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The use of high-throughput methods for the analysis of cancers 
has provided new opportunities for understanding the diversity 
and heterogeneity of cancers and to devise classification systems 
that better recapitulate the biology and clinical behavior of human 
tumors. Class discovery studies have led to the identification of 
molecular subgroups of prognostic significance in multiple types 
of cancer, including lymphomas (1), sarcomas (2), pediatric malig-
nancies (3), melanomas (4) and carcinomas (5, 6). There is a per-
ception that these approaches may be more objective and 
reproducible than histopathologic and immunohistochemical 
methods (7,8).

Microarray-based gene expression profiling has highlighted the 
existence of breast cancer subtypes with distinct biology and clin-
ical behavior (9,10). Expression profiling class discovery studies 
have led to a working model for a breast cancer molecular tax-
onomy (5,11–14), which has become widely used and recently 
adopted for the design of clinical trials (eg, NCT00546156).

Breast cancers can be classified by hierarchical cluster analysis 
using an “intrinsic” gene list [ie, list of “genes with significantly 
greater variation in expression between different tumours than 
between paired samples from the same tumour” (5)] into at least 
one of five molecular subtype classes: luminal A, luminal B, basal-
like, HER2, and normal breast-like (5,10–14). Hierarchical clus-
tering algorithms aggregate samples based on the similarity of 
their gene expression patterns and produce dendrograms, which 
are two-dimensional representations of the similarity between 
the samples and genes analyzed (ie, for each of two samples, the 
smaller the distance in the dendrogram arm or branch, the more 
similar the expression profiles of the samples). Five different 
intrinsic gene lists composed of varying numbers of genes have 
been reported (5,11–14). It has been assumed that molecular sub-
types identified in different studies using different intrinsic gene 
lists are equivalent and reproducible with regard to their clinical, 
biological, and prognostic characteristics (ie, luminal A cancers in 
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described (5,11–14,25). The distinct intrinsic gene lists reported 
by Perou et al. (5) (496 probes corresponding to 349 unique 
Human Genome Organization [HUGO] [http://www.genenames.
org/] gene symbols), Sorlie et al. (11) (456 probes corresponding 
to 395 unique HUGO gene symbols), Sorlie et al. (12) (552 probes 
corresponding to 492 unique HUGO gene symbols), Hu et al. (13) 
(1400 probes corresponding to 1176 unique HUGO gene  
symbols), and Parker et al. (14) (1918 probes and 1918 unique 
HUGO gene symbols) were retrieved (Supplementary Tables 
2–6 and Supplementary Methods, available online).

A substantial proportion of the gene identifiers reported in the 
original publications have changed in more recent genome builds; 
therefore, annotations of intrinsic gene lists and breast cancer 

study “A” identified by the intrinsic gene list “a” are synonymous 
with luminal A cancers in study “B” identified by the intrinsic gene 
list “b”) (7,12,13).

Although hierarchical clustering has been widely used to identify 
molecular subtypes of breast cancer, this approach can only be ap-
plied retrospectively to sufficiently sized cohorts of patients 
(10,15) but not prospectively to individual samples. Therefore, three 
microarray-based “Single Sample Predictors” (SSPs) based on cen-
troids (ie, the mean expression profile of each subtype) were devel-
oped (12–14). To define the SSPs, each molecular subtype was 
initially identified by hierarchical clustering based on the intrinsic 
gene list, and then the centroids of each molecular subtype (ie, 
luminal A, luminal B, HER2, basal-like, and normal breast-like) were 
derived. These SSPs, which can be applied to individual samples based 
on the correlations between the expression profile of a given sample 
and each of the centroids, recapitulate the classification obtained with 
hierarchical cluster analysis. We (16) and others (17) have recently 
demonstrated that the agreement between these SSPs is modest and 
that they can only reliably identify basal-like breast cancers.

Previous studies have highlighted the biostatistical limitations 
of hierarchical cluster analysis of microarray expression profiles for 
the identification of molecular subtypes of breast cancer and the 
relative instability of some of the molecular subtypes identified by 
this type of approach (15,18–21). One fundamental aspect of 
microarray-based class discovery studies, which has not been sys-
tematically analyzed, is the subjectivity involved in assigning the 
molecular subtypes through the analysis of dendrograms generated 
with hierarchical clustering methods.

The aim of this study was to determine the objectivity and  
interobserver reproducibility of the assignment of molecular sub-
type classes by hierarchical clustering (ie, do different observers 
assign the same patients to the same molecular subtype when they 
analyze the same dendrogram?). To address this question, we sub-
jected three breast cancer datasets in the public domain [NKI-295 
(22), TransBig (23), and Wang (24)] to hierarchical cluster analysis 
using five intrinsic gene lists from Perou et al. (5), Sorlie et al. (11), 
Sorlie et al. (12), Hu et al. (13), and Parker et al. (14). Subsequently, 
we determined the interobserver reproducibility among five breast 
cancer researchers who are experienced in molecular subtype 
assignment using the dendrograms and heatmaps generated by 
hierarchical clustering methods and the five intrinsic gene lists.

Material and Methods
Microarray Datasets
Microarray data from the publicly available breast cancer datasets, 
NKI-295 (22) (n = 295), Wang (24) (n = 286), and TransBig (23) (n = 
198), were used for hierarchical cluster analysis. The normalized 
microarray-based gene expression data were retrieved from the inter-
net or public repositories (NKI-295: http://microarray-pubs.stanford. 
edu/wound_NKI/explore.html; Wang: GEO:GSE2034; TransBig: 
GEO:GSE7390). Further details about the datasets and data acquisi-
tion are provided in Supplementary Table 1 (available online).

Hierarchical Cluster Analysis
The assignment of molecular subtypes of breast cancer based on 
hierarchical cluster analysis was essentially performed as previously 

CONTEXTS AND CAVEATS

Prior knowledge
Hierarchical cluster analysis is used to classify tumors into  
subtypes identified through microarray-based gene expression 
profiling. These approaches are considered more objective and 
reproducible than histopathologic and immunohistochemical 
methods, but the subjectivity involved in assigning the molecular 
subtypes through dendrogram analysis has not been systemati-
cally analyzed.

Study design
The interobserver reproducibility among five breast cancer re-
searchers experienced in molecular subtype assignment was 
determined using dendrograms and heatmaps generated by hier-
archical clustering methods of three breast cancer datasets and 
five intrinsic gene lists.

Contribution
The identification of subgroups of luminal cancers and normal 
breast-like cancers by visual inspection of dendrograms obtained 
from hierarchical cluster analysis shows suboptimal levels of  
interobserver agreement, even when the molecular subtypes are 
known a priori and guidelines for the identification of these sub-
types are provided.

Implications
The assignment of molecular subtypes of breast cancer based on 
the visual inspection of dendrograms obtained with hierarchical 
cluster analysis is subjective and shows only modest interobserver 
reproducibility, particularly when subclassification of luminal can-
cers into two or more groups is required. Class discovery studies 
need to take into account both the stability of the clusters and the 
reproducibility of the classification system.

Limitations
The datasets used were retrospectively accrued; hence, they may 
not have a balanced distribution of the different molecular sub-
types and do not include samples of normal breast tissue. Publicly 
available microarray results were used for the hierarchical cluster 
analyses, and the data were not renormalized. A small proportion 
of genes from the intrinsic gene lists could not be reannotated in 
all datasets owing to different microarray platforms and changes in 
gene annotation.

From the Editors
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datasets were comprehensively updated and mapped to build 36 of 
the human genome (Ensembl assembly 54 [http://www.ensembl. 
org/index.html]) as described previously (16) (Supplementary 
Tables 2–6, available online). Of the identifiers tested (ie, HUGO 
gene symbols, Ensembl, and Unigene [http://www.ncbi.nlm.nih.g
ov/unigene]), the annotation with HUGO gene symbols allowed 
for the retrieval of the highest proportion of genes in the majority 
of intrinsic gene lists and datasets (Supplementary Table 7, avail-
able online). As observed in the original dendrograms and descrip-
tions of the intrinsic gene lists (5,11–13), when multiple probes 
mapped to the same gene, all were included in the hierarchical 
cluster analysis. Analyses were performed in R version 2.9.0 (http:// 
cran.rproject.org/).

Two-way average-linkage hierarchical clustering (median 
centered by feature and gene and Pearson correlation as the gene 
similarity metric) was applied to each dataset using Cluster 3.0 
[http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#
ctv] as previously described (11–14,25), and results were visualized 
with Java Treeview [http://jtreeview.sourceforge.net/]. Additional 
details of the microarray data handling and hierarchical clustering 
are available in the Supplementary Methods (available online). 
Annotated datasets are available at http://rock.icr.ac.uk 
/collaborations/Mackay/centroid.correlations.Eset; annotated 
intrinsic gene lists used for hierarchical clustering, clustered data and 
Java Treeview files for each of the datasets presented are available at 
http://rock.icr.ac.uk/collaborations/Mackay/observer.clustering.

Molecular Subtype Assignment
To determine the reproducibility of microarray-based classification 
of breast cancers by hierarchical cluster analysis, the study curator 
(J. S. Reis-Filho) selected five researchers on the basis of experi-
ence in microarray-based expression profiling analysis, previous 
publications on the use of microarray-based molecular taxonomy 
of breast cancer, and having a first or senior author publication on 
microarrays in a journal with a 2008 Thompson ISI impact factor 
greater than 5.

The study curator created guidelines that described in detail 
how each molecular subtype should be identified by the visual 
analysis of the dendrograms obtained with hierarchical cluster 
analysis for each intrinsic gene list. These guidelines were based on 
extracts from the studies by Perou et al. (5), Sorlie et al. (11), Sorlie 
et al. (12), Hu et al. (13), and Parker et al. (14), and they summa-
rized the characteristics of each molecular subtype according to 
each intrinsic gene list, provided graphical representations of the 
dendrograms and heatmaps obtained by applying each intrinsic 
gene list to a separate dataset of breast cancers, and additional 
details extracted from their respective original studies (for details 
see Supplementary Methods, available online). It should be 
emphasized that the original publications (5,11–14) did not pro-
vide clear guidelines of the levels at which the dendrogram 
branches should be cut to define the molecular subtypes.

The guidelines, the dendrograms, and color heatmaps obtained 
from hierarchical cluster analysis of the three breast cancer datas-
ets (22–24) using the five intrinsic gene lists (5,11–14) 
(Supplementary Figures 1–15, available online) were sent to five of 
the authors (A. Mackay, B. Weigelt, A. Grigoriadis, B. Kreike,  
R. Natrajan) via email, together with a copy of the original studies 

(5,11–14) describing the intrinsic gene lists. Observers were 
requested to classify each dataset according to the methods 
described by Perou et al. (5), Sorlie et al. (11), Sorlie et al. (12), 
Hu et al. (13), and Parker et al. (14), identifying all molecular 
subtypes described in each publication. If samples in a dendrogram 
could not be assigned to a molecular subtype with confidence, the 
observers could opt for considering the sample as unclassifiable, as 
done in Sorlie et al. (12) and Parker et al. (14). A request to keep 
the correspondence strictly confidential was made, and no discus-
sions with other researchers were permitted. The identity of each 
observer was kept confidential from the other study participants. 
Molecular subtype assignments were made by each observer 
blinded to the results reported by the other observers and sent 
directly to the study curator.

Analysis of Agreement
Statistical analysis of the molecular subtype assignments made by 
the five observers was performed by two of the authors (RA’H and 
JSR-F), without providing any feedback to the observers. The 
percentage of overall agreement and the multirater analysis of 
agreement was performed as previously described (26). We used 
the free-marginal Kappa statistics of Brennan and Prediger (26), 
which is optimal for the assessment of agreement among more 
than two observers (ie, raters) when categorical variables are used, 
and observers are not forced to assign a certain number of samples 
to each category. The choice of free-marginal Kappa score was 
based on the fact that this method minimizes prevalence-related 
biases and would be compatible with the choice of observers con-
sidering samples that could not be assigned to a molecular subtype 
as unclassifiable. Using this statistical method, Kappa values can 
range from 21.0 to 1.0, with 21.0 indicating perfect disagreement 
below chance, 0.0 agreement equal to chance, and 1.0 perfect 
agreement above chance. Kappa values can be interpreted as follows: 
0.01–0.2 as slight agreement, 0.21–0.4 as fair agreement, 0.41–0.6 
as moderate agreement, 0.61–0.8 as substantial agreement, and 
0.81–1.0 as almost perfect agreement (26–28).

We determined the interobserver agreement for the whole 
classification obtained from the analysis of the dendrogram pro-
duced with each intrinsic gene list for each breast cancer dataset 
[NKI-295 (22), Wang (24) and TransBig (23)]. In addition,  
we analyzed interobserver agreement for each molecular subtype 
according to each intrinsic gene list for each breast cancer 
dataset.

To test whether the free-marginal Kappa scores, when the 
luminal group was subdivided into the A, B, and C subgroups [Sorlie 
et al. (11)], were statistically significantly lower than the free-
marginal Kappa scores when the luminal cancers were considered 
as a single group [Perou et al. (5)], we used a nonparametric test 
(Mann–Whitney U test).

Samples from these datasets were not previously classified by 
the proponents (5,11–14) of the molecular classification into the 
molecular subtypes by means of hierarchical clustering using all 
five intrinsic gene sets tested in this work. Thus, given that there 
is no available “gold standard” for the classification of samples 
from the three breast cancer datasets analyzed here into molecular 
subtypes by hierarchical clustering for all intrinsic gene lists, we 
also determined the percentage of samples with perfect agreement 
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(samples for which all raters/observers agreed on the classification 
of the sample) and the percentage of samples with a “majority 
consensus” (samples for which three or more raters/observers 
agreed on the classification of a given sample into one of the 
molecular subtypes).

Results
Whole Classification Scheme
We first sought to define the reproducibility by different observers 
of the whole classification system according to Perou et al. (5), 
Sorlie et al. (11), Sorlie et al. (12), Hu et al. (13), and Parker et al. 
(14). None of the classification systems tested produced almost 
perfect agreement (free-marginal Kappa scores ≥ 0.81) among 
observers (Table 1, Supplementary Tables 8–10 available online).

For Perou et al. (5), four molecular subtypes were described, 
luminal, basal-like, HER2, and normal breast-like. The interob-
server overall agreement for this classification system ranged from 
70.8% to 76.1% of the samples according to the dataset analyzed, 
and the free-marginal Kappa scores ranged from 0.635 to 0.701 
(ie, substantial agreement [Kappa scores ≥ 0.61] among observers 
in all datasets; Table 1; Figures 1, A, 2, A, and 3, A; Supplementary 
Figures 1–3, available online). Perfect interobserver agreement 
(five out of five observers) was found in 42.4% to 63.6% of sam-
ples. Importantly, interobserver disagreement in the classification 
system proposed by Perou et al. (5) was restricted to the assign-
ment of luminal and normal breast-like subtypes (Table 2).

With the introduction of subdivisions of the luminal molecular 
subtype into luminal A, luminal B, and luminal C in Sorlie et al. 
(11), the overall agreement rates (51.5% to 64.1%) and the free-
marginal Kappa scores were substantially reduced (0.435–0.582—
only moderate agreement among observers; Mann–Whitney 

U test one-tailed P = .05) (Table 1, Figures 1, B, 2, B, and 3, B, and 
Supplementary Figures 4–6, available online). Perfect interob-
server agreement was 17.5% to 46.1%, and a majority consensus 
(three or more observers agreeing on the classification of a given 
sample) was found in 79% (NKI-295 dataset) to 97.5% (TransBig 
dataset) of the samples.

Of the remaining classification systems, including subdivisions 
of luminal cancers into luminal A and luminal B (12–14) 
(Supplementary Figures 7–15, available online), none produced 
free-marginal Kappa scores of at least 0.61 in all datasets (Table 1). 
It should be noted, however, that the Hu et al. (13) classification 
system had better overall agreement and free-marginal Kappa 
scores than the other classification systems with five or more sub-
types in the NKI-295 and TransBig datasets (11,12,14) (Table 1, 
Figures 1, D, 2, D, and 3, D, Supplementary Figures 10–12, avail-
able online). Importantly, more than 95% of samples with a ma-
jority consensus were found in only two or more datasets when the 
Perou et al. (5) and Hu et al. (13) classifications were used, but not 
with Sorlie et al. (11), Sorlie et al. (12) or Parker et al. (14) (Table 1).

Analysis of Agreement of Each Molecular Subtype
Analysis of the interobserver agreement for the identification of 
each molecular subtype separately revealed that basal-like cancers 
could be reproducibly identified by independent observers in all 
datasets regardless of the classification system used, with overall 
agreement rates consistently greater than 95%, free-marginal 
Kappa scores of at least 0.81, and a majority consensus greater than 
90% in all datasets (Table 2 and Supplementary Table 11, avail-
able online).

HER2-positive cancers also consistently displayed free-
marginal Kappa scores of at least 0.81 and overall agreement rates 
greater than 90%; a majority consensus was found in more than 

Table 1. Measures of agreement among five observers using five intrinsic gene lists in three breast cancer datasets*

Gene list source
Overall agreement,  

% of samples
Free-marginal  

Kappa
Agreement 5/5,  

No. of samples (%)
Agreement 4/5,  

No. of samples (%)
Agreement 3/5,  
No. of samples

Majority consensus,  
% of samples

NKI-295 (n = 295)†
  Perou et al. (5) 70.8 0.635 125 (42.4) 204 (69.2) 295 100.0
  Sorlie et al. (11) 62.4 0.561 136 (46.1) 148 (50.2) 233 79.0
  Sorlie et al. (12) 68.7 0.624 119 (40.3) 251 (85.1) 251 85.1
  Hu et al. (13) 78.9 0.754 182 (61.7) 227 (76.9) 295 100.0
  Parker et al. (14) 75.7 0.708 172 (58.3) 196 (66.4) 295 100.0
TransBig (n = 198)†
  Perou et al. (5) 76.1 0.701 121 (61.1) 126 (63.6) 194 98.0
  Sorlie et al. (11) 64.1 0.582 82 (41.4) 95 (48) 193 97.5
  Sorlie et al. (12) 65.2 0.582 99 (50) 99 (50) 164 82.8
  Hu et al. (13) 78.4 0.748 115 (58.1) 153 (77.3) 195 98.5
  Parker et al. (14) 56.2 0.475 58 (29.3) 98 (49.5) 173 87.4
Wang (n = 286)†
  Perou et al. (5) 73.8 0.672 182 (63.6) 185 (64.7) 249 87.1
  Sorlie et al. (11) 51.5 0.435 50 (17.5) 136 (47.6) 253 88.5
  Sorlie et al. (12) 65.1 0.581 112 (39.2) 175 (61.2) 277 96.9
  Hu et al. (13) 59.4 0.526 89 (31.1) 152 (53.1) 273 95.5
  Parker et al. (14) 70.5 0.646 168 (58.7) 173 (60.5) 243 85.0

*	 Free-marginal Kappa statistics were used to assess agreement among the five raters. Kappa values of 0.01–0.2 indicate slight agreement; 0.21–0.4, fair 
agreement; 0.41–0.6, moderate agreement; 0.61–0.8, substantial agreement; and 0.81–1.0, almost perfect agreement. Agreement 5/5 = perfect agreement 
among all five observers; agreement 4/5 = perfect agreement among four or five out of five observers; agreement 3/5 = perfect agreement among three of more 
observers out of five observers; majority consensus = three or more observers agreed on the classification of a given sample into one of the molecular subtypes.

†	 Datasets: NKI-295: van de Vijver et al. (22); TransBig: Desmedt et al. (23); Wang: Wang et al. (24).
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95% of samples in the NKI-295 (22) and TransBig (23) datasets, 
regardless of the classification used; however, in the Wang dataset, 
a majority consensus was found in more than 90% of samples only 
when Perou et al. (5) or Hu et al. (13) intrinsic gene lists were used 

(Table 2 and Supplementary Table 11, available online); with the 
other intrinsic gene lists, discordances were observed in the assign-
ment of HER2-positive tumors as unclassifiable (Figure 2 and 
Supplementary Figures 2 and 14, available online).

Figure 1. Molecular subtype classification of the NKI-295 (22) dataset by five observers based on hierarchical cluster analysis using the “intrinsic” 
gene lists described by A) Perou et al. (5), B) Sorlie et al. (11), C) Sorlie et al. (12), D) Hu et al. (13), and E) Parker et al. (14). HER2 = human epidermal 
growth factor receptor 2; UC = unclassified.
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Figure 2. Molecular subtype classification of the Wang (24) dataset by five observers based on hierarchical cluster analysis using the “intrinsic” 
gene lists described by A) Perou et al. (5), B) Sorlie et al. (11), C) Sorlie et al. (12), D) Hu et al. (13), and E) Parker et al. (14). HER2 = human epidermal 
growth factor receptor 2; UC = unclassified.

The identification of luminal cancers and their subgroups and 
normal breast-like cancers failed to show acceptable levels of 
overall agreement or to consistently display free-marginal Kappa 
scores of at least 0.81 in all datasets (Table 2 and Supplementary 

Table 11, available online). When the Sorlie et al. (11) classification 
system comprising three categories of luminal cancers (ie, luminal 
A, B, and C) was used, a majority consensus for the classification 
of samples was found in less than 50% of luminal cancers [46.5% 
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in NKI-295 (22), 50% in TransBig (23), and 48.8% in the Wang 
(24) dataset; Supplementary Table 11]. With the use of two cate-
gories of luminal cancers (ie, luminal A and luminal B) (12–14), a 
majority consensus for more than 50% of luminal cancers in all 

datasets was only found when hierarchical clustering using the 
intrinsic gene list of Hu et al. (13) was used. Notably, the inter-
feron-rich subtype, only identified in the Hu et al. (13) intrinsic 
gene list, displayed almost perfect agreement levels among  

Figure 3. Molecular subtype classification of the TransBig (23) dataset by five observers based on hierarchical cluster analysis using the “intrinsic” 
gene lists described by A) Perou et al. (5), B) Sorlie et al. (11), C) Sorlie et al. (12), D) Hu et al. (13), and E) Parker et al. (14). HER2 = human epidermal 
growth factor receptor 2; UC = unclassified.
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observers (overall agreement >97% and free-marginal Kappa 
scores ≥ 0.81; Table 2).

Discussion
The results presented in this study provide direct evidence that the 
identification of subgroups of luminal cancers and normal breast-like 
cancers by visual inspection of dendrograms obtained from hierar-
chical cluster analysis shows suboptimal levels of interobserver 
agreement, even when the molecular subtypes are known a priori, and 
guidelines for the identification of these subtypes are provided. The 
identification of basal-like and HER2 cancers showed almost perfect 
interobserver agreement rates regardless of the intrinsic gene list used.

Microarray-based expression profiling analysis has led to a 
paradigm shift in the way breast cancer is perceived (9,10). Class 
discovery studies have demonstrated the existence of five main 
molecular subtypes, namely basal-like, HER2, luminal A, luminal 
B, and normal breast-like, but luminal C and interferon-regulated 
subtypes have also been described (5,9–14). These five main sub-
types have been reported to have distinct clinical presentations 
(29), sites of relapse (30), histological features (31), responses to 
chemotherapy (14,32), and outcomes (10,11,13,15). Despite being 
derived from unsupervised approaches for class discovery, this 
molecular classification to some extent recapitulates the clinical 
subgroups of breast cancer identified in clinical practice. In fact, 
there is evidence to suggest a strong association between the 

Table 2. Measures of agreement among five observers for each molecular subtype individually using five intrinsic gene lists in three 
breast cancer datasets*

Molecular subtype

Breast cancer datasets†

NKI-295 (n = 295) TransBig (n = 198) Wang (n = 286)

OA, %
F-M  

Kappa PA, No.
MAX,  
No. OA, %

F-M  
Kappa PA, No.

MAX,  
No OA, %

F-M  
Kappa PA, No.

MAX,  
No.

Perou et al. (5)
  Basal-like 97.7 0.954 31 48 97.6 0.952 36 44 98.7 0.975 47 53
  Luminal 74.3 0.486 60 207 80.6 0.612 73 137 80.1 0.601 102 197
  HER2 100 1.000 34 34 99 0.980 12 17 100 1.000 33 33
  Normal breast-like 83.9 0.679 0 65 80 0.600 0 64 83.5 0.670 0 58
  UC 85.6 0.713 0 88 94.9 0.899 0 18 85.2 0.705 0 76
Sorlie et al. (11)
  Basal-like 99.6 0.992 44 47 96.6 0.931 28 42 100 1.000 50 50
  Luminal A 91.1 0.821 57 101 95.4 0.907 42 65 78.3 0.566 0 108
  Luminal B 77.5 0.550 0 60 73.6 0.473 0 74 71.7 0.434 0 74
  Luminal C 83.1 0.661 0 67 84.2 0.685 0 33 86.6 0.733 0 64
  HER2 100 1.000 35 35 99 0.980 12 17 92.4 0.849 0 43
  Normal breast-like 79.3 0.586 0 67 85.6 0.711 0 33 83.5 0.670 0 64
  UC 94.3 0.886 0 18 93.9 0.879 0 20 90.5 0.810 0 45
Sorlie et al. (12)
  Basal-like 100 1.000 48 48 95.9 0.917 39 54 100 1.000 52 52
  Luminal A 73.8 0.477 0 124 77 0.539 48 115 80.5 0.610 49 157
  Luminal B 76.8 0.536 38 162 78.7 0.574 0 67 83.7 0.674 0 79
  HER2 100 1.000 33 33 100 1.000 12 12 92.7 0.853 0 41
  Normal breast-like 93.4 0.867 0 44 88.5 0.770 0 34 91 0.820 0 25
  UC 93.4 0.867 0 44 90.3 0.806 0 24 82.3 0.646 11 117
Hu et al. (13)
  Basal-like 100 1.000 44 44 98.8 0.976 37 43 99.4 0.987 51 54
  Luminal A 94.5 0.890 73 91 94.2 0.885 46 65 68 0.359 0 92
  Luminal B 87.3 0.745 38 103 82.4 0.648 0 66 83.1 0.663 0 88
  HER2 100 1.000 17 17 97.8 0.956 12 23 100 1.000 16 16
  Normal breast-like 94.9 0.898 0 18 87.5 0.749 0 26 86.2 0.724 0 79
  IFN 97.4 0.948 0 11 100 1.000 20 20 97.3 0.947 22 36
  UC 83.8 0.676 10 71 96.1 0.921 0 10 84.7 0.694 0 69
Parker et al. (14)
  Basal-like 100 1.000 47 47 99.8 0.996 40 41 96.8 0.936 46 69
  Luminal A 82.1 0.642 41 110 74.7 0.495 0 73 83.6 0.671 64 156
  Luminal B 91.5 0.831 63 109 68.4 0.368 0 73 94.1 0.883 39 67
  HER2 100 1.000 21 21 99.4 0.988 18 20 96.9 0.937 19 37
  Normal breast-like 87.3 0.745 0 33 82.8 0.657 0 39 84 0.680 0 53
  UC 90.4 0.809 0 32 87.3  0.745 0 46 85.7 0.715 0 67

*	 Free-marginal Kappa statistics were used to assess agreement among the five raters. Kappa values of 0.01–0.2 indicate slight agreement; 0.21–0.4, fair 
agreement; 0.41–0.6, moderate agreement; 0.61–0.8, substantial agreement; and 0.81–1.0, almost perfect agreement. OA = overall agreement; F-M Kappa = 
free-marginal Kappa scores; PA = number of samples with perfect agreement; MAX = maximum number of samples; HER2 = human epidermal growth factor 
receptor 2; IFN = interferon-regulated molecular subtype; UC = unclassified.

†	 Datasets: NKI-295: van de Vijver et al. (22); TransBig: Desmedt et al. (23); Wang: Wang et al. (24).
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molecular subtype classes (luminal A, luminal B, HER2, and basal-
like) and the clinical categories of breast cancer (tamoxifen-sensitive 
estrogen receptor positive [ER+], tamoxifen-resistant ER+, trastu-
zumab-sensitive, and other) (9,10).

It has been argued that microarray expression profiling is the  
gold standard for breast cancer classification (7); however, several 
lines of evidence suggest that there are major limitations in our 
ability to assign samples consistently to specific molecular subtypes 
(10,15,33). We and others have recently demonstrated that SSPs 
fail to assign individual samples reproducibly into molecular sub-
types (16,17). Here, we demonstrate that apart from basal-like and 
HER2 breast cancer subtypes, the interobserver reproducibility of 
breast cancer molecular subtype assignment using the methods and 
approaches originally used for this purpose is modest, in particular 
for the identification of luminal A, luminal B, and normal breast-
like subtypes. None of the intrinsic gene lists concurrently provided 
almost perfect agreement (ie, free-marginal Kappa scores ≥0.81) 
for the luminal A, luminal B, and normal breast-like subtypes in 
any of the datasets. In comparison, for example, the interobserver 
agreement of ER and HER2 immunohistochemical staining of 
breast cancers using tissue microarrays has been reported to be high 
(Kappa scores ≥ 0.81) (34–37). Furthermore, the Kappa scores 
observed in this study overlap with those observed in analyses of  
interobserver agreement of histological grade (Kappa scores 
ranging from 0.43 to 0.83) (38). It should be noted that similar 
Kappa scores have been considered by many as inadequate and as 
evidence for the subjective nature of histological grade (39,40).

It is plausible that the limited interobserver agreement for the 
subclassification of luminal cancers may stem from attempting to 
identify distinct groups within a continuum (41). The distinction 
between luminal A and luminal B tumors is reported to be princi-
pally driven by the expression of proliferation-related genes (7,13); 
however, several studies have recently demonstrated that prolifer-
ation in ER+ breast cancers is a continuum rather than a bimodal 
distribution (10,41,42). Therefore, allocation of specific subgroups 
(eg, luminal A and B) by hierarchical cluster analysis is likely to be 
arbitrary and to depend on the population of samples subjected to 
the analysis (15,43), which may explain why the luminal B cluster 
was identified in the ER+ arm of the cluster dendrogram in three 
studies (11,13,14) and in the ER2 arm in one study (12).

The lack of agreement in the identification of normal breast-
like tumors should perhaps not come as a surprise, given that these 
tumors may constitute an artifact of gene expression profiling 
analysis [ie, analysis of tumor specimens with a disproportionately 
high percentage of normal tissue “contamination” (7,13,14)]. The 
normal breast-like gene cluster in the heatmaps has been either 
represented by only a few genes [ie, Sorlie et al. (12)] or not even 
specified [ie, Hu et al. (13)]. Moreover, this gene cluster was com-
posed of different genes in studies in which it was reported 
(5,11,12). Notably, normal breast-like tumors have been reported 
in both the ER2 (5,11,12) and the ER+ branch of the cluster 
dendrogram (13,14), which may have contributed to the poor 
reproducibility of the normal breast-like subtype assignment 
among different observers in this study.

Hierarchical cluster analysis was the method of choice for the 
development of the current working model of microarray-based 
breast cancer taxonomy (5,11–14) and of the SSPs, which can be 

applied prospectively to single samples for molecular subtype 
assignment. However, previous studies (15,19) (and references 
therein) have demonstrated that hierarchical cluster analysis has 
several limitations for the identification of subtypes of breast 
cancer, that is, relevant features and distance measures have to be 
selected a priori, the actual number of clusters is unknown, and 
clusters are always generated even when random data are used (21). 
Therefore, the emergence of “clusters” does not necessarily equate 
with biological significance. The interpretation of dendrograms 
resulting from the analysis of breast cancers is by no means trivial, 
as illustrated here (Figures 1–3; Supplementary Figures 1–15, 
available online); however, it becomes even more complex when 
different dendrograms are cut at different levels and different 
methods and approaches are used. In fact, in different studies, 
dendrograms obtained from hierarchical clustering using different 
intrinsic gene lists were cut at different levels (5,11,12,14), and 
sometimes molecular subtypes were defined in the same dendro-
gram by cutting the branches at different levels [eg, molecular 
subtype assignments described in Sorlie et al. (11)]. In the most 
recent publication by Parker et al. (14), the cluster dendrogram 
was analyzed using “SigClust” (44), a tool for assessing statistical 
significance of a cluster. This method was used to identify “proto-
typic tumor samples” from each of the molecular subtypes, which 
were used to derive a minimized gene set for the development of a 
50-gene set for quantitative reverse transcription polymerase chain 
reaction for sample subtype prediction (PAM50). Conceivably, this 
method might lead to a more consistent assignment of clusters; it 
should be noted, however, that three different SSPs, two of which 
were generated with subtypes initially identified without the use of 
SigClust, showed equivalent associations with outcome in three 
distinct datasets (16).

The interpretation of the clusters identified by Perou et al. (5) 
was based on the relationship between the genes over- or under
expressed in samples classified into each cluster, and clinical and 
biological characteristics of breast cancers that were already 
known. Surprisingly, some of the genes that defined the initial 
subtypes were not present in subsequent versions of the intrinsic 
gene lists [eg, keratin 8/18 (KRT8/18), one of the defining features 
of luminal cancers, is not present in Sorlie et al. (12); keratin 17 
(KRT17), but not keratin 5 (KRT5), the defining features of basal-
like cancers, is not present in Hu et al. (13); aquaporin 7 (AQP7), 
integrin alpha 7 (ITGA7), thrombospondin receptor (CD36) [Sorlie 
et al. (11), aldo-keto reductase family 1, member C1 (AKR1C1) and 
phosphoinositide-3-kinase, regulatory subunit 1(a) (PIK3R1) (Sorlie 
et al. (12)], genes pertaining to the normal breast-like cluster in  
Sorlie et al. (11) and Sorlie et al. (12), respectively, are not present 
in Hu et al. (13)]. Another important limitation of hierarchical 
cluster analysis, as elegantly illustrated by Pusztai et al. (15), is the 
lack of stability of some of the subgroups identified. Although 
there are algorithms to determine the stability of clusters gener-
ated by hierarchical clustering (21), they do not provide an assess-
ment of interobserver variability in molecular subtype assignment 
via inspection of the dendrograms. In this study, we systematically 
analyzed the ability of experienced observers to identify the molec-
ular subtypes through the analysis of dendrograms and demon-
strated that even when clear guidelines are provided, the assignment 
of samples is subjective and not entirely reproducible.
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Several groups, including ours, have previously attempted to 
define the molecular subtypes in breast cancer datasets using hier-
archical cluster analysis (30,45–49). Given the lack of interobserver 
agreement and stability of some of the molecular subtypes, as dis-
cussed above, our findings indicate that breast cancer molecular 
subtype classifications performed by other investigators may not 
have necessarily reproduced those originally described and that 
molecular subtypes identified by the same intrinsic gene list in 
different cohorts analyzed by different observers are not neces-
sarily equivalent.

This study had several limitations. First, the datasets used were 
retrospectively accrued; hence, they may not have a balanced 
distribution of the different molecular subtypes and do not include 
samples of normal breast tissue. Second, we used the publicly avail-
able processed microarray for the hierarchical cluster analyses; no 
attempts to renormalize the data were made. Third, although we 
endeavored to reannotate all genes from each gene list, a small 
proportion of genes from the intrinsic gene lists could not be anno-
tated in all datasets owing to different microarray platforms and 
changes in gene annotation (see Supplementary Methods, available 
online). Fourth, the datasets included in this study derive from dif-
ferent microarray platforms. Fifth, one cannot rule out that if five 
observers from the groups of the proponents of the breast cancer 
taxonomy (5,11–13,36) were asked to assign the molecular subtypes 
based on the visual inspection of dendrograms and gene clusters, a 
better interobserver agreement would be found. Finally, this study 
focused on the interobserved reproducibility of the assignment of 
molecular subtypes by inspection of dendrograms and gene clusters; 
we have not investigated whether bioinformatic methods to define 
the statistical robustness of clusters [eg, SigClust (44), Pvclust (50), 
or R and D indices (21)] would increase the reproducibility.

It is beyond the scope of this work to evaluate algorithms for 
cluster analysis, and the choices of distance metrics and linkage. 
Instead, we have focused on the human-dependent component of 
class discovery analysis and demonstrated that this subjective 
component leads to substantial variability in cluster assignment. 
Moreover, a direct comparison between the molecular subtypes 
identified by distinct intrinsic gene lists applied to the same data-
sets [eg, Perou et al. (5) vs Parker et al. (14), Hu et al. (13) vs Sorlie 
et al. (11)] would provide an inflated rate of disagreement, because 
different numbers of subclasses were reported in each classification, 
and there is no gold standard for each of the intrinsic gene lists. In 
fact, the reported agreement between the Sorlie et al. (12) and Hu 
et al. (13) intrinsic gene lists, when applied to the same dataset, was 
78% when the samples classified as the interferon-rich subtype were 
excluded (13).

The subjectivity and modest reproducibility of the interpreta-
tion of histopathologic features and immunohistochemical stain-
ings have been heavily criticized, and the need for more objective 
methods to guide the breast cancer patient in decision making is 
clearly justified. Hierarchical cluster analysis is undoubtedly a 
powerful tool for class discovery and a useful first step for the de-
velopment of a molecular classification. However, hierarchical 
clustering may not be an ideal choice as a method for breast cancer 
classification because it is neither entirely objective nor are its 
results entirely reproducible. In fact, current molecular classification 
systems for breast cancer are similarly to histopathology, descriptive, 

and prognostic (10,16). Based on the available data and the limita-
tions of our knowledge on the heterogeneity of breast cancers, it is 
still not possible to determine with absolute certainty how many 
molecular subtype classes do exist (15). Hence, with the increas-
ingly more coherent information about the genetic (51) and tran-
scriptomic features of breast cancer (9,10,52), mechanisms of 
action of chemotherapy agents, and availability of humanized 
monoclonal antibodies and small molecule inhibitors that target 
specific molecular pathways and networks, perhaps molecular 
classification should be designed to provide more direct functional 
information for clinicians to facilitate the treatment of breast can-
cer patients. For example, a certain breast cancer subtype could be 
classified based on the presence or absence of overexpressed or 
mutated genes that may serve as predictive biomarkers for specific 
therapeutic agents (9,10,53). The development of such a taxonomy 
is likely to require integrative approaches combining descriptive 
analysis of genomic, transcriptomic, and proteomic data from suf-
ficiently statistically powered cohorts (54) with multidimensional 
data from global functional analyses of large panels of cancer 
models (eg, genome-wide RNA interference screens and chemical 
screens) (9,10,51,53,55,56).

In conclusion, we demonstrate that assignment of molecular 
subtypes of breast cancer based on the visual inspection of dendro-
grams obtained with hierarchical cluster analysis is subjective and 
shows modest interobserver reproducibility, in particular when 
subclassification of luminal cancers into two or more groups is 
required. These results suggest that class discovery studies, in 
which subtypes are identified by inspection of dendrograms [eg, 
(5,11,12)], need to take into account both the stability of the clus-
ters and the reproducibility of the classification system (16,41). 
This is of paramount importance, as SSPs used for the prospective 
classification of breast cancer patients into specific molecular sub-
types have been derived from the analysis of subtypes originally 
identified by hierarchical clustering methods (12–14). For the in-
corporation of the molecular taxonomy into clinical trials, routine 
clinical practice and treatment decision making, stringent stan-
dardization of methodologies for the identification of breast cancer 
molecular subtypes, and objective definitions for each molecular 
subtype are of utmost importance.
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