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Abstract
As stored blood ages intraerythrocytic energy sources are depleted resulting in reduced structural
integrity of the membrane. Thus, stored red cells become less deformable and more fragile as they
age. This fragility leads to release of cell-free hemoglobin and formation of microparticles, sub-
micron hemoglobin-containing vesicles. Upon transfusion, it is likely that additional hemolysis
and microparticle formation occurs due to breakdown of fragile red blood cells. Release of cell-
free hemoglobin and microparticles leads to increased consumption of nitric oxide (NO), an
important signaling molecule that modulates blood flow, and may promote inflammation. Stored
blood may also be deficient in recently discovered blood nitric oxide synthase activity. We
hypothesize that these factors play a potential role in the blood storage lesion.

The Storage lesion
The storage lesion refers to changes in red cells during storage. Over time, glucose in stored
blood is consumed, levels of 2,3-diphosphoglycerate (DPG) and ATP decrease, while
potassium levels increase.1-9 As a result, there is red cell membrane loss during storage that
leads to substantial changes in rheological properties.10-15 This loss of red cell integrity
results in hemolysis and formation of microparticles4,16-19 that may contribute to
complications associated with transfusion. Several studies have found that transfusions using
older blood are associated with adverse clinical outcomes20-27. It should be noted, however,
that others have not found these types of associations.9,28-34 Although the impact of
transfusion of old blood is a matter of debate, the fact that transfusion represents one of the
most common medical therapies suggests that further large-scale study of its impact is
warranted, and that the mechanisms involved should be elucidated. In this mini-review, we
suggest how disturbance of nitric oxide homeostasis and its consequences may underlie, to
some extent, the storage lesion. An overview of the mechanisms we propose to be involved
are shown in Figure 1.35

Nitric Oxide
Nitric oxide (NO) is a neutral, radical molecule that has several important roles in
physiological signaling. NO is the endothelial-derived relaxing factor (EDRF); it is made in
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endothelial cells and plays a major role in controlling blood flow by effecting smooth
muscle relaxation adjacent to the blood vessels.36-39 It is made by endothelial nitric oxide
synthase (eNOS) from arginine and diffuses to the smooth muscle where it activates soluble
guanylyl cyclase to produce cGMP, initiating a signaling cascade leading to vasodilation. In
addition, via this ENOS, the two other isoforms (inducible NOS and neuronal NOS), or
other mechanisms of formation, it plays a role in homeostasis through inhibition of platelet
aggregation, acts a toxic agent in host defense, decreases expression of adhesion molecules,
and has anti-oxidant properties.40-42 More recently, a red blood cell NOS has been
discovered.43 Importantly then, NO is seen to contribute to many functions that could be
linked to the storage lesion including blood flow, inflammation, and thrombosis.

Nitric Oxide Scavenging by Hemoglobin
Nitric oxide reacts with hemoglobin in a reaction that is rate-limited by diffusion to the
heme group within hemoglobin,44-46

(1)

This dioxygenation reaction occurs when oxygenated hemoglobin reacts with NO to form
methemoglobin (FeIII) and nitrate, and effectively destroys NO activity. Nitric oxide can
also bind to a ferrous, vacant heme but once it comes off it is likely to undergo
dioxygenation, so this pathway would be a poor mechanism in itself to preserve NO
bioactivity. In 1994, Lancaster pointed out that given the rate of the dioxygenation reaction
and the large amount of hemoglobin in blood, NO could not possibly act as the EDRF; it
would undergo too much dioxygenation.47 It has been subsequently determined, however,
that the degree of NO dioxygenation that one would predict based on the amount of
hemoglobin present is much less due to the fact that NO reacts with red cell encapsulated
hemoglobin much more slowly than when the hemoglobin is free in solution or plasma.48-58

In vitro measurements where NO is mixed with red cells or hemoglobin show that red cells
react up to 1000 times slower than free hemoglobin, 48,49,58 primarily due to the reaction
becoming rate-limited by the time it takes for NO to diffuse to the red cell through “an
unstirred layer.”58 In addition, a finite permeability of the red cell membrane to NO may
play a role.53 In vivo, a major contribution of reduced NO scavenging by red cells is thought
to be due to the cell-free zone, where blood flow leads to a pressure gradient that pushes red
cells to the center of vessels and away from the endothelium where NO is made.50,52,59

Regardless of the relative contribution of these mechanisms, it is important to point out that
they all breakdown upon hemolysis.60

Pathology associated with RBC breakdown
Given the many important functions of NO, it is not surprising that diminished NO
bioavailability contributes to pathology in many diseases. Many of these, including
atherosclerosis, obesity, diabetes, peripheral artery disease and coronary artery disease in
general, result from endothelial dysfunction that is often due to reduced NO synthesis by
NOS.61-65 Besides reduced production, NO bioavailability can also be reduced by increased
consumption; one way for this reduction to occur results from scavenging by cell-free
hemoglobin that is released upon hemolysis.66 As noted above, cell-free hemoglobin reacts
with NO much faster than that encapsulated in a red cell. Nitric oxide scavenging has been a
major contributor to pathological consequences of many blood substitutes that involve
hemoglobin-based oxygen carriers.67-70 In these cases millimolar amounts of hemoglobin
were infused. One might think that in other conditions, such as hemolytic anemias like
sickle cell disease, the amount of cell-free hemoglobin present is too low to substantially

Kim-Shapiro et al. Page 2

Transfusion. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



affect NO bioavailabilty in the background of red cell encapsulated hemoglobin (normally
about 10 mM in heme). However, in studies initially performed in patients with sickle cell
disease, we found that the presence of even low micromolar amounts of cell-free
hemoglobin in patients with sickle cell disease results in diminished blood flow response
from NO.71 That small concentrations of cell-free hemoglobin can affect blood-flow and
have pathological consequences was subsequently confirmed in a canine hemolysis model,72

and computational simulations suggest that as little as one micromolar cell-free hemoglobin
(concentration in terms of heme, so in fact 0.25 micromolar hemoglobin tetramer) can
substantially reduce NO bioavailabilty73. There is increasing evidence from transgenic
animals, large animal and human epidemiological studies supporting a role for hemolysis in
the pathobiology of sickle cell disease and other hemolytic anemias.72,74-80 Despite this
evidence, the fact that micromolar amounts of cell-free hemoglobin can affect NO
bioavailability to an extent to which pathological consequences occur is not universally
accepted.81 Although we recognize that the extent of the impact of low amounts of
hemolysis remains controversial, we feel the evidence strongly suggests the impact is
substantial,80 and that continuing research on this front is necessary. Moreover, the
observation that larger amounts of hemolysis (resulting in tens of micromolar hemoglobin)
leads to pathological consequences is not contested.81

Red cell breakdown and the storage lesion
Loss of red cell integrity during storage results in hemolysis and formation of
microparticles.4,16-19 There have been several studies that documented hemolysis as a
function of time during storage. The levels of extracellular hemoglobin reported in the
literature range from 28 μM (in heme) after 35 days of storage in citrate phosphate dextrose
adenine (CPDA)4 to 80 μM after 50 days of storage17. We recently reported similar
findings.82 Transfusion of just one unit of blood with this much hemolysis would result in
plasma levels exceeding those of steady state sickle cell disease. As expected, we showed
that NO consumption by the non-erythrocytic (plasma) fraction of older stored blood is
dramatically greater than that from blood stored only one week and NO consumption is
directly proportional to the extent of NO consumption.82

In addition to release of cell-free molecular hemoglobin, red cell breakdown leads to
formation of hemoglobin-containing microparticles. In fact, when measuring cell-free
hemoglobin in blood, no efforts are usually taken to separate microparticles from cell-free
hemoglobin. In fact, in at least one case, the majority of hemoglobin in the supernatant after
sedimentation of stored blood was found to be in the form of microparticles.18 Due to their
small size, we propose that microparticles will scavenge NO to a similar extent as cell-free
hemoglobin. The extent to which external diffusion of NO to hemoglobin reduces the rate of
NO scavenging depends on the average distance between vesicle (red blood cells or
microparticles). Taking a red cell with an equivalent spherical radius of 3 μm and a
microparticle with a radius of 0.075 μm, the time for NO to diffuse to the red cell would be
roughly 2000 times longer on the average than to the microparticle.* In addition, due to their
small size, it is unlikely that shear stress will result in removing microparticles from the cell-
free zone. Any reduction in NO permeability that may exist in red blood cells could be
absent or diminished in microparticles as the physical membrane barrier to NO entry is
thought to be due to the underlying spectrin and other cytoskeleton proteins83 and some of
these are absent in microparticles 19. Thus, all three mechanisms that contribute to reduced
NO scavenging by red blood cells compared to cell-free hemoglobin are likely to be absent

*The time for diffusion is taken as x2/D where x is the distance between the vesicles and D is the diffusion constant. The distance is
given as, where r is the radius and Hct is the hematocrit. Here it is assumed that the concentration of hemoglobin inside red cells is the
same as in microparticles. The calculation is performed for equivalent hematocrits.
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or lessened for microparticles. Importantly, the effects of microparticles on NO
bioavailability could be more extreme than those of cell-free hemoglobin as microparticles
are not cleared by haptoglobin.

In addition to reductions in NO bioavailability that could result due to increased NO
scavenging by cell-free hemoglobin and microparticles, NO bioavailability may be reduced
due to decreased red cell or blood NOS. This reduction could be due to oxidative stress
(oxidation of tetrahydrobiopterin and arginine deficiency) with red cell storage that is
associated with functional uncoupling of the NOS protein. NO synthase uncoupling results
in formation of superoxide from the NOS rather than NO. It is also possible that NO
bioavailability is reduced due to infusion of stored, red cells from diminished NOS activity
that is otherwise present in other blood cells. Future work is needed to explore this
possibility.

Effects of Inflammation
Experimental evidence from murine studies suggests that transfusion of stored red cells can
augment inflammation by various mechanisms.84,85 We have previously shown that
transfusion of red cells increased both systemic and lung inflammatory responses in
endotoxemic mice to promote chemokine-mediated neutrophil accumulation and lung injury
that were storage- and red cell-dependent.85 Hod and colleagues have also shown that
transfusion of stored red cells elicits systemic inflammatory cytokine responses related to
the ingestion of membrane-encapsulated hemoglobin (Hb) by the mononuclear phagocyte
system.84 While human red cell units (PRBC) show increased hemolysis86 and microparticle
formation87 with storage duration, little is known regarding the effects of free Hb and
membrane-encapsulated Hb in the form of microparticles in altering inflammation in
humans following transfusion. Our recent findings show that red cell microparticles in
banked blood units demonstrate inflammatory chemokine binding and release ligand upon
interaction with platelets in vitro.87 Whether direct interactions between red cell
microparticles and platelets actually occur to propagate or amplify inflammation in vivo is
not currently known, although, insights from sickle cell disease (a disease characterized by
hemolysis, reduced NO bioavailability, and inflammation) invoke a relationship between red
cell microparticles and platelets.

Indeed, sickle cell disease shows increased circulating red cell microparticles expressing
surface phosphatidylserine with thrombin generating potential88 that trigger activation of the
alternative complement pathway89. Platelet activation, an increasingly recognized
component and propagator of persistent inflammation as observed in rheumatoid arthritis90

or acute lung injury/acute respiratory distress syndrome91, is negatively regulated by
endothelial NO, ADPase, and PGI2. Thus, in diseases of reduced NO bioavailability such as
in hemolytic states, platelet activation is a characteristic feature as it has been observed for
sickle cell disease92 and paroxysmal nocturnal hemoglobinuria93. We suggest that
transfusion of stored red blood may elicit a state of reduced NO bioavailability through the
release of cell free Hb and microparticles and contribute to persistent inflammation and
injury in susceptible hosts. However, other components of red cell breakdown may be
involved to induce or amplify inflammation. Heme and free iron, the breakdown products of
hemoglobin, may be involved in not only inflammation but also elicit pro-oxidant, cytotoxic
effects.84,86,94

The epidemiological studies demonstrating an association between red cell transfusion and
potentially worse outcomes were conducted in patients with underlying traumatic injury, the
critically ill95, or following cardiac surgery requiring support with cardiopulmonary bypass
pump27. These findings invite the possibility that an underlying systemic inflammatory
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response may predispose individuals to transfusion-associated complications. The only
completed prospective, randomized controlled trial examining red cell transfusion and
outcomes in the critically ill was an efficacy trial of transfusion using a restrictive versus
liberal strategy95. In this study, a subset of patients, those younger and less ill in the ICU
with stable anemia, showed a possibly superior outcome with less blood transfusions95.
However, the etiology of this association is still unclear and whether hemolysis-related
breakdown of the red cell during storage perpetuates ongoing inflammation following
transfusion remains to be determined. In a recent study, Larsen and colleagues showed the
deleterious effects of hemolysis during severe sepsis syndrome and implicated a central role
for free heme in promoting death in patients96. Low serum concentrations of hemopexin, the
counter-regulatory molecule that binds to free heme, predicted multiple organ failure and
death in septic shock patients96. Thus, hemolysis is an increasingly recognized feature of
severe sepsis, either directly caused by blood-borne pathogens or through microangiopathic
hemolytic anemia from disseminated intravascular coagulation that often accompanies
severe sepsis. Red cell transfusion may exacerbate inflammation in susceptible hosts
through hemolysis and contribute to microvascular perturbations by reducing NO
bioavailabiity, promoting platelet activation, inducing pro-oxidant effects and cytotoxicity
through release of red cell breakdown products.

Planned Approach
Figure 2 summarizes our general hypotheses and approach. In Aim 1 of our proposed work
we plan to examine the effects of blood storage on red cell integrity and how this affects NO
bioavailabilty. We will look at NO deformability and fragility as a function of time during
storage while monitoring hemolysis and microparticle formation. We will test our
hypothesis that microparticles scavenge NO similarly to cell-free hemoglobin using time-
resolved absorption spectroscopies and computational modeling in a similar manner to the
approaches we have used in the past.58,73,97 As red cell fragility increases during storage,
we hypothesize that additional red cell breakdown occurs during and after transfusion. We
will then test this hypothesis and the effects on NO bioavailabilty by examining blood flow
and other physiological parameters upon infusion of older vs newer stored blood in humans
and animals using methods similar to those previously reported.71,72

In Aim 2 of our proposed work, we plan to examine the role of the red cell NOS in the
storage lesion. We will first examine the functionality using NOS knockout mice
specifically in the endothelium or blood. The source of the blood NOS will be determined
by immunodepleting platelets and removing leukocytes. After determining the contribution
of blood NOS to NO homeostasis, we will examine the extent to which this activity is
reduced in blood storage.

The last phase of our project focuses on therapeutics. We aim to explore mechanisms to both
decrease NO scavenging and increase its production upon and post transfusion. To decrease
NO scavenging we will explore preservation solutions with additives that decrease
hemolysis while also examining additives that can neutralize the NO scavenging ability of
cell-free Hb by preferential oxidation. Increased NO production may be accomplished by
inclusion of additives that can be converted to nitric oxide in the blood such as nitrite98, and
compounds that may increase blood NOS activity will also be explored. By increasing NO
bioavailaibility, inflammatory consequences of transfusion of old, stored blood will also be
reduced.
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Figure 1.
Proposed mechanisms contributing to the storage lesion. Reprinted by permission from
Macmillan Publishers Ltd:Nature Medicine (16(4):381-2), copyright (2010). Red cell
breakdown leads to release of cell-free hemoglobin and red cell microparticles. These
scavenge NO which leads to vasoconstriction, platelet activation and adhesion, and
inflammatory pathways.
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Figure 2.
General hypothesis and approach. Loss of red cell integrity during storage or upon
transfusion (to be studied in Aim 1) results in release of free hemoglobin and red cell
microparticles which scavenge nitric oxide leading to deleterious effects including
susceptibility to platelet activation, inflammation, and poor control of blood flow. This loss
of NO bioavailability may also be exacerbated by loss of red cell NOS activity, to be studied
as part of Aim 2. In order to counteract these effects, in Aim 3, we will explore ways to
reduce red cell breakdown during storage, reduce NO scavenging when there is red cell
breakdown, and compensate for loss of NO activity using various donor substances.
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