical neurons
Under control conditions, i.e. in the presence of kynurenic acid

(3 mM) to block ionotropic glutamate receptors and isolate

GABAA receptor mediated currents (Cope et al., 2009), sIPSCs

were readily apparent in thalamocortical neurons of the VB

thalamus from both WT (n = 11 cells) and SSADH2/2 (n = 9

cells) mice (Fig. 1A and Table 1), as described previously

[17,26,27]. Comparison of sIPSC properties between WT and

SSADH2/2 mice showed that peak amplitude, frequency, charge

transfer and total current were significantly larger in SSADH2/2

mice (all P,0.05) (Table 1). Furthermore, there was a significant

difference in the distribution of inter-IPSC intervals between WT

and SSADH2/2 mice (P,0.001), so that shorter inter-IPSC

intervals were more prevalant in SSADH2/2 mice (Fig. 1B). We

also measured tonic GABAA currents in the same thalamocortical

neurons following the focal application of the GABAA antagonist

gabazine (GBZ, 50 mM) (Fig. 1C) [17,26,27]. Tonic currents were

observed in every neuron recorded from both WT and

SSADH2/2 mice, but were significantly larger in SSADH2/2

mice compared to WTs (WT: 139.2621.6 pA, SSADH2/2:

Figure 1. Increased tonic GABA currents and altered IPSC properties in TC neurons of SSADH2/2 mice. A, representative current traces
from thalamocortical neurons of wild-type (WT, top) and SSADH2/2 (bottom) mice showing the differences in spontaneous IPSC frequency and
amplitude between the two genotypes. B, cumulative probability plot showing the distribution of inter-IPSC intervals under control conditions (Con)
(WT, thin line, 10678 inter-IPSC intervals; SSADH2/2, thick line, 11337 inter-IPSC intervals) and in the presence of 0.5 mM TTX (WT, thin dashed line,
5767 inter-IPSC intervals; SSADH2/2, thick dashed line, 7138 inter-IPSC intervals). C, representative current traces from thalamocortical neurons of WT
(left) and SSADH2/2 (right) mice showing the difference in tonic current amplitude between the two genotypes. Dotted lines represent the initial
baseline current prior to the focal application of 50 mM GBZ (white bar). D, graph comparing absolute tonic current amplitude in WT and SSADH2/2

mice under control conditions (Con, white columns), and in the presence of TTX (black columns). E, graph comparing normalized tonic current
amplitude between WT and SSADH2/2 mice under control conditions (Con) and in the presence of TTX. D and E, * P,0.05, ** P,0.01 and
*** P,0.001 WT vs. SSADH2/2, Student’s unpaired t-test.
doi:10.1371/journal.pone.0019021.g001
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191.5612.1 pA; P,0.05) (Fig. 1C and D). Tonic current

amplitude remained significantly larger in SSADH2/2 mice

when normalized to whole-cell capacitance (WT: 2.460.3 pA/

pF, SSADH2/2: 3.660.3 pA/pF; P,0.05) (Fig. 1E). Interest-

ingly, in heterozygous animals (SSADH+/2) the tonic current in

thalamocortical neurons was slightly, but not significantly

(P.0.05), larger than WT animals but less than (P,0.05) that

observed in SSADH2/2 (SSADH+/2: 147.1619.8 pA; Normal-

ised: 2.660.4 pA/pF). This finding is consistent with previously

published data in dentate gyrus granule cells that also showed the

magnitude of tonic GABAergic inhibition is dependent upon

SSADH ‘gene dosage’ [28].

We also measured mIPSC properties in thalamocortical

neurons following bath application of tetrodotoxin (TTX,

0.5 mM). Comparison of mIPSC properties between WT

(n = 10 cells) and SSADH2/2 (n = 10 cells) mice revealed no

significant differences (Table 1), although the distribution of inter-

IPSC intervals was significantly different between the two

genotypes (P,0.001), indicating a trend for a higher mIPSC

frequency in SSADH2/2 animals (Fig. 1B). In both WT and

SSADH2/2 mice there was a general trend for the frequency of

mIPSCs to be reduced compared to sIPSCs, but this was only

significant for SSADH2/2 mice (SSADH2/2: P,0.01; WT:

P = 0.07), and for the weighted decay time constant to be faster,

but this was only significant for WT mice (Table 1). In addition

the charge transfer and total current of mIPSCs was significantly

smaller in SSADH2/2 mice compared to sIPSCs (P,0.05 and

P,0.01, respectively) (Table 1). Tonic current amplitude in the

same thalamocortical neurons was also reduced in both strains

compared to control conditions (WT: 92.8615.1 pA, SSADH2/2:

167.5617.9 pA), but not significantly (Fig. 1D). Similarly, the

normalized tonic current amplitude in both genotypes was also not

significantly different compared to control conditions (WT:

1.761.0 pA/pF, SSADH2/2: 4.060.4 pA/pF) (Fig. 1E). However,

both absolute and normalized tonic current amplitude were still

significantly larger in SSADH2/2 compared to WT mice in the

presence of TTX (absolute P,0.01, normalized P,0.001) (Fig. 1D

and E). Thus, increased phasic and tonic GABAA receptor-

mediated inhibition occurs in thalamocortical neurons of the

somatosensory thalamus from SSADH2/2 mice.

NRT neurons
The frequency of sIPSCs in NRT neurons from both WT and

SSADH2/2 mice was lower compared to thalamocortical neurons

(compare Figs. 1A and 2A, and Tables 1 and 2), in agreement with

previous studies in rodents [26,27,29,30]. Furthermore, sIPSCs in

NRT neurons exhibited a characteristically slower decay com-

pared to those in thalamocortical neurons (Fig. 2B). Comparison

of NRT neuron sIPSC properties between WT and SSADH2/2

mice (n = 9 and 6 cells, respectively) showed that sIPSC frequency

and total current were significantly larger in SSADH2/2 mice

(both P,0.05) (Fig. 2A and Table 2). In agreement with this, the

distribution of inter-IPSC intervals between WT and SSADH2/2

mice was significantly different (P,0.001) so that shorter inter-

IPSC intervals were more apparent in SSADH2/2 mice (Fig. 2C).

Similar to thalamocortical neurons, we focally applied GBZ to

NRT neurons of both genotypes (n = 3 cells each), to test for the

presence of tonic currents. However, tonic currents were never

observed (data not shown), in agreement with previous studies in

NRT neurons [26,27].

In the presence of 0.5 mM TTX, the parameters of mIPSCs

recorded from NRT neurons were not significantly different

between WT and SSADH2/2 mice (n = 9 and 6 cells, respective-

ly). However, there was a clear trend for mIPSC frequency to be

greater in SSADH2/2 mice compared to WTs (P = 0.07), that was

reflected in the significantly different distribution of inter-IPSC

intervals between genotypes (P,0.001) (Fig. 2C). There were no

differences in the properties of sIPSCs and mIPSCs in WT mice,

but mIPSCs in SSADH2/2 mice had a significantly smaller

charge transfer compared to sIPSCs (P,0.05) (Table 2). Since we

did not observe tonic currents in NRT neurons under control

conditions, we did not test for their presence following the

Table 1. Comparison of spontaneous and miniature IPSC properties, and the effects of CGP55845 on miniature IPSCs, in
thalamocortical neurons of the ventrobasal thalamus from wildtype (WT) and SSADH2/2 mice.

IPSC parameter

n
Peak amplitude
(pA)

Weighted decay
(ms)

Frequency
(Hz)

Charge transfer
(fC)

Total current
(pA)

sIPSCs

WT (11) 252.563.2 1.860.1 18.563.6 2106.967.7 21.960.4

SSADH2/2 (9) 283.964.7*** 1.660.1 33.666.6* 2162.3615.7** 25.461.1**

mIPSCs

WT (10) 261.564.1 1.460.1{{{ 10.562.2 299.568.3 21.160.3

SSADH2/2 (10) 273.567.6 1.460.1 13.061.3{{ 2120.2613.7{ 21.660.2{{

mIPSCs + CGP55845

WT (11) 257.763.8 1.660.1{ 10.461.4 2104.267.9 21.260.2

SSADH2/2 (7) 277.6613.5 1.760.2 8.561.8{ 2167.5649.0 21.360.3

Data are presented as mean 6 s.e.m.
*P,0.05,
**P,0.01 and
***P,0.001, WT vs. SSADH2/2.
{P,0.05,
{{P,0.01 and
{{{P,0.001, sIPSCs vs. mIPSCs within genotypes.
{P,0.05, mIPSCs vs. mIPSCs+CGP55845 within genotypes. Number of recorded neurons (n) is as indicated.
doi:10.1371/journal.pone.0019021.t001
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application of TTX. These results demonstrate increased phasic

GABAA inhibition in NRT neurons of SSADH2/2 mice

compared to WT littermates.

Layer 5/6 pyramidal neurons
Comparison of sIPSCs in layer 5/6 pyramidal neurons of the

somatosensory cortex from WT (n = 9 cells) and SSADH2/2

(n = 9 cells) mice revealed a significantly larger peak amplitude and

charge transfer in SSADH2/2 mice (Fig. 3A and Table 3)

(P,0.001 and P,0.05, respectively), and although there was no

difference in sIPSC frequency between genotypes, the distribution

of inter-IPSC intervals was significantly different (P,0.001) in

favour of shorter inter-IPSC intervals in WT mice (Fig. 3B). In the

same neurons from WT mice, focal application of GBZ failed to

reveal a tonic current (absolute 4.861.2 pA, normalized

0.260.1 pA/pF) (Fig. 3C–E), as described previously for layer

2/3 pyramidal neurons in these WT mice [21]. In contrast, focal

application of GBZ in SSADH2/2 mice revealed robust tonic

currents (absolute 35.066.1 pA, normalized 1.360.2 pA/pF)

(Fig. 3C) that were significantly larger compared to WT mice

(absolute and normalized, both P,0.001) (Fig. 3D and E).

In the presence of TTX, the peak amplitude and charge transfer

of mIPSCs recorded from layer 5/6 pyramidal neurons were

larger in SSADH2/2 mice (n = 7 cells) compared to WT mice

(n = 7 cells) (both P,0.05) (Table 3), and the distribution of inter-

IPSC intervals was also significantly different (P,0.001), indicat-

ing shorter inter-IPSC intervals in WT mice (Fig. 3B). In WT

mice, the frequency and total current of mIPSCs were significantly

smaller compared to sIPSCs (both P,0.05), but there was no

difference in the properties of mIPSCs and sIPSCs in SSADH2/2

mice (Table 3). Tonic currents in WT mice were still not apparent

in the presence of TTX (absolute 4.361.3 pA, normalized

0.260.1 pA/pF) (Fig. 3D and E), and TTX had no effect on

absolute and normalised tonic current amplitude in SSADH2/2

mice compared to control conditions (absolute 35.866.3 pA,

normalized 1.460.3 pA/pF) (Fig. 3D and E). However, absolute

and normalized tonic current amplitudes in the presence of TTX

remained significantly larger in SSADH2/2 mice compared to

WTs (both P,0.001). Thus, both spontaneous and miniature

IPSCs are larger, but fewer, in layer 5/6 pyramidal neurons of

SSADH2/2 mice compared to WTs, and SSADH2/2 mice also

exhibit larger tonic currents.

Figure 2. Increased IPSC frequency in NRT neurons of SSADH2/2

mice. A, representative current traces from NRT neurons of wild-type
(WT, top) and SSADH2/2 (bottom) mice showing the difference in
spontaneous IPSC frequency between the two genotypes. B, the
waveforms of average spontaneous IPSCs from a thalamocortical (TC)
neuron of the VB thalamus and an NRT neuron. Note the character-
istically slower decay of the IPSC from the NRT neuron compared to the
thalamocortical neuron. IPSCs have been normalized to the same peak
amplitude. C, cumulative probability plot showing the distribution of
inter-IPSC intervals under control conditions (Con) (WT, thin line, 1936
inter-IPSC intervals; SSADH2/2, thick line, 1710 inter-IPSC intervals) and
in the presence of 0.5 mM TTX (WT, thin dashed line, 1759 inter-IPSC
intervals; SSADH2/2, thick dashed line, 2143 inter-IPSC intervals).
doi:10.1371/journal.pone.0019021.g002

Table 2. Comparison of spontaneous and miniature IPSC properties in NRT neurons of wildtype (WT) and SSADH2/2 mice.

IPSC parameter

n
Peak amplitude
(pA)

Weighted decay
(ms)

Frequency
(Hz)

Charge transfer
(fC)

Total current
(pA)

sIPSCs

WT (9) 236.463.2 12.360.4 1.860.4 2456.8644.5 20.960.3

SSADH2/2 (6) 243.263.1 12.760.4 3.560.6* 2559.3634.9 22.060.5*

mIPSCs

WT (9) 240.762.9 12.860.7 1.660.2 2525.8639.1 20.960.1

SSADH2/2 (6) 235.563.2 12.560.8 3.961.5 2443.8623.8{ 21.860.7

Data are presented as mean 6 s.e.m.
*P,0.05, WT vs. SSADH2/2.
{P,0.05, sIPSCs vs. mIPSCs within genotypes. Number of recorded neurons (n) is as indicated.
doi:10.1371/journal.pone.0019021.t002

Increased GABAA Inhibition in SSADH Deficient Mice
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Block of GABAB receptors reduces tonic current
amplitude in TC neurons of SSADH2/2 but not WT mice

Previously, we described a role for GABABRs in facilitation of

tonic eGABAAR currents in TC neurons of several animal models

of typical absence seizures including the Genetic Absence Epilsepy

Rat from Strasbourg (GAERS) and stargazer and lethargic mice

[17]. As SSADH deficiency leads not only to increased GABA

concentration in the CSF but also increased GHB (a GABABR

agonist) levels we tested the contribution of GABABRs to the

enhancement of tonic GABAA current observed in TC neurons of

SSADH2/2 mice. In the presence of TTX the GABABR antagonist

CGP55845 (10 mM) produced a significant reduction in mIPSC

frequency in VB TC neurons from SSADH2/2 mice but not in

those from WT mice (P,0.01) (Table 1) without significant

(P.0.05) differences in amplitudes of synaptic currents in either

mouse. In WT mice CGP55845 also resulted in a significant

increase (P,0.01) in the weighted decay time of mIPSCs, a trend

which was also observed in SSADH2/2 mice (although differences

were not significant, P.0.05). Importantly, in the same neurons

CGP55845 caused a significant reduction in the enhanced tonic

current observed in SSADH2/2 mice (TTX: 167.5617.9 pA,

n = 10; TTX+CGP: 74.368.5 pA, n = 7; P,0.001) but not in WT

littermates (TTX: 92.9615.1 pA, n = 10; TTX+CGP: 96.56

15.7 pA, n = 11; P.0.05) (Fig. 4). These findings indicated that in

SSADH2/2 mice GABABR-dependent modulation of tonic

GABAA currents in VB TC neurons may contribute to the

observed absence epilepsy phenotype as has been demonstrated in

other models of this pathological state.

Figure 3. Increased tonic GABA current and IPSC frequency in layer V cortical neurons in SSADH2/2 mice. A, representative current
traces from layer 5/6 pyramidal neurons of wild-type (WT, top) and SSADH2/2 (bottom) mice showing the difference in spontaneous IPSC amplitude
between the two genotypes. B, cumulative probability plot showing the distribution of inter-IPSC intervals under control conditions (Con) (WT, thin
line, 9356 inter-IPSC intervals; SSADH2/2, thick line, 6245 inter-IPSC intervals) and in the presence of 0.5 mM TTX (WT, thin dashed line, 3430 inter-IPSC
intervals; SSADH2/2, thick dashed line, 2977 inter-IPSC intervals). C, representative current traces from layer 5/6 pyramidal neurons of WT (left) and
SSADH2/2 (right) mice showing the difference in tonic current amplitude between the two genotypes. Note that a tonic current is not apparent in
the neuron from the WT animal. Dotted lines represent the initial baseline current prior to the focal application of 50 mM GBZ (white bar). D, graph
comparing absolute tonic current amplitude in WT and SSADH2/2 mice under control conditions (Con, white columns), and in the presence of TTX
(black columns). E, graph comparing normalized tonic current amplitude between WT and SSADH2/2 mice under control conditions (Con) and in the
presence of TTX. D and E, *** P,0.001 WT vs. SSADH2/2, Student’s unpaired t-test.
doi:10.1371/journal.pone.0019021.g003
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Discussion

Typical absence seizures are a clinical phenotype of many

idiopathic generalized epilepsies, and although several GABAA

receptor subunit mutations in cohorts of patients with absence

have been identified [31–34], and a causative role of compromised

GABAA receptor-mediated inhibition in seizure genesis has been

suggested [15,16], it is apparent that GABAA receptor gain-of-

function in cortico-thalamic networks may be an underlying

mechanism for these seizures [17,35–37]. The data presented here

support these findings by identifying increased phasic and tonic

GABAA inhibition in the principal cell types involved in the

generation of typical absence seizures from SSADH2/2 mice, a

rodent model of SSADH deficiency. In thalamocortical neurons of

SSADH2/2 mice, sIPSC frequency and peak amplitude were

greater, and in NRT neurons sIPSC frequency was also greater,

leading to increased total phasic current in both cell types. Block of

action potential-dependent GABA release by TTX effectively

normalised IPSC properties in both thalamocortical and NRT

neurons so that mIPSCs in SSADH2/2 mice were no different to

Table 3. Comparison of spontaneous and miniature IPSC properties in somatosensory cortical layer 5/6 pyramidal neurons from
wildtype (WT) and SSADH2/2 mice.

IPSC parameter n
Peak amplitude
(pA)

Weighted decay
(ms)

Frequency
(Hz)

Charge transfer
(fC)

Total current
(pA)

sIPSCs

WT (9) 262.465.3 2.460.2 18.963.2 2166.4623.8 23.260.7

SSADH2/2 (9) 296.966.4*** 2.660.4 12.663.0 2261.9628.3* 22.860.4

mIPSCs

WT (7) 270.465.5 2.160.3 8.962.2{ 2164.6628.2 21.460.3{

SSADH2/2 (7) 289.468.0* 3.060.5 7.861.9 2286.9642.4* 22.060.5

Data are presented as mean 6 s.e.m.
*P,0.05 and
***P,0.001, WT vs. SSADH2/2.
{P,0.05, sIPSCs vs. mIPSCs within genotypes. Number of recorded neurons (n) is as indicated.
doi:10.1371/journal.pone.0019021.t003

Figure 4. Contribution of GABAB receptors to enhanced tonic inhibition in TC neurons of SSADH2/2 mice. A, representative current
traces from TC neurons of wild-type (WT, left) and SSADH2/2 (right) mice in the continuing presence of 0.5 mM TTX+10 mM CGP55845 (grey bar). Note
the tonic current is smaller in the neuron from the SSADH2/2 mouse compared to the WT mouse. Dotted lines represent the initial baseline current
prior to the focal application of 50 mM GBZ (white bar). B, graph comparing absolute tonic current amplitude in WT and SSADH2/2 mice in the
presence of TTX alone (TTX, black columns), and in the presence of TTX+CGP55845 (TTX+CGP., grey columns). C, graph comparing normalized tonic
current amplitude in WT and SSADH2/2 mice in the presence of TTX alone (TTX) and in the presence of TTX+CGP55845 (TTX+CGP.). B and C,
*** P,0.001 TTX vs. TTX+CGP. within genotypes, Student’s unpaired t-test.
doi:10.1371/journal.pone.0019021.g004
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those in WTs. Therefore increased phasic inhibition in thalamic

neurons of SSADH2/2 mice appears to be largely driven by

enhanced activity-dependent GABA release. However, in both

thalamocortical and NRT neurons, mIPSC frequency, as

determined by the distribution of inter-IPSC intervals, was indeed

greater in SSADH2/2 mice, perhaps also indicating an activity-

independent increase in vesicular GABA release. This is of

particular interest since NRT neurons are the primary source of

GABAergic input to the rodent VB thalamus [24,38] and also

innervate one another [39] but whereas GABAergic synapses in

the VB thalamus are axo-dendritic, GABAergic synapses in the

NRT are dendro-dendritic [39]. Therefore, despite this funda-

mental difference in synapse physiology, both types of synapse

appear to share GABA release mechanisms that are altered in

SSADH2/2 mice, perhaps preferentially at dendro-dendritic

synapses. In layer 5/6 pyramidal neurons, there was a clear trend

for spontaneous and miniature IPSC frequencies to be lower in

SSADH2/2 mice compared to WTs, as measured by the

distribution of inter-IPSC intervals, but the peak amplitude of

both sIPSCs and mIPSCs was significantly larger in the mutant

mice, effectively negating the change in frequency so that total

phasic current was no different between genotypes. The increased

peak amplitude in the presence of TTX therefore indicates that

GABAA receptor number is increased in layer 5/6 pyramidal

neurons, perhaps to counteract a reduction in activity-dependent

and -independent vesicular GABA release. As well as aberrant

phasic inhibition, we also observed a clear increase in tonic

currents in thalamocortical and layer 5/6 pyramidal neurons of

SSADH2/2 mice compared to WTs. This is not surprising since

GABA levels are approximately 3 fold higher in the cerebrospinal

fluid of SSADH2/2 mice [6]. Given our recent findings in normal

Wistar rats [17], we also suggest that elevated GHB levels,

approximately 40 fold in SSADH2/2 mice, may contribute to

increased tonic inhibition.

Previous studies in SSADH2/2 mice identified no changes in

either spontaneous or evoked IPSCs in layer 2/3 pyramidal

neurons, but did demonstrate a larger tonic current in these

neurons [21], whilst mIPSC frequency and GABAA IPSPs were

reduced in CA1 pyramidal neurons [20,22]. The loss of GABAA

inhibition in CA1 pyramidal neurons is in good agreement with

reduced [35S]tert-butylbicyclophosphorothionate ([35S]TBPS)

binding in the hippocampus of SSADH2/2 mice and a reduction

of b2 subunit, but not a1, b3 or c2 subunits, expression [20,22].

However, reduced [35S]TBPS was also observed in both the cortex

and thalamus of SSADH2/2 mice, but our data and those of

Drasbek et al. (2008) indicate that GABAA receptor function is

either unaltered or increased in these areas. One possible

explanation is that the loss of GABAA receptors in the cortex

and thalamus is an attempt to homeostatically compensate for

increased levels of GABA and GHB, which is ultimately

unsuccessful. However, it must also be born in mind that GABAA

receptor expression as measured by [3H]muscimol or [3H]fluni-

trazepam binding was no different in SSADH2/2 and WT mice

[20]. In any case, taken together, these studies highlight how

changes in GABAA inhibition in the same model of epilepsy may

be cell-type specific, as evidenced by enhanced tonic currents in

thalamocortical neurons, but reduced tonic currents in dentate

gyrus granule cells, of stargazer mice [17,40].

We previously demonstrated enhanced tonic inhibition in

thalamocortical neurons from diverse genetic and pharmacolog-

ical models of absence seizures [17], and these findings are

extended by our present observations in thalamocortical neurons

of SSADH deficient mice. Extrasynaptic GABAA receptors in

thalamocortical neurons are critical for seizure genesis in two of

the best established models of absence, the genetic absence

epilepsy rats from Strasbourg (GAERS) and GHB models, and

their selective activation can induce seizures in normal animals

[17]. It therefore seems likely that increased tonic GABAA

inhibition in thalamocortical neurons is also important for the

appearance of seizures in SSADH deficient mice. However, the

pathological consequences of enhanced phasic inhibition in

thalamic neurons remains to be determined, although increased

frequency and peak amplitude of mIPSCs and loss of IPSC

paired-pulse depression has been documented in NRT neurons of

GAERS [41], that may lead to increased excitability and

hypersynchrony [42]. This does not explain, though, why the

mode of action of clonazepam, a frontline treatment for absence

epilepsy, is to selectively increase phasic inhibition in NRT

neurons [43]. Furthermore, the pro-epileptic role of aberrant

phasic and tonic inhibition, if any, in layer 5/6 cortical neurons

of SSADH2/2 mice, or indeed other models of typical absence

seizures, also remains to be elucidated.

In summary, SSADH deficient mice exhibit synaptic and

extrasynaptic GABAA receptor gain-of-function in cortico-thalam-

ic networks that may underlie the appearance of typical absence

seizures. Such gain-of-function appears to be a defining feature of

typical absence seizures, and may have pathological consequences

in patients deficient for SSADH.
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42. Tóth TI, Bessaı̈h T, Leresche N, Crunelli V (2007) The properties of reticular

thalamic neuron GABAA IPSCs of absence epilepsy rats lead to enhanced

network excitability. Eur J Neurosci 26: 1832–1844.

43. Sohal VS, Keist R, Rudolph U, Huguenard JR (2003) Dynamic GABAA

receptor subtype-specific modulation of the synchrony and duration of thalamic

oscillations. J Neurosci 23: 3649–3657.

Increased GABAA Inhibition in SSADH Deficient Mice

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e19021


