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Hsp90 is and environmentally con-
tingent molecular chaperone that 

influences the form and function of 
diverse signal transducers. Here we dis-
cuss our recent findings that Hsp90 reg-
ulates the morphogenetic transition from 
yeast to filamentous forms required for 
virulence of the most prevalent fungal 
pathogen of humans, Candida albicans, 
and does so via cAMP-PKA signaling. 
This transition is normally regulated by 
environmental cues that are contingent 
upon elevated temperature to relieve 
Hsp90-mediated repression of the mor-
phogenetic program. Intriguingly, Hsp90 
inhibition induces filamentation inde-
pendent of the canonical PKA transcrip-
tion factor Efg1, in striking similarity 
to a select set of morphogenetic stimuli. 
Further investigation will determine 
the downstream transcription factors 
through which Hsp90 regulates mor-
phogenesis and the precise mechanism of 
Hsp90’s interaction with the cAMP-PKA 
pathway. C. albicans is one of many fun-
gal species that undergo a morphological 
transition in a temperature-dependent 
manner, thus Hsp90’s capacity to gov-
ern this key developmental program may 
provide insight into morphogenesis of 
diverse organisms.

Precise coordination of sensing and 
response to environmental cues is impera-
tive for the survival of all organisms. In 
the leading fungal pathogen of humans, 
Candida albicans, the capacity to sense 
environmental signals and undergo mor-
phological transitions is tightly linked 
to its virulence. In C. albicans, the mor-
phological transition between yeast and 

filamentous growth states is regulated by 
diverse environmental cues, including 
nutrient limitation, pH, CO

2
, serum and 

temperature (Fig. 1A).1-3 Elevated tem-
perature of 37°C is critical for C. albicans 
to undergo morphogenesis under most 
conditions (Fig. 1A), yet until recently, 
little was understood about the cellular 
signaling underpinning this temperature 
dependence. Numerous signal transduc-
tion pathways have been implicated in 
C. albicans morphogenesis, including the 
mitogen-activated protein kinase (MAPK) 
pathway and the cAMP-protein kinase 
A (PKA) pathway.1-3 Recently, we dem-
onstrated that the molecular chaperone 
Hsp90 orchestrates temperature-depen-
dent morphogenesis in C. albicans in a 
manner that is contingent on cAMP-PKA 
signaling.4

Hsp90 is an essential molecular chap-
erone that responds to environmental cues 
and regulates the form and function of its 
client proteins. Many Hsp90 client pro-
teins are regulators of cellular signaling, 
such as kinases and transcription factors, 
which dwell in incompletely folded or 
aggregation-prone states.5-7 As a heat shock 
protein, Hsp90 is induced under condi-
tions of stress, such as increased tempera-
ture; however, global problems in protein 
folding that occur at elevated temperature 
can overwhelm Hsp90 chaperone func-
tion. Therefore, as a thermally responsive 
chaperone that regulates key signal trans-
ducers, Hsp90 is uniquely poised to gov-
ern temperature-dependent traits, such 
morphogenesis in C. albicans.

We discovered that compromising 
Hsp90 function induces a transition from 
yeast to filamentous growth in C. albicans, 
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Despite the central role of Efg1 in C. 
albicans morphogenesis, certain stimuli 
will induce filamentation in an Efg1-
independent manner. For instance, fila-
mentation stimulated by solid medium 
containing serum or by macrophage inges-
tion occurs independent of Efg1.13 In this 
instance, the MAPK transcription factor 
Cph1 has been implicated as the other fac-
tor involved in filamentation, as deletion of 
both Efg1 and Cph1 blocks filamentation 
under these conditions. Further, although 
Efg1 has been linked to the expression of 
filament-specific transcripts in vitro, many 
of these transcripts are expressed indepen-
dent of Efg1 in an in vivo intestinal tract 
model of C. albicans colonization.18

Notably, certain morphogenetic stimuli 
demonstrate a strikingly similar response 
pattern to inhibition of Hsp90 in that they 
are dependent on upstream inputs of the 
cAMP-PKA pathway, but are not depen-
dent on Efg1. For instance, depletion of 
the cell cycle regulatory polo-like kinase 
Cdc5 induces filamentation that is strictly 
dependent on Cdc35, but not on Efg1.19 
The same holds true for filamentation 
induced in the presence of the DNA synthe-
sis inhibitor hydroxyurea.19 Additionally, 
depletion of the DNA-damage checkpoint 
regulator Rad52 triggers filamentation in 
a Cdc35-dependent and Efg1-independent 
manner.20 In these cases, the identities of 
the additional pathways or transcription 
factors involved in regulating filamenta-
tion remain enigmatic.19

Regardless of the downstream tran-
scriptional regulator involved, current data 
suggest that Hsp90 represses cAMP-PKA 
signaling.4 Conceivably, there are three 
broad models that could explain this regu-
lation (Fig. 2). First, Hsp90 could interact 
with a positive regulator of the pathway, 
and maintain it in an inactive conforma-
tion until Hsp90 function is compromised. 
Precedent for Hsp90 maintaining proteins 
in an inactive, but active-competent state 
has been well established for specific client 
proteins, including the heat shock factor 
Hsf1.21,22 In relation to the PKA pathway, 
this could involve Hsp90 interacting with 
the positive catalytic subunits of PKA, 
Tpk1 or Tpk2 (Fig. 2A). Second, Hsp90 
might stabilize a negative regulator of the 
cAMP-PKA pathway, such that inhibition 
of Hsp90 would lead to loss of function 

transcription factor of the PKA pathway. 
Efg1 is a member of the APSES fam-
ily of transcriptional regulators, which 
is unique to the fungal kingdom. This 
family includes C. albicans proteins Efg1 
and Efh1, which have roles in filamen-
tation,8 as well as the Saccharomyces cer-
evisiae regulators Phd1 and Sok2, which 
are known to regulate the pseudohyphal 
transition.9,10 In C. albicans, Efg1 is often 
considered the key transcriptional regu-
lator of morphogenesis and is required for 
the yeast to filament transition induced 
by numerous cues including serum, pH 
and glucose starvation.11-14 That Hsp90-
mediated morphogenesis occurs inde-
pendent of Efg1, suggests either that 
parallel signaling pathways or alternate 
transcription factor(s) downstream of 
PKA signaling function to regulate this 
yeast to filament transition. Other factors 
thought to act downstream of PKA sig-
naling in C. albicans include Flo8, Sfl1 
and Tec1.15-17

even in the absence of external cues.4 Our 
results support the model that Hsp90 
is a key temperature sensor that governs  
C. albicans morphogenesis such that ele-
vated temperature is required to relieve 
Hsp90-mediated repression of the mor-
phogenetic program (Fig. 1B). When 
Hsp90 function is compromised, by ele-
vated temperature or by specific genetic or 
pharmacological perturbation, the yeast 
to filament transition is induced via the 
cAMP-PKA pathway.4 Consistent with 
the association between morphogenetic 
plasticity and virulence, depletion of C. 
albicans Hsp90 attenuates virulence of 
the fungus in a murine model of systemic 
disease.4

Strikingly, although morphogenesis 
induced by Hsp90 inhibition depends on 
upstream inputs from the cAMP-PKA 
pathway, such as the GTPase Ras1, the 
adenylyl cyclase Cdc35 and the PKA com-
plex itself, this morphogenetic program 
occurs independent of Efg1,4 the canonical 

Figure 1. Temperature-dependent morphogenesis in C. albicans. (A) In C. albicans, the morpho-
logical transition between yeast and filamentous growth (hyphal and pseudohyphal) is regulated by 
many different environmental cues, including exposure to serum, change in pH, CO2, and amino 
acid starvation. Elevated temperature of 37°C is required for C. albicans to undergo morphogene-
sis under these conditions. (B) Hsp90 exerts a repressive effect on the yeast to filament morpho-
logical transition. When Hsp90 function is compromised, for instance by elevated temperature, 
the yeast to filament transition is induced.
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Hsp90 would destabilize the negative regulator. This could involve Hsp90 interacting the negative 
regulatory subunit of PKA, Bcy1. (C) Hsp90 might interact indirectly with the cAMP-PKA pathway. 
This could occur via a positive regulator such as Tpk1 or Tpk2, or by a negative regulator. More 
complex models are possible, where Hsp90 could regulate cAMP-PKA signaling via multiple client 
proteins.
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