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Abstract

The interplay between C-C chemokine receptor type 5 (CCR5) host genetic background, disease progression, and intrahost
HIV-1 evolutionary dynamics remains unclear because differences in viral evolution between hosts limit the ability to draw
conclusions across hosts stratified into clinically relevant populations. Similar inference problems are proliferating across
many measurably evolving pathogens for which intrahost sequence samples are readily available. To this end, we propose
novel hierarchical phylogenetic models (HPMs) that incorporate fixed effects to test for differences in dynamics across host
populations in a formal statistical framework employing stochastic search variable selection and model averaging. To clarify
the role of CCR5 host genetic background and disease progression on viral evolutionary patterns, we obtain gp120
envelope sequences from clonal HIV-1 variants isolated at multiple time points in the course of infection from populations
of HIV-1–infected individuals who only harbored CCR5-using HIV-1 variants at all time points. Presence or absence of
a CCR5 wt/D32 genotype and progressive or long-term nonprogressive course of infection stratify the clinical populations
in a two-way design. As compared with the standard approach of analyzing sequences from each patient independently,
the HPM provides more efficient estimation of evolutionary parameters such as nucleotide substitution rates and dN/dS

rate ratios, as shown by significant shrinkage of the estimator variance. The fixed effects also correct for nonindependence
of data between populations and results in even further shrinkage of individual patient estimates. Model selection suggests
an association between nucleotide substitution rate and disease progression, but a role for CCR5 genotype remains elusive.
Given the absence of clear dN/dS differences between patient groups, delayed onset of AIDS symptoms appears to be solely
associated with lower viral replication rates rather than with differences in selection on amino acid fixation.
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Introduction
The high mutation rate and rapid viral turnover that char-
acterize HIV-1 infection (Ho et al. 1995; Wei et al. 1995)

generate a highly diverse genetic viral population within

an HIV-1–infected individual (Shankarappa et al. 1999).

Continuous emergence of new HIV-1 variants facilitates

rapid viral adaptation to humoral and cellular immune re-

sponses of the host (Borrow et al. 1997; Goulder et al. 1997;

Wei et al. 2003; Jones et al. 2004), escape from antiretroviral

drugs (Coffin 1995), and the selection for optimal biological

properties such as replication capacity and use of the entry

complex (Koning et al. 2003; Kwa et al. 2003; Sterjovski et al.
2007; Repits et al. 2008).

Following primary infection, an asymptomatic phase with
a gradual loss of CD4þT cells and T-cell function characterizes
theclinicalcourse ofHIV-1 infection(Laneetal. 1985;Polketal.
1987; Miedema et al. 1988), resulting eventually in the devel-
opment of AIDS. The duration of this asymptomatic phase in
the absence of antiretroviral therapy varies among patients,
from several months to more than two decades, and deter-
mines their rate of disease progression (Veugelers et al.
1994; Munoz et al. 1997). Many selective forces may play a role
in intrahost viral evolution and disease progression such as
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neutralizing antibodies and cytotoxic T-cell lymphocyte
(CTL) responses, immune activation, target cell availability,
coreceptor expression levels, and emergenceof C-X-C chemo-
kinereceptortype4(CXCR-4)usingvirusesamongothers.The
severity of HIV infection may be further complicated by co-
infections and heritable viral genetic factors (Hollingsworth
et al. 2010). Largely stimulated by a comprehensive longitu-
dinal analysis demonstrating common patterns of sequence
divergence, diversity, and emergence of CXCR4-using var-
iants in chronic HIV-1 infections (Shankarappa et al.
1999), phylogenetic analyses have been widely used as
a means of elucidating how host factors impact HIV
within-host dynamics. More specific evolutionary parame-
ters such as evolutionary rate (Lemey et al. 2007; Lee et al.
2008), adaptation rates (Williamson 2003), positively se-
lected sites (Ross and Rodrigo 2002), compartmentalization
(Kemal et al. 2003), and recombination (Carvajal-Rodriguez
et al. 2008) have been scrutinized, but consistent associations
with disease progression have rarely been revealed.

Here, we focus on a polymorphism in the C-C chemo-
kine receptor type 5 (CCR5) gene, which is a host factor
known to influence disease progression. The CCR5 gene
encodes one of the main coreceptors required for HIV-1
entry, and a heterozygous genotype for a 32 bp deletion
(CCR5 wt/D32) associates with a lower viral load set point,
defined as the viral load between 18 and 24 months after
seroconversion (SC) which is stable in most HIV-1–infected
individuals and predictive for clinical course of infection
(Mellors et al. 1996; de Wolf et al. 1997), and a slower
HIV-1 disease progression (de Roda Husman et al. 1997;
Ioannidis et al. 2001). Given the reported lower percentages
of CCR5-expressing target cells and higher levels of RANTES
production in HIV-1–infected individuals with a CCR5 wt/
D32 genotype (de Roda Husman, Blaak, et al. 1999; Blaak
et al. 2000), it is likely that target cell and CCR5 availability
influence HIV-1 intrapatient evolution and contribute to
the progression to AIDS.

To investigate these influences, we compared the evolu-
tion of CCR5-using HIV-1 variants (R5) in individuals with
either a CCR5 wt/wt or CCR5 wt/D32 genotype who only
harbored CCR5-using HIV-1 variants in their progressive or
long-term nonprogressive course of infection. Such compar-
isons require asking questions across multiple populations of
individuals about the evolutionary histories that occur
within each individual. Traditional modeling of evolutionary
histories across individuals generally assumes that within-in-
dividual processes vary independently and are fit separately
from individual to individual (Shankarappa et al. 1999; Ross
and Rodrigo 2002; Potter et al. 2006; Lemey et al. 2007; Car-
vajal-Rodriguez et al. 2008). Often, this approach results in
poor estimates of the underlying evolutionary parameters, as
the information content within a single intrahost data set is
sparse. Not surprisingly, Carvajal-Rodriguez et al. (2008) ar-
rived at the conclusion that the statistical characterization of
HIV within-host evolutionary processes in relationship to
disease progression is a difficult task and suffers from a lack
of power. To overcome the data sparsity, one may enforce
strict equality between within-individual evolutionary pa-

rameters (Rodrigo et al. 2003). In both cases, however,
the ability to formally assess similarities or differences be-
tween populations of individuals is lost. Hierarchical model-
ing (Laird and Ware 1982; Gelman et al. 1995) and in
particular hierarchical phylogenetic models (HPMs) (Su-
chard et al. 2003) furnish an advantageous statistical frame-
work in which to consider drawing conclusions across
populations of individuals about the evolutionary processes
within individuals. In general, the Bayesian hierarchical
framework allows different evolutionary histories of the in-
trahost variants and different pressures driving their evolu-
tion from individual to individual while providing overall or
across-individual summaries of important evolutionary
measures, such as the DNA sequence mutation rate or syn-
onymous/nonsynonymous substitution rate ratio (dN/dS)
identifying positive selection. Critically, the HPM allows
the within–individual-level parameters to vary about, for ex-
ample, an unknown common mean for each population.
This occurs through the employment of a hierarchical prior
distribution on the parameters that are in turn characterized
by unknown estimable hyperparameters. Then conveniently,
hypothesis testing reduces to asking if these common mean
parameters differ between populations. Fortuitously, the hi-
erarchical prior embedded in the HPM also affords a borrow-
ing of strength of information from one individual by
another, providing more precise within–individual-level es-
timates (Suchard et al. 2003; Kitchen et al. 2004, 2006, 2009).

In this study, we extend the HPM across multiple
populations of individuals through the introduction of pop-
ulation-specific fixed effects. These effects allow the
expected evolutionary parameter estimated within a popu-
lation to potentially vary across populations. We then exploit
ideas from Bayesian model averaging (Hoeting et al. 1999)
and selection (Suchard et al. 2001) to formally ask if these
effects statistically differ between populations. We use this
approach to estimate viral evolutionary rates and selective
pressures within hosts and to evaluate whether these quan-
tities differ with respect to CCR5 wt/D32 host genetic back-
ground and disease progression.

Materials and Methods

Study Subjects
We selected eighteen men who have sex with men
(MSM) participants in the Amsterdam Cohort Studies
on HIV and AIDS, 11 with a WT genotype (patients
P1–P11), and 7 with a CCR5 wt/D32 genotype (patients
P12–P18), who at all times tested during follow-up har-
bored only R5 HIV-1 variants. All patients were either
seropositive at entry in the cohort studies (seroprevalent
cases with an average imputed seroconversion [SC] date
of 18 months before entry in the cohort; Geskus 2000) or
seroconverted during active follow-up in the cohort
studies. Nine individuals were classified as long-term
nonprogressors (LTNP) (defined as HIV-1–infected pa-
tients who at the end of follow-up [April 1997] had an
asymptomatic seropositive follow-up of at least 11 years
with relatively stable CD4þ T-cell counts that were still
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above 400 cells per ll in the ninth year of follow-up in the
absence of antiretroviral therapy). The remaining nine in-
dividuals progressed to AIDS during the study period
(median time to AIDS 5 8.2 [2.7–10.8] years after SC
or imputed SC date) and were classified as progressors
(P). Individuals included in this study did not receive ef-
fective antiretroviral therapy during the study period.
Clinical parameters and time points of virus isolation
are shown per patient in figure 1.

The Amsterdam Cohort Studies are conducted in accor-
dance with the ethical principles set out in the declaration of
Helsinki, and written informed consent was obtained prior
to data collection. The study was approved by the Academic
Medical Center institutional medical ethics committee.

Isolation of Clonal HIV-1 Variants
Clonal HIV-1 variants were isolated by cocultivation of serial
dilutions of patient peripheral blood mononuclear cells
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FIG. 1. CD4þ T-cell numbers, viral loads, and antiretroviral treatments of 18 participants from the Amsterdam Cohort Studies who were
selected for this study. Time points of clinical AIDS diagnosis are indicated with open downward triangles. Arrows indicate time points of clonal
virus isolation. The length and type of antiretroviral therapy are indicated in the top part of the panels.
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(PBMC) from 2 to 8 time points in the course of their infec-
tion and expanded to viral stocks for further study as de-
scribed previously (Schuitemaker et al. 1992; van ’t Wout
et al. 2008). For each patient, time points of virus isolation
and number of clonal HIV-1 variants per time point are sum-
marized in supplementary table S1 (Supplementary Material
online). The R5 phenotype of all clonal HIV-1 variants that
were isolated was confirmed by inability to replicate in the
MT2 cell line, in phytohemagglutinin-stimulated PBMC
from a donor with a CCR5D32 homozygous genotype,
and in astroglioma cells transfected with CD4 and CCR3
or CXCR4 (de Roda Husman, van Rij, et al. 1999) and pre-
dicted coreceptor use based on the V3 amino acid sequence
using the syncytium-inducing/non-syncytium-inducing (sin-
si) position-specific scoring matrix (http://indra.mullins
.microbiol.washington.edu/webpssm/) (Jensen et al. 2003).

DNA Isolation, Polymerase Chain Reaction, and
Sequencing
Total DNA was isolated from PBMCs infected with clonal
HIV-1variantsusingamodificationoftheL6isolationmethod
(KootstraandSchuitemaker1999).PrecipitatedDNAwasdis-
solved in 100ll of distilled water, and 5ll were used for poly-
merase chain reaction (PCR) amplification of the gp120 (C1–
C4) region corresponding to HXB2 nucleotide positions
6444–7595. Amplification was performed by PCR with
primers TB3 forward (5#-GGCCTTATTAGGACACATAGT-
TAGCC-3#) and OFM19 reverse (5#-GCACTCAAGGCA-
AGCTTTATTGAGGCTTA-3#) using the expand high-fidelity
Taq polymerase kit (Roche) and the following amplification
cycles: 2 min 30 s at 94 �C, 9 cycles of 15 s at 94 �C, 45 s at
50 �C, 6 min at 68 �C, 30 cycles of 15 s at 94 �C, 45 s at 53
�C, 6 min at 68 �C, followed by a 10-min extension at 68 �C
and subsequent cooling to 4 �C. Nested PCR was performed
with two different inner PCR primer combinations: Seq1 for-
ward (5#-TACATAATGTTTGGGCCACACATGCC-3#), Seq4
reverse (5#-CTTGTATTGTTGTTGGGTCTTGTAC-3#), Seq5
forward (5#-GTCAACTCAACTGCTGTTAAATGGC-3#), and
Seq2 reverse (5#-TCCTTCATATCTCCTCCTCCAGGTC-3#).
Nested PCRs were performed using Promega Taq polymerase
in the presence of 2 mM MgCl2 using the following amplifica-
tion cycles: 5 min at 94 �C, 40 cycles of 15 s at 95 �C, 30 s at
59 �C, 2 min at 72 �C, followed by a 10-min extension at 72 �C
and subsequent cooling to 4 �C.

PCR products were purified using ExoSAP-IT (USB, Cleve-
land, OH) according to manufacturer’s protocol. Sequencing
conditions consisted of 5 min at 94 �C, 30 cycles of 15 s at
94 �C, 10 s at 50 �C, 2 min at 60 �C, and a 10 min extension
at 60 �C. Sequencing was performed using BigDye Termina-
tor v1.1 Cycle Sequencing kit (ABI Prism, Applied Biosystems,
Warrington, UK) according to the manufacturer’s protocol
using the nested PCR primers. Sequences were analyzed
on the Applied Biosystems 3130 xl Genetic Analyzer.
The nucleotide sequences are available from GenBank
under the accession numbers EU743973.1–EU44009.1,
EU744014.1–EU744046.1, EU744055.1–EU744093.1, EU744097.1–
EU744129.1, EU744146.1–EU744175.1, GU455514–GU455525,
and HQ644787–HQ645012.

Bayesian Inference of Within-Host HIV Evolutionary
Rates and Selection Pressures
Nucleotide gp120 (C1–C4) sequences for all clonal HIV-1
variants isolated from the individual patients were aligned
using ClustalW (Thompson et al. 1994) and manually edi-
ted. Cross-contamination was excluded using phylogenetic
analysis.

Independent Estimates of Within-Host Evolutionary Rates
Nucleotide substitution rates were estimated for each pa-
tient using strict and relaxed (uncorrelated lognormal) mo-
lecular clock models implemented in BEAST v.1.4.8
(Drummond et al. 2006; Drummond and Rambaut 2007).
We used a general time-reversible (GTR) model of nucleotide
substitution with discrete gamma-distributed rate variation
among sites. Posterior distributions were obtained using
Bayesian Markov chain Monte Carlo (MCMC) analysis.
MCMC chains were run sufficiently long to ensure stationar-
ity and adequate effective sample sizes . 100 as diagnosed
using Tracer (http://tree.bio.ed.ac.uk/software/tracer/). The
uncertainty of continuous parameter estimates is expressed
as 95% highest posterior density (HPD) intervals.

Hierarchical Estimates of Evolutionary Parameters
To draw inference about different evolutionary patterns
across populations of patients, we implement a novel
HPM in BEAST (Suchard et al. 2003). HPMs analyze viral
sequence data from multiple patients simultaneously and
have found extensive use in uncovering common patterns
of intrahost HIV evolution (Kitchen et al. 2004, 2006, 2009).
At the heart of the HPM lies a Bayesian mixed effects model
that pools information across patients. Pooling information
through random effects affords more precise individual–
patient parameter estimates when the data are sparse for
a patient. Furthermore, unique to the work here, the intro-
duction of fixed effects (see below) offers a formal hypoth-
esis-testing framework from which to identify differences in
evolutionary process between patient population groups.

Let hi for i5 1, . . ., N patients represent the evolutionary
process parameter of interest; this could be, for example,
the overall rate of nucleotide substitution or the nonsynon-
ymous/synonymous substitution rate ratio (dN/dS) in a co-
don substitution process across the unknown genealogy
relating the sequences from within patient i. In the analysis
of four different patient groups: Progressors, Long-term
non-progressors (LTNP), CCR5 wt/wt (WT), and CCR5
wt/D32 (D32), we assume that either log hi or hi is drawn
from an underlying normal distribution where the mean
and variance of this underlying prior distribution are also
unknown and simultaneously estimated along with all
sequence data. The choice of a log transform is convenient
for modeling strictly positive parameters. Importantly, fix-
ing this mean and variance to known values does not
return a hierarchical model but rather results in complete
independence across individuals. On the other hand, esti-
mating the mean or variance imparts both an approach
to make comparisons across populations and the borrowing
of strength for poorly informed, within-individual model
parameters.
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For nucleotide analyses, we apply this hierarchical
setup to the strict clock evolutionary rate (on the log
scale), the mean evolutionary rate parameter of the log-
normal relaxed clock (log), the constant population size
(log) of the demographic prior, the GTR substitution pa-
rameters (log), and the shape parameter (log) of the dis-
crete gamma distribution modeling rate variation among
sites. For codon model analyses, a hierarchical transition/
transversion rate parameter and a hierarchical dN/dS rate
ratio (Goldman and Yang 1994) replace the GTR model
parameters.

Hierarchical Estimation with Population-Specific Fixed
Effects
For hypothesis-testing purposes, we extend the HPM to in-
clude across-population fixed effects. Each patient belongs
to one of four fixed population groups that we can desig-
nate using two indicator factors: LTNPi 5 0(1) for short
(long)-term progressors and D32i 5 0(1) for deletion 32
absent (present) patients. Our HPM assumes

loghi 5 b0 þ dLTNPbLTNPLTNPi þ dD32bD32D32i þ ei;

where b0 is an unknown grand mean, dLTNP and dD32 are bi-
nary indicator variables, bLTNP and bD32 are conditional effec-
tive sizes, and ei are independent and normally distributed
random variables with mean 0 and an estimable variance.
The inclusion of the indicator variables follows from a Bayesian
stochastic search variable selection approach (Kuo and
Mallick 1998; Chipman et al. 2001) that simultaneously esti-
mates the posterior probabilities of all possible linear models
that may or may not include LTNP or D32 status effects.
When an indicator equals 1, this effect is included in the
model, demonstrating that the evolutionary process param-
eter differs with high probability between patient population
groups. Lemey et al. (2009) discuss Bayesian stochastic search
variable selection in further detail.

We complete this HPM model with variable selection
through assigning independent Bernoulli prior probabil-
ity distributions on dLTNP and dD32. These distributions
place equal probability on each factor’s inclusion and ex-
clusion. We further assume diffuse priors on the un-

known grand mean and error variance and specify that
a priori bLTNP and bD32 are normally distributed with
mean 0 and a variance of 1/2. We choose 1/2, as, before
seeing the data, we believe that if a factor does result in
different evolutionary parameters across population
groups, process parameters should differ by at most an
order of magnitude on their original scale. The introduc-
tion of HPMs into BEAST necessitates the development of
MCMC transition kernels to efficiently explore that space
of the grand mean and effect size, model indicator, and
random-effects variance parameters. Given our judicious
prior choices, the full conditional distributions of these
parameters are in standard form: multivariate normal, bi-
nomial, and inverse gamma, respectively. This enables us
to build highly effective Gibbs samplers (Casella and
George 1992; Suchard et al. 2003) over the joint space
of these parameters. Suchard et al. (2003) provide de-
tailed derivations of the full condition distributions
and their Gibbs samplers (Suchard et al. 2003). We imple-
ment these Gibbs samplers as regular BEAST ‘‘operators’’
that are now accessible to interested readers through
BEAST’s XML model specification language. Supplemen-
tary Material online to this paper reports the transition
kernels’ XML syntax and gives examples on their use to
implement HPMs.

To assign statistical significance to differences between
population groups, we employ Bayes factors (BFs) (Jeffreys
1998; Suchard et al. 2001) that report how much the data
change our prior opinion (here, 1:1 odds) about the inclu-
sion of each factor. These BFs are straightforward to esti-
mate through the variable selection procedure, as the BF
equals the posterior odds that a factor indicator equals
1 divided by the corresponding prior odds. The posterior
odds follow immediately from the marginal posterior prob-
ability that a factor indicator equals 1 that we estimate
through the posterior expectation of the factor indica-
tor. In cases where an estimate of this expectation ap-
proaches very closely to 0 or 1, an estimator based on a
Rao-Blackwellization procedure is available (Casella and
Robert 1996).
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FIG. 2. Evolutionary rate estimates using an HPM applied separately to four patient groups (progressors, LTNP, WT, and D32). Evolutionary rate
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Results

Independent versus Hierarchical Estimation of
Evolutionary Parameters
We first explored the nucleotide substitution rate as a hi-
erarchical parameter estimated across patients in four
separate patient groups: progressors, LTNP, WT, and
D32. Using a strict clock model, a higher mean evolution-
ary rate was estimated in the progressors group (mean 5

7.65 � 10�4 substitutions/site/mth [95% HPD 5 6.45 �
10�4, 8.84 � 10�4]) compared with the LTNP group (5.87
� 10�4 [4.30 � 10�4, 7.55 � 10�4] substitutions/site/
mth) (fig. 2A). Although these estimates demonstrate
overlapping marginal posterior credible intervals (CIs),
immediately concluding that their difference is not signif-
icant, ignores the correlation between the rates, we return
to a formal test later. A less pronounced difference in
evolutionary rate was estimated between the WT (7.27
� 10�4 [5.74 � 10�4, 8.75 � 10�4] substitutions/site/

mth) and D32 (6.00 � 10�4 [4.21 � 10�4, 7.89 � 10�4]
substitutions/site/mth) groups. Similar rate differences,
with somewhat less overlapping CIs between progressors
(7.57 � 10�4 [6.49 � 10�4, 8.67 � 10�4] substitutions/
site/mth) and LTNPs (5.63 � 10�4 [4.19 � 10�4, 7.06
� 10�4] substitutions/site/mth), were observed using a re-
laxed-clock model (fig. 2B), in which the log of the mean
evolutionary rate across all branches in a patient geneal-
ogy is drawn from an underlying normal distribution. For
both strict and relaxed evolutionary rate estimates (fig. 3A
and B), as well as other substitution model and popula-
tion genetic parameters (data not shown), we observed
significant shrinkage in uncertainty under the standard
hierarchical fit, which clearly demonstrates the HPM im-
provement. Moreover, separate fit of parameter-rich
models such as the uncorrelated relaxed clock required
informative priors to achieve efficient sampling. To dem-
onstrate the impact of such priors on our posterior
rate estimates obtained by separate model fitting and

A

B

FIG. 3. Improved statistical efficiency (shrinkage effect) of the HPM. Strict clock (A). Relaxed clock (B). Posterior variance of estimated
evolutionary rate from the independent analyses of each patient (white); evolutionary rate variance from the hierarchical analysis of LTNPs and
progressors (black); evolutionary rate variance from the hierarchical analysis of LTNPs and progressors incorporating fixed effects (gray).
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compare these with the hierarchical estimates that did
not require such priors, we plot the marginal posterior
rate estimates for the three least informative (lowest
number of time points and/or sequences per time point)
and three most informative patients within the LTNP
group (P10, P16, and P17 vs. P9, P11, and P13, respectively)
as violin plots in figure 4. Violin plots are box plots overlaid
with (rotated) kernel density estimates in order to show to
the probability density at different parameter values. The pa-
tients for which only 2 or 3 time points were available re-
sulted in rate estimates that only weakly diverged from
their respective prior (uniform [0,0.004] or lognormal
[�7.5,1]; fig. 4A and C, respectively), whereas many time
points provide sufficient information to dominate over these
priors (fig. 4B and D). Under the hierarchical model, even
weakly informative patient-specific data sets with extremely

diffuse priors on the rate yield relative precise posteriors (fig.
4E), and the individual patient estimates are only marginally
higher than for the three most informative patients (fig. 4F).
This demonstrates that comparing the mean rates for indi-
vidual estimates would be inappropriate to assess differences
among patient groups. Weakly informative patients result in
relatively high mean rates, but their high variances ensure
that the contribution to the population rate (LTNP group)
in the hierarchical model remains low.

Although the application of relaxed-clock models to in-
dividual data sets with few time points or sequences may
be questionable, analysis under an HPM, in which informa-
tion is pooled between patients, enables us to side step this
limitation. Marginal likelihood estimates for the both strict
and relaxed-clock analyses of the different patient groups
(supplementary table S2, Supplementary Material online)

A B

C D

E F

FIG. 4. Marginal posterior rate distributions for LTNP patients with different numbers of sampling time points. Least informative patients
(lowest number of time points or sequences per time point): P10, P16, and P17. Most informative patients: P9, P11, and P13. (A and B)
Assuming a uniform (0,0.004) rate prior. (C and D) Lognormal (�7.5,1) rate prior. (E and F) HPM with unknown mean and variance and diffuse
priors.
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indicate a better fit of the relaxed-clock model, with ln BFs
of 7.8, 6.1, 4.4, and 4.2 in favor of the relaxed clock for pro-
gressors, LTNP, WT, and D32, respectively. The fact that
a strict clock could often not be rejected for individual pa-
tient analysis also indicates the HPM draws on increased
statistical power of HPMs to reject simpler models. Because
of the increased model fit, we employ relaxed clocks in fur-
ther codon model analyses and hypothesis tests incorpo-
rating fixed effects.

Analyses using a codon model revealed comparable co-
don substitution rate differences between progressors/
LTNP and between WT and D32 compared with the nu-
cleotide analyses (fig. 2B vs. supplementary fig. 1A, Supple-
mentary Material online). Hierarchical dN/dS estimates,
however, were comparable for the four patient groups
(supplementary fig. 1B, Supplementary Material online).

Hypothesis Testing Using HPMs Incorporating
Across-Population Fixed Effects
The four different groups considered previously are not
comprised of independent patient sets; some patients fall
in more than one group. Hence, direct comparison of the
marginal parameter estimates fit to each group indepen-
dently does not generate independent estimates. For more
appropriate hypothesis testing of difference, the HPM for
the evolutionary rate was extended to accommodate fixed
effects (see Materials and Methods), enabling estimation of
hierarchical parameters across all patients. Successfully, hi-
erarchical estimation with fixed effects across all patients
resulted in even further shrinkage of individual patient es-
timates compared with hierarchal models applied to sepa-
rate groups (fig. 3B). BF comparison of the fixed-effects HPM
model with a model that assumes either completely linked
or unlinked parameters (ln BF of 51.7 and 57.2, respectively)
provides strong evidence that the shrinkage is accompanied
by improved goodness of fit. The main results of the fixed-
effect HPM analyses are listed in table 1. For the nucleotide
analysis, the LTNP versus progressor and WT versus D32 ef-
fects were employed to model the evolutionary rates.
Through examining the posterior distribution of the rate in-
dicators (deffect), we estimate the posterior probability for
including the LTNP versus progressor effect at 0.72 resulting
in a moderate BF support of 2.6 in agreement with the
group-by-group hierarchical rate estimates obtained above.
Importantly, the rate decrease attributable to this fixed ef-

fect returns a CI that does not include 0. This approach ap-
propriately controls for the nonindependence missed in the
group-by-group analyses and rejects the null hypothesis of
no difference between LTNP and progressor patients.

There was no support in favor of a D32 effect. Even after
conditioning on the effect indicator equaling 1 to estimate
the potential effect size, the posterior D32 effect-size
parameter distribution remained centered close to 0 with
symmetric CIs. In the codon analysis, the same effects were
tested on both the substitution rate and dN/dS. A very sim-
ilar LTNP effect was observed for the codon substitution
rate, although the CIs now included 0. Interestingly, the
conditional effect size of LTNP versus progressor on codon
substitution rate remains very similar to the effect size on
nucleotide substitution rate. Furthermore, there was more
support against than in favor of a D32 effect. Finally, no
support for an LTNP effect or D32 effect was observed
on the hierarchical dN/dS estimates.

Discussion
In this study, we adopted an HPM approach to estimate
within-host HIV evolutionary parameters and test evolu-
tionary hypotheses regarding host susceptibility and dis-
ease progression. We sought to investigate whether the
CCR5 wt/D32 genotype, which is associated with a lower
viral load set point and a slower HIV-1 disease progression
(de Roda Husman et al. 1997; Ioannidis et al. 2001), also
impacts the evolutionary rate of the virus by limiting target
cell or CCR5 availability. Furthermore, we wanted to eval-
uate the contribution of CCR5 availability and CCR5 use on
the selection pressure directed against the viral envelope
protein by estimating dN/dS.

HPMs have been used for HIV evolutionary enquiry be-
fore, but this is the first study that develops HPMs to es-
timate evolutionary rate, dN/dS, and demographic
parameters. In an HPM framework, we assume that the pa-
tient-specific HIV-1 evolutionary parameters can be drawn
from a population distribution. Estimations of the evolu-
tionary process based on a limited sample from each
patient are riddled with noise, and the improvement
of an HPM follows from the reduced uncertainty on in-
dividual patient estimates. BF comparison further confirms
a considerable improvement in goodness of fit of the HPM
with respect to a completely linked and unlinked model.
This can be explained by the fact that the completely linked

Table 1. Estimates of the LTNP and D32 Effects on Nucleotide Substitution Rates, Codon Substitution Rates, and dN/dS.

Evolutionary Parameter Effect Support/Size LTNP Effect D32 Effect

Nucleotide substitution rate Posterior probability deffect 5 1 0.72 0.27
BFeffect 2.6 0.4
beffectjdeffect 5 1a 20.275 (20.524, 20.016) 20.007 (20.940,0.920)

Codon substitution rate Posterior probability deffect 5 1 0.726 0.324
BFeffect 2.6 0.5
beffectjdeffect 5 1a 20.265 (20.523,0.019) 20.012 (20.700,0.692)

dN/dS Posterior probability deffect 5 1 0.502 0.393
BFeffect 1.0 0.6
beffectjdeffect 5 1a 0.083 (20.101,0.25) 20.005 (20.228,0.242)

a These are effective sizes conditional on the effect being included (the binary effect indicator deffect being 1). For the rates, these effective sizes are in log space. LTNP (Long-
term non-progressor); D32 (CCR5 wt/D32).
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model inappropriately ignores any difference among pa-
tients on the one hand and a completely linked model
suffers from an unnecessarily high effective number of pa-
rameters (Spiegelhalter et al. 2002) arising from the inde-
pendent prior specifications on the other hand. The HPM
sits in between these two extremes and reduces the effec-
tive number of parameters without sacrificing fit to the
data. Furthermore, we demonstrate that the HPM is more
powerful in rejecting simpler evolutionary models, like the
constant rate assumption, which is frequently violated for
HIV.

The hierarchical estimates for the progressors, LTNP,
WT, and D32 groups indicated a pronounced strict and
relaxed-clock rate difference between the progressors
and the LTNP, whereas differences between WT and
D32 rates were less pronounced. The same patterns were
observed for relaxed codon substitution rates, but no real
differences were noted in terms of dN/dS. These compari-
sons are based on nonindependent data because patients
will be part of two different groups. For more appropriate
hypothesis testing, we incorporated fixed effects and em-
ployed Bayesian stochastic search variable selection to es-
timate the posterior probability that different patient
group characteristics influence within-host evolutionary
parameters. The advantage of a Bayesian model averaging
approach that simultaneously explores the space of models
and regression coefficients is the opportunity to distinguish
between the relative size of an effect and its importance,
which can be formalized in terms of standard BF support.
The latter effectively becomes independent of the scale of
the predictors, which otherwise may confound drawing
conclusions on the effect sizes only. Because both predic-
tors we considered only achieve 0 or 1, controlling for scale
is not an issue in the current study, but it does contribute
to a more general framework for evolutionary hypothesis
testing. Although the statistical support is not decisive, the
fixed-effects HPM approach produces substantially more
efficient parameter estimates and conditional effect sizes
confirm rate differences among LTNP and progressors. De-
spite the elevated power, more elaborate sampling in terms
of numbers of patients, within-host time points, or maybe
even larger genome regions would be desirable.

The HPM estimates suggest an association between evo-
lutionary rate and disease progression, but the CCR5 geno-
type does not account for the rate differences. Given the
absence of clear dN/dS differences—if anything, they are
slightly higher in LTNP—we cannot attribute the rate nu-
ances to differences in selection on amino acid fixation.
Therefore, we conclude that these differences are due to
variations in the product of mutation rate and generation
time. In particular, lower replication rates may be associ-
ated with delayed onset of AIDS symptoms. In agreement
with this, a codon model extension of the Bayesian relaxed-
clock analysis of more extensively sampled patients has
shown that absolute synonymous substitutions are corre-
lated with disease progression (Lemey et al. 2007). These
authors argued that synonymous substitutions were
a marker of replication rate and most probably reflect

the action of immune activation, which in itself is a marker
of disease progression. In the current study, we employed
standard codon model implementation in the Bayesian
framework rather than evaluating genealogies under nucle-
otide models as a proxy. This approach comes at a compu-
tational expense, and further extensions—such as codon
models to estimate absolute rates of synonymous and non-
synonymous substitutions (Seo et al. 2004)—may prove
even more computationally intensive. Fortunately, recent
advances in graphics processing unit computation provide
significant increases in computation speed for high state-
space models (Suchard and Rambaut 2009). These advances
promise to stimulate further development of various codon
models in the Bayesian framework, the parameters of which
could be efficiently estimated in hierarchical models.

CCR5 genotype has a measurable impact on disease pro-
gression (de Roda Husman et al. 1997; Ioannidis et al. 2001),
but there appears to be no absolute relationship (not all
CCR5 wt/D32 HIV-1 infected individuals are LTNP). This
implies a more complex scenario, in which the combina-
tion of CCR5 availability with other host genetic factors,
in particular cellular and humoral immune pressures,
and immune activation, will determine the viral replication
rate and progression of the disease in a patient. Although
lower CCR5 availability does not appear to exert selection
pressure on the viral envelope during the chronic phase of
infection, it cannot be excluded that in HIV-1–infected in-
dividuals with CCR5 WT/D32 genotype, in whom CCR5þ

target cells and CCR5 expression are already limiting in the
acute phase, selection for viruses with optimal CCR5 use
occurs in a very early stage. Moreover, we performed anal-
yses on sequences in which ambiguously aligned hypervari-
able regions were deleted, which may play an important
role in both humoral immune responses (Cao et al.
1997; Chackerian et al. 1997; Stamatatos and Cheng-Mayer
1998; Pinter et al. 2004; Sagar et al. 2006; Gray et al. 2007)
and selection for optimal CCR5 use (Hubert and Arabie
1985; Stamatatos et al. 1998; Wang et al. 1999; Sagar
et al. 2006; Repits et al. 2008).

Studying evolutionary dynamics within hosts has be-
come an integral part of HIV research but one that still
faces the challenge of fully unraveling the relationship be-
tween evolutionary parameters and clinical outcome.
There may be several reasons for the difficulty in establish-
ing the role of evolutionary processes in disease pro-
gression. Within-host dynamics appear to be highly
complex, with many host-specific and environmental
(co-infections) factors interacting with various evolution-
ary processes such as hypermutation, diversifying and
directional selection, recombination, and compartmental-
ization. Untangling this complex interplay requires ac-
curate measurement of all host factors involved and
evolutionary models that explicitly accommodate the rel-
evant evolutionary forces. Without the latter, many simpli-
fying assumptions are at risk of being violated when
considering HIV evolution. Parameter-rich models may
be limited by current sampling as they require highly infor-
mative data. To our knowledge, the most elaborate
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sampling dates back to over a decade ago (Shankarappa
et al. 1999), which, differently from this study, included
patients with HIV populations harboring CXCR4-using var-
iants. Next generation sequencing may offer new opportu-
nities for within-host HIV genetic analyses but produces
data with particular challenges for comparative analyses
(Vrancken et al. 2010). Here, we have adopted a modeling
approach that efficiently pools the information from multi-
ple individuals, and we demonstrate how this can be em-
ployed for rigorous testing across patient populations. We
hope that this stimulates further model-based inference
of evolutionary processes, which ultimately may lead to
more profound insights into persistent viral infections.

Supplementary Material
Supplementary materials are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments
The Amsterdam Cohort Studies on HIV infection and AIDS,
a collaboration between the Public Health Service of Am-
sterdam, the Academic Medical Center of the University of
Amsterdam, the Sanquin Blood Supply Foundation, the
University Medical Center Utrecht, and the Jan van Goyen
Medical Center, are part of The Netherlands HIV Monitor-
ing Foundation and financially supported by the Center for
Infectious Disease Control of The Netherlands National
Institute for Public Health and the Environment.
Netherlands AIDS fund (6006); The European Community’s
Seventh Framework Programme NGIN (FP7/2007-2013)
under grant agreement no. (201433); Research Foundation-
Flanders (‘‘Fonds voor Wetenschappelijk Onderzoek-
Vlaanderen’’, FWO) to P.L.; National Institutes of Health
R01 675 grant (GM86887) to M.A.S. and J.A.T.; European
Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013)/ERC
grant agreement no. (260864).

References
Blaak H, Ran LJ, Rientsma R, Schuitemaker H. 2000. Susceptibility of

in vitro stimulated PBMC to infection with NSI HIV-1 is
associated with levels of CCR5 expression and beta-chemokine
production. Virology 267:237–246.

Borrow P, Lewicki H, Wei X, et al (11 co-authors). 1997. Antiviral
pressure exerted by HIV-1-specific cytotoxic T lymphocytes
(CTLs) during primary infection demonstrated by rapid
selection of CTL escape virus. Nat Med. 3:205–211.

Cao J, Sullivan N, Desjardin E, Parolin C, Robinson J, Wyatt R,
Sodroski J. 1997. Replication and neutralization of human
immunodeficiency virus type 1 lacking the V1 and V2 variable
loops of the gp120 envelope glycoprotein. J Virol. 71:9808–9812.

Carvajal-Rodriguez A, Posada D, Perez-Losada M, Keller E, Abrams EJ,
Viscidi RP, Crandall KA. 2008. Disease progression and evolution
of the HIV-1 env gene in 24 infected infants. Infect Genet Evol.
8:110–120.

Casella G, George EI. 1992. Explaining the Gibbs sampler. Am Stat.
46:167–174.

Casella G, Robert C. 1996. Rao-Blackwellisation of sampling schemes.
Biometrika 83:81–94.

Chackerian B, Rudensey LM, Overbaugh J. 1997. Specific N-linked
and O-linked glycosylation modifications in the envelope V1
domain of simian immunodeficiency virus variants that evolve
in the host alter recognition by neutralizing antibodies. J Virol.
71:7719–7727.

Chipman H, George E, McCulloch R. 2001. The practical
implementation of Bayesian model selection. IMS Lect Notes
Monogr Ser. 38:67–134.

Coffin JM. 1995. HIV population dynamics in vivo: implications for
genetic variation, pathogenesis, and therapy Science 267:483–489.

de Roda Husman AM, Blaak H, Brouwer M, Schuitemaker H. 1999.
CC chemokine receptor 5 cell-surface expression in relation to
CC chemokine receptor 5 genotype and the clinical course of
HIV-1 infection. J Immunol. 163:4597–4603.

de Roda Husman AM, Koot M, Cornelissen M, et al. (14 co-authors).
1997. Association between CCR5 genotype and the clinical
course of HIV-1 infection. Ann Intern Med. 127:882–890.

de Roda Husman AM, van Rij RP, Blaak H, Broersen S,
Schuitemaker H. 1999. Adaptation to promiscuous usage of
chemokine receptors is not a prerequisite for human immuno-
deficiency virus type 1 disease progression. J Infect Dis.
180:1106–1115.

de Wolf F, Spijkerman I, Schellekens PT, Langendam M, Kuiken C,
Bakker M, Roos M, Coutinho R, Miedema F, Goudsmit J. 1997.
AIDS prognosis based on HIV-1 RNA, CD4þ T-cell count and
function: markers with reciprocal predictive value over time
after seroconversion. AIDS 11:1799–1806.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed
phylogenetics and dating with confidence. PLoS Biol. 4:e88.

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary
analysis by sampling trees. BMC Evol Biol. 7:214.

Gelman A, Carlin JB, Stern HS, Rubin DB. 1995. Bayesian data
analysis. New York: Chapman & Hall/CRC.

Geskus RB. 2000. On the inclusion of prevalent cases in HIV/AIDS
natural history studies through a marker-based estimate of time
since seroconversion. Stat Med. 19:1753–1769.

Goldman N, Yang Z. 1994. A codon-based model of nucleotide
substitution for protein-coding DNA sequences. Mol Biol Evol.
11:725–736.

Goulder PJ, Phillips RE, Colbert RA, et al. 12 co-authors. 1997. Late
escape from an immunodominant cytotoxic T-lymphocyte
response associated with progression to AIDS. Nat Med. 3:212–217.

Gray ES, Moore PL, Choge IA, et al. 13 co-authors. 2007. Neutralizing
antibody responses in acute human immunodeficiency virus
type 1 subtype C infection. J Virol. 81:6187–6196.

Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM,
Markowitz M. 1995. Rapid turnover of plasma virions and
CD4 lymphocytes in HIV-1 infection. Nature 373:123–126.

Hoeting J, Madigan D, Raftery A, Volinsky C. 1999. Bayesian model
averaging. Stat Sci. 14:382–401.

Hollingsworth TD, Laeyendecker O, Shirreff G, et al. (14 co-authors).
2010. HIV-1 transmitting couples have similar viral load set-
points in Rakai, Uganda. PLoS Pathog. 6:e1000876.

Hubert L, Arabie P. 1985. Comparing partitions. J Classification.
2:193.

Ioannidis JP, Rosenberg PS, Goedert JJ, et al. (32 co-authors). 2001.
Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3’A alleles on HIV-
1 disease progression: an international meta-analysis of in-
dividual-patient data. Ann Intern Med. 135:782–795.

Jeffreys H. 1998. Theory of probability. New York: Oxford University
Press.

Jensen MA, Li FS, van ’t Wout AB, Nickle DC, Shriner D, He HX,
McLaughlin S, Shankarappa R, Margolick JB, Mullins JI. 2003.
Improved coreceptor usage prediction and genotypic

Edo-Matas et al. · doi:10.1093/molbev/msq326 MBE

1614

Supplementary materials
http://www.mbe.oxfordjournals.org/


monitoring of R5-to-X4 transition by motif analysis of human
immunodeficiency virus type 1 env V3 loop sequences. J Virol.
77:13376–13388.

Jones NA, Wei X, Flower DR, Wong M, Michor F, Saag MS,
Hahn BH, Nowak MA, Shaw GM, Borrow P. 2004. Determinants
of human immunodeficiency virus type 1 escape from the
primary CD8þ cytotoxic T lymphocyte response. J Exp Med.
200:1243–1256.

Kemal KS, Foley B, Burger H, et al. (17 co-authors). 2003. HIV-1 in
genital tract and plasma of women: compartmentalization of
viral sequences, coreceptor usage, and glycosylation. Proc Natl
Acad Sci U S A. 100:12972–12977.

Kitchen CM, Lu J, Suchard MA, Hoh R, Martin JN, Kuritzkes DR,
Deeks SG. 2006. Continued evolution in gp41 after interruption
of enfuvirtide in subjects with advanced HIV type 1 disease.
AIDS Res Hum Retroviruses. 22:1260–1266.

Kitchen CM, Philpott S, Burger H, Weiser B, Anastos K, Suchard MA.
2004. Evolution of human immunodeficiency virus type 1
coreceptor usage during antiretroviral therapy: a Bayesian
approach. J Virol. 78:11296–11302.

Kitchen CMR, Marconi V, Kuritzkes DR, Bloomquist EW, Deeks SG,
Suchard MA. 2009. Two-way Bayesian hierarchical phylogenetic
models: an application to the co-evolution of gp120 and gp41
during partial treatment interruptions of enfuvirtide. Comput
Stat Data Anal. 53:766–775.

Koning FA, Kwa D, Boeser-Nunnink B, Dekker J, Vingerhoed J,
Hiemstra H, Schuitemaker H. 2003. Decreasing sensitivity to
RANTES (regulated on activation, normally T cell-expressed
and -secreted) neutralization of CC chemokine receptor 5-
using, non-syncytium-inducing virus variants in the course of
human immunodeficiency virus type 1 infection. J Infect Dis.
188:864–872.

Kootstra NA, Schuitemaker H. 1999. Phenotype of HIV-1 lacking
a functional nuclear localization signal in matrix protein of gag
and Vpr is comparable to wild-type HIV-1 in primary macro-
phages. Virology 253:170–180.

Kuo L, Mallick B. 1998. Variable selection for regression models.
Sankhya B. 60:65–81.

Kwa D, Vingerhoed J, Boeser B, Schuitemaker H. 2003. Increased in
vitro cytopathicity of CC chemokine receptor 5-restricted
human immunodeficiency virus type 1 primary isolates corre-
lates with a progressive clinical course of infection. J Infect Dis.
187:1397–1403.

Laird NM, Ware JH. 1982. Random-effects models for longitudinal
data. Biometrics 38:963–974.

Lane HC, Depper JM, Greene WC, Whalen G, Waldmann TA, Fauci AS.
1985. Qualitative analysis of immune function in patients with the
acquired immunodeficiency syndrome. Evidence for a selective
defect in soluble antigen recognition. N Engl J Med. 313:79–84.

Lee HY, Perelson AS, Park SC, Leitner T. 2008. Dynamic correlation
between intrahost HIV-1 quasispecies evolution and disease
progression. PLoS Comput Biol. 4:e1000240.

Lemey P, Kosakovsky Pond SL, Drummond AJ, Pybus OG, Shapiro B,
Barroso H, Taveira N, Rambaut A. 2007. Synonymous sub-
stitution rates predict HIV disease progression as a result of
underlying replication dynamics. PLoS Comput Biol. 3:e29.

Lemey P, Rambaut A, Drummond AJ, Suchard MA. 2009. Bayesian
phylogeography finds its roots. PLoS Comput Biol. 5:e1000520.

Mellors JW, Rinaldo CR Jr., Gupta P, White RM, Todd JA,
Kingsley LA. 1996. Prognosis in HIV-1 infection predicted by
the quantity of virus in plasma. Science 272:1167–1170.

Miedema F, Petit AJ, Terpstra FG, et al. (11 co-authors). 1988.
Immunological abnormalities in human immunodeficiency virus
(HIV)-infected asymptomatic homosexual men. HIV affects the
immune system before CD4þ T helper cell depletion occurs. J
Clin Invest. 82:1908–1914.

Munoz A, Sabin CA, Phillips AN. 1997. The incubation period of
AIDS. AIDS. 11(Suppl A):S69–S76.

Pinter A, Honnen WJ, He Y, Gorny MK, Zolla-Pazner S, Kayman SC.
2004. The V1/V2 domain of gp120 is a global regulator of the
sensitivity of primary human immunodeficiency virus type 1
isolates to neutralization by antibodies commonly induced upon
infection. J Virol. 78:5205–5215.

Polk BF, Fox R, Brookmeyer R, Kanchanaraksa S, Kaslow R,
Visscher B, Rinaldo C, Phair J. 1987. Predictors of the acquired
immunodeficiency syndrome developing in a cohort of sero-
positive homosexual men. N Engl J Med. 316:61–66.

Potter SJ, Lemey P, Dyer WB, Sullivan JS, Chew CB, Vandamme AM,
Dwyer DE, Saksena NK. 2006. Genetic analyses reveal structured
HIV-1 populations in serially sampled T lymphocytes of patients
receiving HAART. Virology 348:35–46.

Repits J, Sterjovski J, Badia-Martinez D, et al. 13 co-authors. 2008.
Primary HIV-1 R5 isolates from end-stage disease display
enhanced viral fitness in parallel with increased gp120 net
charge. Virology 379:125–134.

Rodrigo AG, Goode M, Forsberg R, Ross HA, Drummond A. 2003.
Inferring evolutionary rates using serially sampled sequences
from several populations. Mol Biol Evol. 20:2010–2018.

Ross HA, Rodrigo AG. 2002. Immune-mediated positive selection
drives human immunodeficiency virus type 1 molecular variation
and predicts disease duration. J Virol. 76:11715–11720.

Sagar M, Wu X, Lee S, Overbaugh J. 2006. Human immunodeficiency
virus type 1 V1-V2 envelope loop sequences expand and add
glycosylation sites over the course of infection, and these
modifications affect antibody neutralization sensitivity. J Virol.
80:9586–9598.

Schuitemaker H, Koot M, Kootstra NA, Dercksen MW, de Goede RE,
van Steenwijk RP, Lange JM, Schattenkerk JK, Miedema F,
Tersmette M. 1992. Biological phenotype of human immunode-
ficiency virus type 1 clones at different stages of infection:
progression of disease is associated with a shift from mono-
cytotropic to T-cell-tropic virus population. J Virol. 66:
1354–1360.

Seo TK, Kishino H, Thorne JL. 2004. Estimating absolute rates of
synonymous and nonsynonymous nucleotide substitution in
order to characterize natural selection and date species
divergences. Mol Biol Evol. 21:1201–1213.

Shankarappa R, Margolick JB, Gange SJ, et al. (12 co-authors). 1999.
Consistent viral evolutionary changes associated with the
progression of human immunodeficiency virus type 1 infection.
J Virol. 73:10489–10502.

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. 2002. Bayesian
measures of model complexity and fit. J R Stat Soc Series B Stat
Methodol. 64:583–639.

Stamatatos L, Cheng-Mayer C. 1998. An envelope modification that
renders a primary, neutralization-resistant clade B human
immunodeficiency virus type 1 isolate highly susceptible
to neutralization by sera from other clades. J Virol.
72:7840–7845.

Stamatatos L, Wiskerchen M, Cheng-Mayer C. 1998. Effect of major
deletions in the V1 and V2 loops of a macrophage-tropic HIV
type 1 isolate on viral envelope structure, cell entry, and
replication. AIDS Res Hum Retroviruses. 14:1129–1139.

Sterjovski J, Churchill MJ, Ellett A, et al. 16 co-authors. 2007. Asn 362
in gp120 contributes to enhanced fusogenicity by CCR5-
restricted HIV-1 envelope glycoprotein variants from patients
with AIDS. Retrovirology 4:89.

Suchard MA, Kitchen CM, Sinsheimer JS, Weiss RE. 2003.
Hierarchical phylogenetic models for analyzing multipartite
sequence data. Syst Biol. 52:649–664.

Suchard MA, Rambaut A. 2009. Many-core algorithms for statistical
phylogenetics. Bioinformatics 25:1370–1376.

HIV-1 Hierarchical Phylogenetic Hypothesis Testing · doi:10.1093/molbev/msq326 MBE

1615



Suchard MA, Weiss RE, Sinsheimer JS. 2001. Bayesian selection of
continuous-time Markov chain evolutionary models. Mol Biol
Evol. 18:1001–1013.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res.
22:4673–4680.

van ’t Wout AB, Schuitemaker H, Kootstra NA. 2008. Isolation and
propagation of HIV-1 on peripheral blood mononuclear cells.
Nat Protoc. 3:363–370.

Veugelers PJ, Page KA, Tindall B, et al. (11 co-authors). 1994.
Determinants of HIV disease progression among homosexual
men registered in the Tricontinental Seroconverter Study. Am J
Epidemiol. 140:747–758.

Vrancken B, Lequime S, Theys K, Lemey P. 2010. Covering all bases in
HIV research: unveiling a hidden world of viral evolution. AIDS
Rev. 12:89–102.

Wang WK, Dudek T, Essex M, Lee TH. 1999. Hypervariable region 3
residues of HIV type 1 gp120 involved in CCR5 coreceptor
utilization: therapeutic and prophylactic implications. Proc Natl
Acad Sci U S A. 96:4558–4562.

Wei X, Decker JM, Wang S, et al. (15 co-authors). 2003. Antibody
neutralization and escape by HIV-1. Nature 422:307–312.

Wei X, Ghosh SK, Taylor ME, et al. (12 co-authors). 1995. Viral
dynamics in human immunodeficiency virus type 1 infection.
Nature 373:117–122.

Williamson S. 2003. Adaptation in the env gene of HIV-1 and
evolutionary theories of disease progression. Mol Biol Evol.
20:1318–1325.

Edo-Matas et al. · doi:10.1093/molbev/msq326 MBE

1616


