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Abstract: The dynamic chromatin activities of Mi-2/Nucleosome Remodeling and Histone deacetylation (Mi-2/NuRD) complexes in 
mammals are at the basis of current research on stemness, longevity/ageing, and cancer (4-2-1/SLAC), and have been widely studied 
over the past decade in mammals and the elegant model organism, Caenorhabditis elegans. Interestingly, a common emergent theme 
from these studies is that of distinct coregulator-recruited Mi-2/NuRD complexes largely orchestrating the 4-2-1/SLAC within a unique 
paradigm by maintaining genome stability via DNA repair and controlling three types of transcriptional programs in concert in a number 
of cellular, tissue, and organism contexts. Thus, the core Mi-2/NuRD complex plays a central role in 4-2-1/SLAC. The plasticity and 
robustness of 4-2-1/SLAC can be interpreted as modulation of specific coregulator(s) within cell-specific, tissue-specific, stage-specific, 
or organism-specific niches during stress induction, ie, a functional module and its networking, thereby conferring differential responses 
to different environmental cues. According to “Occam’s razor”, a simple theory is preferable to a complex one, so this simplified notion 
might be useful for exploring 4-2-1/SLAC with a holistic view. This thought could also be valuable in forming strategies for future 
research, and could open up avenues for cancer prevention and antiageing strategies.
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Introduction
The average human lifespan has increased dramati-
cally in the past century, and many people are now 
living long enough to suffer from a range of pre-
dominantly age-related diseases, for example, certain 
cancers, neurodegenerative conditions, and Type 2 
diabetes. In addition to genetic mutations, a num-
ber of environmental factors, such as chemicals and 
radiation, may contribute to the development of these 
disorders.1–4 However, the human dream of find-
ing the “fountain of youth” is now becoming more 
achievable in light of recent advances in a number of 
areas, in particular, stemness, longevity/ageing, and 
cancer (4-2-1/SLAC).

How can we live healthier, longer, and hap-
pier lives? A better understanding of the underlying 
mechanisms of the Mi-2/nucleosome remodeling 
and histone deacetylation (Mi-2/NuRD) complex in 
4-2-1/SLAC could shed some light on this question. 
The spatiotemporal chromatin remodeling activities 
of Mi-2/NuRD, a family of protein complexes, form 
the basis of both normal and abnormal pathways of 
4-2-1/SLAC during development and differentiation, 
although it is likely that they work alongside other 
remodeling complexes, including esBAF, PcG, and 
HP1/Rb.5,6

The family of Mi-2/NuRD complexes has a num-
ber of core polypeptides, each of which has a distinct 
context-dependent role. Some components of the 
Mi-2/NuRD complexes are important in gene regula-
tion and DNA repair, and are uniquely characterized 
by their adenosine triphosphate (ATP)-dependent 
chromatin remodeling, histone deacetylase, and 
demethylase activities, and higher order chroma-
tin organization. These complexes simultaneously 
modulate all three types of transcriptional programs, 
ie, regulation of transcription factors in subsets of 
genes, epigenetic regulation via DNA methylation 
and histone modification, and regulation involving 
higher order chromatin organization.6–9

In eukaryotic cells, the nucleus is vital for many 
cellular functions. The chromatin nucleosomes that 
pack DNA generally inhibit processes that require 
access to the DNA template, such as DNA transcrip-
tion and repair. The structure of chromatin changes 
dynamically during development and carcinogenesis.5 
Chromatin remodelers are highly specialized enzymes 
that are responsible for a number of decisions regarding 

the fate of cells, based on specific inheritance and 
cell-cell or cell-environment interactions during 
development of the organism.10,11 The core Mi-2/
NuRD complex, which was biochemically isolated by 
a number of laboratories more than a decade ago, has 
been shown to use ATP hydrolysis to alter the positions 
of nucleosomes within DNA. Two highly homolo-
gous proteins, Mi-2α/CHD3 and Mi-2β/CHD4, rep-
resent the catalytic ATP-hydrolyzing subunits in the 
complex. In addition, the core of the Mi-2/NuRD 
complex is so far known to contain histone deacety-
lases (HDAC1 and HDAC2), Rb-associated proteins 
(RBBP4/RbAp48 and RBBP7/RbAp46), metastasis-
associated proteins 1–3 (MTA1–3), p66α/GATAD2a 
and β/GATAD2b, methyl-CpG-binding proteins 
(MBD2 and MBD3), and histone 3 lysine-specific 
demethylase 1 (LSD-1).6,12 The epigenetic regulation 
activities of Mi-2/NuRD complexes systematically 
reprogram and coordinate differential biological net-
working in response to subtle changes in environmen-
tal and microenvironmental cues.

Both stem cells and cancer cells have the capac-
ity for long-term proliferation. The self-renewing 
adult stem cell population and the germline stem 
cell population afford an opportunity to elucidate 
the mechanisms that inhibit cellular senescence and 
promote continuous growth and division. Systematic 
ectopic expression of stem-like genes and their prod-
ucts might contribute to longevity via the chromatin 
remodeling activities of Mi-2/NuRD complexes,13 
although a defect in these complexes accelerates age-
ing, as in the progeria syndrome.14 Cancer stem-like 
cells have the capacity for additional self-renewal or 
immortality, and promote prolonged cell longevity. 
Overexpression of a “cocktail” of stemness factors in 
induced pluripotent stem cells (iPSCs) systematically 
reprograms the differentiated cells that inherently 
have a limited lifespan and gives them stem-like char-
acteristics, including self-renewal and pluripotency.15

The Mi-2/NuRD family complex is a key player in 
several closely related developmental processes, such 
as longevity, ageing, stemness (eg, iPSCs, hematopoi-
etic stem cells, embryonic stem cells, germline stem 
cells, and cancer stem cells) and cancer.8 Distinct 
Mi-2/NuRD complexes link several transcriptional 
regulatory processes, including histone deacetyla-
tion, histone demethylation, nucleosome mobiliza-
tion, and higher order chromatin organization, as well 
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as recruiting other transcription factors. Many Mi-2/
NuRD complexes are also modulatory corepressors/
coactivators comprising multiple protein subunits that 
are linked directly with SLAC in different organisms.

Caenorhabditis elegans, one of most power-
ful model organisms in biology, has the number of 
protein-coding genes that are largely the same as those 
in mammals, and mostly encode protein functions sim-
ilar to their mammalian equivalents. This model has 
provided us with many important discoveries, includ-
ing programmed cell death,16 RNA interference,17 
development of the green fluorescent protein,18 and 
micro RNAs.19 These discoveries have contributed 
greatly to our understanding of 4-2-1/SLAC biology. 
Importantly, C. elegans is among the best models we 
currently have for deciphering human longevity and 
ageing,20,21 and it has gained increasing popularity as 
a genetic model for cancer research.22,23 In fact, micro 
RNAs were first discovered during genetic screen-
ing for regulators of developmental timing using the 
stem cell-like seam lineage in C. elegans.24 Therefore, 
C. elegans is a particularly attractive model for the 
study of mammalian 4-2-1/SLAC, with the addi-
tional advantages of simplicity and cost-effectiveness. 
Finally, use of this model is increasing our under-
standing of 4-2-1/SLAC, and could provide avenues 
to achieve healthy longevity as well as potential thera-
peutic treatments for cancer.

Mammalian Stemness Factors  
and Mi-2/NuRD Complexes
Many transcriptional regulators interact with the core 
Mi-2/NuRD complex during development (Fig.  1). 
The constantly increasing number of known stem-
ness factors has been shown to be physically associ-
ated with distinct Mi-2/NuRD complexes, including 
Oct4, Nanog, c-myc, and Esrrb6,25–27 (Fig. 2 ). Oct4 is 
expressed in the germline and its expression is clearly 
associated with germ cell malignancy.28 Several 
studies have also identified Oct4 expression in adult 
somatic stem cells and soma-derived malignancy.29,30 
Oct4 regulates the circuitry governing embryonic 
stem cell pluripotency, particularly the genes encod-
ing Oct4, Sox2, and Nanog.31 These transcription fac-
tors mutually enforce expression of each other in a 
self-sustaining network that helps to maintain a pluri-
potent state. Like Oct-4, c-myc is one of a cocktail 
of stemness factors for iPSCs.32 Oct4 can both acti-

vate and repress transcriptional targets in mouse and  
human embryonic stem cells. The MTA1/Mi-2/NuRD 
complex may have an essential role in pluripotency 
during normal development.25 Sall4, an Oct4 partner, 
and other members of the Spalt-like family of tran-
scriptional cofactors have been shown to associate 
with the Mi-2/NuRD complex33 in mammals (Figure 3).

Mi-2β/NuRD Complex in SLAC
The Brg1 or Brm ATPases are the catalytic subunit 
in the Brg/Brahma-associated factor (BAF) com-
plexes that are critical in embryonic stem cell self-
renewal,35 including an embryonic stem cell-specific 
complex called esBAF.36,37 The esBAF complex 
appears to play a direct role in mediating the gene 
regulatory functions of several core embryonic stem 
cell transcription factors. Like esBAF subunits, the 
core subunits of the Mi-2/NuRD complex interact 
directly with the transcription factors Oct4, Sall4, 
and Nanog.25,37 BRA-1, the C. elegans homolog of 
BRAM1/BS69 in mammalian cells, has been found to 
be associated with LET-418/Mi-2β (Brunschwig and 
Mueller, personal communication, 2006, European 
Worm meeting), which is the central component of 
the Mi-2/NuRD complex. Interestingly, a recent 
study shows that components of the BAF complex 
could enhance reprogramming.38 However, the core 
subunits of the Mi-2/NuRD complex, such as Mi-2β/
CHD4, MTA3, MBD3, MTA1, and p66, are also 
among the pluripotent cell-enriched proteins identi-
fied using stable isotope labeling with amino acids 
in cell culture. This raises the possibility of the exis-
tence of another form of esBAF, the putative BRG1/
BRAM1/Mi-2/NuRD8 or BRAM1/Nanog and Oct4-
associated deacetylase (NODE) in mammals that has a 
similar chromatin remodeling role in reprogramming. 
Consequently, the stemnessed BRAM/Mi-2/NuRD 
could function to silence transcription alongside the 
esBAF complex,37 and maintaining its expression at 
adequate but not excessive levels.

Mi-2β-Deficient Mi-2/NuRD Complex 
and Stemness in Mammals
Chromatin remodeling is a leading factor in the 
differentiation of hematopoietic stem cells into 
various cells. A hyperdynamic “breathing” chroma-
tin structure keeps hematopoietic stem cells in their 
pluripotent state,39 and the differentiation-oriented 
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genes of the hematopoietic stem cell are maintained 
in a “primed” or “poised” state but can be rapidly 
activated on differentiation.40 The Mi-2β/NuRD 
complex is highly expressed in hematopoietic stem 
cells.41 Targeted disruption of Mi-2β in hematopoi-
etic stem cells has been shown to lead to overproduc-
tion of proerythroblasts without proper maturation.41 
Importantly, specialized chromatins are necessary 
for self-renewal and differentiation of somatic stem 
cells, and this keeps stem cell-specific genes active 
and key differentiation factors repressed but poised 
for activation. The Mi-2/NuRD complex could func-
tion as a corepressor and coactivator.

Mi-2/NuRD Complex Deficiency  
and Derepression of Germline Stem 
Cell Markers in C. elegans
An understanding of how germ cell traits are nor-
mally repressed in the soma will improve our under-
standing of the complex links between stemness and 
oncogenesis. Components of the Mi-2/NuRD com-
plex, including LET-418/Mi-2β, HDA-1/HDAC-1, 
and an associated Zn-finger protein, MEP-1/KLF4, 
are required for maintaining somatic differentiation 

in C. elegans. In mutant animals that have lost the 
function of MEP-1 and LET-418, germline-specific 
genes become derepressed in somatic cells, and the 
Polycomb group (PcG) and SET domain-related pro-
teins MES-1–4/SET and the human mortality-related 
gene (MRG)-1, a chromatin-associated protein, are 
required for this ectopic expression.42–46 This suggests 
that Mi-2/NuRD complexes normally antagonize the 
activities of MES-1–4 and MRG-1  in the soma and 
prevent germline gene expression. However, during 
embryogenesis, pharyngeal and intestinal in excess 
Zn-finger (PIE-1) physically associates with members 
of the MEP-1/KLF4/NuRD complex in primordial 
germ cells to inhibit their activity42 and to maintain 
the pluripotency of germ cells. At later times, the 
MEP-1 and LET-418 complexes remodel chromatin 
to establish new stage-specific or cell-specific differ-
entiation potential.42

The soma ages during the lifespan and the ger-
mline is immortal. Genomic instability in somatic 
cells increases with age, and this decline in somatic 
maintenance might be regulated to facilitate resource 
reallocation towards reproduction at the expense 
of cellular senescence. C. elegans mutants with 

Core-NuRD/TF NuRD

MBD3

p53

Core- NuRD Transtriptional Factor – NuRD
Helios

Mi-2

GATA1

p66

FOG-1

LSD1

Figure 1. The core NuRD complex and its transcriptional factors which recruit the core NuRD complex to the promoter of the respective target genes.6
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increased longevity exhibit a soma-to-germline trans-
formation of gene expression programs that is nor-
mally limited to the germ line. Decreased insulin-like 
signaling causes somatic misexpression of the 
germline-limited pie-1 and p-granule-like pgl family 
of genes in intestinal and ectodermal tissues. The fork-
head boxO1A (FOXO) transcription factor, DAF-16, 
in insulin-like46 signaling directly binds to the pie-1 
promoter, thereby regulating pie-1 expression. The 
somatic tissues of insulin-like mutants are more 
germline-like and protected from genotoxic stress. 
Gene inactivation of components of the chaperonin 
complex that induces increased longevity also causes 
somatic misexpression of P-granule-like 1 (PGL-1) 
abnormality. These results indicate that the acquisi-
tion of germline characteristics by the somatic cells of 
C. elegans mutants with increased longevity contrib-
utes to their increased health and survival.13 Histone 
demethylase LSD-1, the recently identified subunit of 
the Mi-2/NuRD complex, regulates neural stem cell 
proliferation.47

Deficient Mi-2/NuRD Complexes, 
GLP-1/Notch Signaling, and Germ  
Cell Stemness in C. elegans
In humans, Notch and epidermal growth factor recep-
tor pathway interaction can regulate the abundance 
and self-renewal of neural stem cells.48 In C. elegans, 
Notch and epidermal growth factor receptor path-
ways typically show “love and hate” cross-talk in 
vulval development.49,50 In addition, a Notch-like 
signal from the distal tip cell is both necessary and 
sufficient for controlling germ stem cell self-renewal 
and proliferation. The distal tip cell expresses a delta-
like Notch ligand, LAG-2, and the mitotic germ cells 
express a Notch-type receptor, GLP-1. Along with 
other research laboratories, we have observed that 
the loss-of-function LET-418/Mi-2β/NuRD dere-
presses the expression of the LAG-2/delta ligand in 
the C. elegans intestine.6,51,52 The distal tip cell pro-
vides a niche for germline stem cells. The GLP-1/
Notch receptor maintains the germ cells in the stem 
cell state. LAG-2/delta binding triggers cleavage of 
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Figure 2. The core NuRD complex, transcriptional factors NuRD, and stemness factors for Nanog/NuRD. Stemness factors such as Nanog, Oct4, c-myc, 
and sall4 are associated with the core NuRD complex in some contexts.6
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GLP-1/Notch for transport to the nucleus, where it 
forms protein complexes with other transcription 
factors, LAG-1/CSL (CBF-1, Su(H), Lag-1) and 
LAG-3/Mastermind, which possibly tethers LAG-1/
CSL and the cleaved GLP-1/Notch to control target 
gene expression. Loss of GLP-1/Notch and LAG-2/
delta function causes germ stem cell loss and con-
sequently premature entry into meiosis. In contrast, 
glp-1(ar202gf  ) mutation GLP-1/Notch activity 
causes development of germ cell overproliferation 
tumors. GLD-1/NOS facilitates meiosis by blocking 
translation of glp-1 mRNA. However, mutation of the 
DAF-2/insulin receptor inhibits the tumor growth in 
the gld-1 mutant, conferring longevity and freedom 
from cancer.22

MBD-3/Mi-2/NuRD Complex in SLAC
MBD3 knockout embryonic stem cells are viable but 
unable to form a stable NuRD complex, and also dif-
ferentiate incorrectly. The Mi-2/NuRD complexes 

play a crucial role in embryonic stem cell self-
renewal and pluripotency. Pluripotency collapses 
during embryogenesis when cells commit to specific 
developmental programs. MBD3 knockout embry-
onic stem cells cannot completely silence genes 
expressed before implantation of the embryo. MBD3 
knockout embryonic stem cells have been shown to 
self-renew without leukemia-inhibitory factor, and to 
be able to differentiate into embryoid bodies or chi-
meric embryos, but fail to become developmental 
lineages.53 The inner cell mass of MBD3-deficient 
blastocysts cannot develop into mature epiblasts after 
implantation. Furthermore, loss of MBD3 affects 
embryonic stem cell differentiation and alters cell 
types produced during differentiation. A number of 
genes show stage-specific expression in inner cell mass 
cells during preimplantation development, and MBD3 
is required for proper gene expression patterns in pre-
implantation and peri-implantation embryos as well as 
in embryonic stem cells.54 Knockout or knockdown of 
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Figure 3. Interaction and regulation of the Mi-2/NuRD complex on Oct4. Mi-2/NuRD complexes could regulate the activity of Oct4 by mechanisms in 
transcription at multiple points. Points of regulation by different activities are shown by colored lines. Factors in green and blue (such as Oct4 itself) carry 
out positive regulatory activities, including H3K4 methylation; those in red act in a negative capacity (eg, DNA and H3K9 methylation). Protein-protein 
interactions between Mi-2/NuRD with others are shown with arrows or “rays” on a star. CR1–4 are Oct4 promoter and enhancer regions with conserva-
tion. Reprinted from Trends Biochem Sci, 2009;34, Kanga J, Shakyaa A, Tantina D., Stem Cells, Stress, Metabolism and Caner: A drama in two Octs, 1-9, 
copyright 2009, with permission from Elsevier.
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MBD3 in embryonic stem cells causes dysregulation 
of a number of genes, including derepression of the 
expression of trophectoderm marker genes, ie, Cdx2, 
eomesodermin, and Hand1 in undifferentiated embry-
onic stem cells, along with an elevated acetylation 
level of histone 3 in promoters of the respective genes. 
Thus, MBD3  helps to restrict embryonic stem cells 
from differentiating towards the trophectoderm lin-
eage, and is a key epigenetic player in maintaining full 
pluripotency in mouse embryonic stem cells.55

In particular, one isoform of the NuRD complex, 
the NODE complex, which lacks MBD3 and RBBP7, 
represses expression of developmentally regulated 
genes in embryonic stem cells. MTA1 knockdown 
showed different expression profile changes from 
those of MBD3 knockdown or knockout, suggest-
ing that they have some different functions. Unlike 
MBD3 loss, which inhibits embryonic stem cell dif-
ferentiation, MTA1 knockdown results in upregula-
tion of differentiation genes of multiple lineages, as 
well as embryonic stem cell differentiation.25

Lamin A/Mi-2/NuRD Complex in SLAC
Nuclear lamins comprise the nuclear lamina, a 
scaffold-like structure underneath the inner nuclear 
membrane. Lamins play a role in adult stem cell dif-
ferentiation, aging, tumorigenesis, DNA replication, 
and chromatin organization.56 Lamin A has important 
roles in transcription, as highlighted by its binding 
to RNA polymerase II, RNA splicing factors, and a 
number of known transcription factors. The lamina is 
involved in transcription.57 Disorganization of the lam-
ina with dominant-negative Lamin A mutants inhibits 
DNA transcription by RNA polymerase II.58  Lamin 
A has been shown to interact with specific proteins 
that affect transcription, such as the retinoblas-
toma tumor suppressor.59 Lamin A forms a complex 
with core components of the Mi-2/NuRD complex6 
(see below). In C. elegans, LIN-35/Rb was proposed 
to recruit the LET-418/Mi-2β/NuRD complex dur-
ing vulval development. Intranuclear lamina foci also 
colocalize with RNA splicing factors to organize the 
RNA processing machinery.

Lamin A-Deficient/Mi-2/NuRD Complex 
and Stemness
Hutchinson-Gilford progeria syndrome is caused by 
mutations in the gene LMNA, which encodes nuclear 

Lamins A and C.14 The in vivo physical interaction 
of Lamin A with RBBP4, RBBP7, and HDAC1 
points to Lamin A as being a coregulator for the 
nuclear lamina and the Mi-2/NuRD complex in nor-
mal cells. Multiple Mi-2/NuRD components are lost 
in Hutchinson-Gilford progeria syndrome. Similar 
to RBBP4/7 knockdown, silencing of any subunit 
increased the percentage of cells lacking H3K9me3 
and HP1γ heterochromatin foci. Furthermore, knock-
down of HDAC1, MTA3, CHD3, or CHD4 in primary 
human fibroblasts increases the percentage of cells 
containing phosphor-H2AX-positive foci. Progerin 
causes the loss of RBB4/7, which is an early event in 
ageing-associated chromatin defects. Loss of any Mi-2/
NuRD component and reduction of HDAC1 activity 
is sufficient to trigger several ageing-associated chro-
matin defects. Induction of progerin or knockdown 
of RBBP4 and RBBP7 results in changes in hetero-
chromatin structure, followed by accumulated DNA 
damage. Loss of RBBP4/7 compromises the histone 
modifications and higher order chromatin structure, 
possibly making chromatin more susceptible to DNA 
damage. Similar to the effects after silencing RBBP4 
and RBBP7, impairment of the H4K20 histone meth-
yltransferase PR-Set7  in heterochromatin interferes 
with DNA replication and causes increased levels of 
DNA damage.6 Thus, the Mi-2/NuRD complex is a 
mediator of ageing-associated chromatin defects.

Unlike Lamin B, which is expressed in embry-
onic stem cells, Lamin A is expressed predominantly 
in differentiated cells and maintains the differenti-
ated state. Lamin A is not expressed during mouse 
development before day 9 (phenotypically similar 
to no expression of CHD-3/Mi-2α in mouse oocytes 
and CHD-3/Mi-2α in early C. elegans embryos), 
nor in undifferentiated mouse embryonic carcinoma 
cells. Lamin A expression is activated during human 
embryonic stem cell differentiation before downreg-
ulation of Oct-3/4, but not before the downregula-
tion of other pluripotency markers, such as Tra-1-60, 
Tra-1-81, and SSEA-4. Therefore, Lamin A expres-
sion is a marker of both mouse and human embryonic 
stem cell differentiation.61 The expression of four 
pluripotency genes (Oct4, Sox2, c-myc, and Klf4) can 
reprogram fibroblasts into a pluripotent state.62–65 The 
expression of all these four pluripotency genes was 
induced when human somatic 293T cells were repro-
grammed with extracts of mouse embryonic stem 
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cells. Lamin A was removed from the nuclei.66 Lamin 
A-dependent misregulation of adult stem cells is 
associated with accelerated ageing. Progerin is also 
expressed in wild-type cells linked with physiologi-
cal ageing. The expression of progerin activates major 
downstream effectors of the Notch signaling pathway. 
Induction of progerin in human mesenchymal stem 
cells alters their differentiation potential. Adult stem 
cell exhaustion and progressive dysfunction of tissue 
functions results in accelerated ageing in patients with 
Hutchinson-Gilford progeria syndrome, and possibly 
also physiological ageing.14

Lamin A-Deficient Mi-2/NuRD 
Complex, Transcription of Satellite III 
Repeats, and Stress Bodies
Nuclei in Hutchinson-Gilford progeria syndrome 
cells display a loss of heterochromatin. In cells from 
a female patient with Hutchinson-Gilford progeria 
syndrome, the facultative chromatin mark histone 
H3 trimethylated on lysine 27 (H3K27me3) targeted 
by EZH2, the pericentric constitutive heterochro-
matin mark histone H3K9me3, and an altered asso-
ciation of H3K9me3 with heterochromatin protein 
1 alpha (HP1α) were shown to be downregulated. 
Interestingly, this loss of constitutive heterochromatin 
was accompanied by an upregulation of pericentric 
satellite III repeat transcripts. In contrast, there was 
an increase in the histone H4K20me3, an epigenetic 
mark for constitutive heterochromatin. Expression 
of LA∆50  in normal cells induces changes in his-
tone methylation patterns similar to those seen in 
Hutchinson-Gilford progeria syndrome cells.14

Dermal fibroblasts from Hutchinson-Gilford pro-
geria syndrome expressing a mutant Lamin A have 
dysmorphic nuclei, hypersensitivity to heat shock, and 
delayed response to heat stress.67 During upregulation 
of satellite III transcripts in Hutchinson-Gilford prog-
eria syndrome, in cells without heat shock stress (ie, at 
37 °C), stress bodies are observed in nuclei regardless 
of the extent of their lobulation. However, the normal 
cell has stress bodies only after heat shock.

Lamin A-Deficient Mi-2/NuRD Complex, 
Cancer, and Cell Signaling Pathways
Lamina A is overexpressed in gynecological, breast, 
thyroid, lung, gastrointestinal, skin, colorectal, and 

genitourinary cancers. A putative Lamin A/Mi-2/
NuRD complex regulates gene expression through 
an interplay with signal transduction pathways, such 
as the Notch pathway, transforming growth factor 
beta (TGF-β) pathway, Wnt/β-cantenin pathway, and 
ERK1/2 signaling pathway,56,68 as well as transcription 
factors and other chromatin-associated proteins, such 
as the HP1/Rb complex (Figs.  4 and 5). Premature 
ageing could prevent cancer69 and some other com-
mon age-related diseases, such as brain ageing, cata-
racts, Type 2 diabetes, and hyperlipidemia.

Lamin A-Deficient/Mi-2/NuRD Complex, 
Extracellular Matrix Target Genes, 
Premature Ageing, and Longevity
Lamin A deficiency causes dysregulation of many 
extracellular matrix genes in humans,70 as occurs in 
HDA-1 deficiency in C. elegans.71 Moreover, it is 
known that children with Hutchinson-Gilford prog-
eria syndrome have about seven-fold accelerated pre-
mature ageing. Interestingly, however, in C. elegans, 
removing the reproductive system in daf-2 mutants 
extends the lifespan by six-fold. These animals look 
normal and remain active for many months.72 The 
genetic control of lifespan is conserved, and the 
long-lived model organisms could provide us with 
the means to “reverse” Hutchinson-Gilford progeria 
syndrome in the future. Lifespan and aging in mam-
mals may vary with the efficiency of DNA repair and 
replacement of damaged tissue by stem cells.73

Mi-2/NuRD Complexes, Heat Shock, 
and Longevity/Ageing in C. elegans
The genome of C. elegans encodes orthologs of 
major components of the vertebrate Mi-2/NuRD 
complex. The two Mi-2 homologs in C. elegans are 
LET-418/CHD4/Mi-2β, and CHD-3/Mi-2α, which 
share 59% identity with the human Mi-2 protein. In 
the absence of a maternal contribution, hermaphro-
dites homozygous for let-418 (loss-of-function) arrest 
their development at the L1 larval stage. Contrary to 
let-418, homozygous chd-3 worms have no obvi-
ous phenotype. However, a role for chd-3 becomes 
visible in let-418;chd-3 double mutants, which 
show a synthetic phenotype. Double mutants with a 
maternal let-418 contribution arrest at the L4 larval 
stage, whereas in the absence of a maternal let-418 
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Figure 4. The comprehensive biological and molecular view of the Mi-2/NuRD complexes and SLAC in young mammals and nematode larvae. Upper left: 
In mammals, the commonality, difference, and mutually induced changes among induced pluripotent stem cells, cancer stem cells, embryonic stem cells 
and differentiated cells (a high resolution version is presented in Supplementary Fig. 2). Adapted by permission from Macmillan Publishers Ltd: Nature 
Cell Biology, 2006;8:285-92, copyright 2006.53 Upper right: DAF-12/Liver X receptor and lifespan in Caenorhabditis elegans. In favorable environments, 
the insulin/IGF-I and transforming growth factor-beta peptide signals converge on the DAF-12/Liver X receptor for the dauer pathways. Cholesterol comes 
to the DAF-9/cytochrome P450 and a hormone, similar to a sterol-derived dafachronic acid product. The DAF-12/Liver X receptor directs expression of 
the genes involved in reproductive development, developmental advancements, fat metabolism, and accelerated aging (fast life history traits) mediated 
by Let-7, LIN-28, and a feedback loop that the Mi-2/NuRD complex is postulated to be involved in. In unfavorable environments, hormonal pathways are 
suppressed. Unliganded DAF-12 specifies programs for dauer diapause, delayed development, fat storage, and retarded aging (slow life history traits). 
This process is also mediated by LET-7, LIN-28, and a feedback loop that the Mi-2/NuRD complex is postulated to be involved in (see Supplementary Fig. 
3). Middle: Model of the dynamic pop-up and inward gene positioning of nuclear lamina-genome interactions during self-renewal and differentiation in 
Caenorhabditis elegans. Two major forces drive tissue-specific subnuclear organization of the worm genome, ie, repeat-induced heterochromatin, which 
associates with the nuclear envelope, and tissue-specific promoters that shift inward in a dominant fashion when they are activated. Tissue-specific pro-
moters shift in a nondominant manner to the nuclear envelope in cells in which they are inactive (Supplementary Figs. 4A and 4B). Bottom: The dynamic 
interchanges between euchromatin and heterochromatin in stemness and differentiation states. The putative “all-in-one Mi-2/NuRD supercomplex is 
highlighted” other different “isoforms” of Mi-2/NuRD complexes, include at least the activator-only Mi-2/NuRD complexes and the repressor-only Mi-2/
NuRD complexes (see Supplementary Fig. 5).

contribution, they arrest as embryos.74 These organ-
isms are small and unhealthy, and likely represent a 
progeria-like phenotype. The lin-35/Rb mutants are 
also dysfunctional and somewhat progeric. Strong 
loss-of-function alleles of let-418 function in dis-
tinct cell signaling pathways, eg, one targeting the 
promoter of lin-39/Hox via LIN-1/ETS during vul-
val development.74–76 The C. elegans mutant CHD-3/
Mi-2α has an extreme heat stress survival phenotype 
(Fig. 6). For the knockout chd-3 (eh4) allele, without 

heat shock treatment, animals have wild-type behavior. 
However, after heat shock, most, if not all, are dead 
within two days. Males could comprise the rare sur-
vivors, and the exceptionally rare hermaphrodite will 
have an everted vulva and be sterile. However, prob-
ably due to low efficiency, the feeding RNA interfer-
ence against chd-3 has not completely reproduced 
this phenotype. In addition, it is a knockout mutation 
allele and needs further investigation. However, sev-
eral lines of evidence provide some indirect support 
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for this conclusion. In several mammalian cancer-
ous cell lines and in vitro, during stress, heat shock 
factor (HSF)-1 could interact with MTA1 and other 
components of the Mi-2α(CHD3)/NuRD complex.77 
Furthermore, HSF-1  inhibitory RNA in C. elegans 
does not affect the appearance or behavior of young 

adults, but shortens the lifespan. An hsf-1 inhibitory 
RNA clone produces a striking progeric phenotype. 
The animals look old when they are young and they 
have very short life spans. Thus HSF-1 functions in 
normal worms to keep them from aging and dying.21

As aforementioned, human dermal fibroblasts in 
Hutchinson-Gilford progeria syndrome with the Lamin 
A G608G mutation are hypersensitive to heat stress.67 
It is tempting to hypothesize that this may be functional 
through the Lamin A/Mi-2/NuRD complex. Finally, the 
formation of nuclear stress bodies starts soon after the 
onset of thermal stress with the association of HSF-1, 
with specific pericentromeric heterochromatic domains 
of the human genome composed of long arrays of Sat-
ellite (Sat III) DNA sequences, which is also seen in 
the Hutchinson-Gilford progeria syndrome.

Mi-2/NuRD Complex, RNA Silencing, 
and Stress Bodies in SLAC
Inhibitory RNA machinery can remain in Sat III RNA 
to establish a heterochromatin domain78 (Fig. 7). We 

Figure 5. The comprehensive biological and molecular view of the Mi-2/NuRD complexes and stemness, longevity/ageing, and cancer in adults in 
mammals and nematodes.
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Figure 6. The survival curve of Caenorhabditis elegans CHD-3 (eh4) 
after heat stress. Twenty experimental animals were used per group, ie, 
wild-type (N2) or CHD-3 knockout (FR355). Heat shock treatment is at 
33 °C for six hours, and then incubation at 25 °C for the remainder of the 
experiment. If an animal could not respond to tactile stimulation, it was 
counted as “dead”. Experiments were repeated many times and a repre-
sentative figure is shown here.
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would like to extend this theme further to a cross-talk 
between the Mi-2/NuRD complex and RNA silencing. 
An alteration of the heterochromatin structure may 
favor an accumulation of Sat III transcripts, suggested 
by observations made in fibroblasts from patients 
affected by Hutchinson-Gilford progeria syndrome, 
where a complete loss of heterochromatic marks is 
accompanied by the expression of chromosome-9 spe-
cific Sat III sequences.42 The expression of pericentric 
transcripts occurs during replicative senescence at 
the late stages of both primary fibroblasts and can-
cer cells.80,81 The expression of Sat III transcripts in 
embryonic cells82 potentially links the expression of 
Sat III sequences to developmental programs. Finally, 
in the formation of nuclear stress bodies (nSBs), the 
assembly of cytosolic aggregates containing RNA 
granules contribute to cell survival. In C. elegans, 
the p-granule genes, cgh-1 and pgl-1, are ectopically 
expressed in deficient mutants seen in components of 
the Mi-2/NuRD complex.

The transcripts could target human RNP HAP/
Saf-B, and possibly other RNA processing fac-
tors, to the nuclear stress bodies. With heat shock 
stress, the snoSNP70 can bind noncoding RNA 
HSR-1 (unpublished). In yeast, RNA molecules 
encoded by centromeric repeats have been shown to 
influence chromatin architecture by the direct for-
mation and maintenance of heterochromatin through 
RNA interference.83 However, in C. elegans, the 
relaxed requirement of RRF-1 on somatic cell 

RNA interference in loss-of-function mutants in 
components of the Mi-2/NuRD complex has been 
observed (Supplementary Fig. 2). Furthermore, the 
inefficiency of some bacterial inhibitory RNA con-
structs with one critical TF recruiter of Mi-2/NuRD 
complex with one embedded Cele42  minirepeat 
in the RNA interference construct has been noted. 
However, one RNA interference construct excluding 
this Cele42 minirepeat gave a very high frequency 
of the multivulva phenotype, almost phenotypi-
cally mimicking lin-1 null mutants (unpublished). 
In humans, as mentioned previously, HSF-1, MTA-1, 
and CHD-3  interact mutually in cancerous cells. 
Taken together, it is tempting to speculate that heat 
shock stress could be involved in heterochromatin 
organization, partly through the RNA interference 
mechanism (Fig.  7). Interestingly, the transcrip-
tion factor ETS-4, one paralog of LIN-1/ETS-1  in 
C. elegans and an ortholog of vertebrate SAM-
pointed domain-containing Ets transcription factor, 
is a longevity determinant.84

Extension of Lifespan without 
Diminishing Health in C. elegans
The lifespan of C. elegans can be extended by several 
different mechanisms, including calorie restriction, 
as seen in the let-363/ceTOR and eat-2  mutations, 
reduced Ins/IGF-1 signaling mutations in daf-2, ger-
mline ablation, food-sensing amphid ablation, mito-
chondrial deficiency isp-1 and clk-1  mutations, and 
decreased temperature. Reduced Ins/IGF-1  signal-
ing and calorie restriction can increase the lifespan 
of mice. Rapamycin, a drug that negatively regulates 
mTOR, could prolong the lifespan in mice. Mutations 
in the gld-1 gene of C. elegans cause germ cells to 
proliferate uncontrollably to lethal tumors. In most 
organisms, tumor susceptibility increases with age. 
Four different mutations can promote longevity and 
also suppress tumorigenesis. When gld-1 worms 
bear mutations in daf-2, eat-2, isp-1, or clk-1 genes, 
the proliferation rate of germline tumor cells was 
suppressed.22 However, remarkably, none of these 
mutations alone affected the proliferation rate of 
germ cells in worms. The mice bearing mclk-1+/- are 
tumor-free.85

It is unlikely that we would achieve both longev-
ity and protection against cancer at the cost of energy 
or nutrient restriction to cells. Interestingly, horme-

H. Sapiens

Figure 7. Hypothesized Mi-2/NuRD and DICER silencing. The Mi-2/
NuRD complex is possibly enriched in the H3K9me3, heat shock factor-1, 
and heterochromatin protein-1 regions. RNA molecules are hypothesized 
to contribute to the structure of the CT and PCT regions. In human cells, 
all dsRNAs encoded by the PCT regions are hypothetically generated 
by inhibitory RNA machinery (Dicer, RITS, and RDRC). In humans, CT 
regions are made of a repetition of AT-rich alpha satellite motifs. The size 
and structure of the PCT regions are made up of satellite repeats. Such 
regions might be preferred by stemness factors. Adapted with permis-
sion from The International Journal of Developmental Biology (Int. J. Dev. 
Biol.) 2009;53:259-268.
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sis is known to influence aging, because transient 
heat shock can extend the lifespans of worms.86,87 

The lifespan can be also extended through forced 
expression of HSF-1, and the longevity of stress-
induced HSF-1 is obtained by activating downstream 
lifespan-extending genes, which are small heat shock 
proteins.88 It has yet to be determined if a mild stress 
on humans might also extend lifespan. Similar to the 
aforementioned extreme and healthy longevity, the 
average lifespan of daf-2 (e1370) mutants grown 
in an axenic medium was able to achieve a 7.5-fold 
extension of adult lifespan relative to wild-type con-
trols grown on standard media.89

Many C. elegans sensory and chemosensory recep-
tor mutants are long-lived. This lifespan extension is 
dependent on daf-16.90  Neurons do not deteriorate 
during normal aging in C. elegans.91 Children with 
Hutchinson-Gilford progeria syndrome have nor-
mal intelligence and emotional development.92 The 
nuclear lamina network has not been studied in the 
brain. Differences in the way lamins are expressed 
or used in the brain might provide new clues about 
the mechanisms of aging and laminopathies. Brain 
neurons differ profoundly from connective tissues 
that derive from mesenchymal stem cells susceptible 
to “accelerated aging” in at least one major respect, 
ie, brain neurons are sheltered from mechanical inju-
ries by the skull. Interestingly, Lamin A is required 
for mechanosensitive gene expression in cultured 
mouse fibroblasts.93 Further work on lmn-1 in worm 
“brains” (ie, equivalent) may shed light on the role of 
the lmn1/Lamina A/Mi-2/NuRD complex in nuclear 
architecture in SLAC.

With regard to long-lived or lifespan-shortened 
mutants, such as eat-2, isp-1, and clk-1, soma-to-
germline stem-like transformations in mutants of com-
ponents of the Mi-2/NuRD complex (eg, LET-418/
Mi-2β and MEP-1/KLF4) might influence lifespan. 
LET-418 depletion could result in dramatic chromatin 
reprogramming. Previously we performed suppres-
sion subtractive hybridization and RNA interference 
screens to characterize the functions of the targets 
of LET-418/Mi-2β. Interestingly, we could identify 
two suppressors of lethality of the let-418 mutant 
during RNA interference assays against those up-
regulated LET-418/Mi-2β downstream target genes 
generated from a suppression subtractive hybridiza-
tion library (Kaeser and Zhang et al, in preparation). 

To our limited knowledge, such suppressors have 
not yet obtained via conventional suppressor screen. 
Therefore, reduction or depletion of LET-418/Mi-2β 
activity could result in a shift towards somatic robust-
ness, longevity, and sterility.

In humans, Lamin A binds SREBP1, which is 
a critical target of DAF-12/Liver X receptor α.94 
In C. elegans, as with DAF-21/HSP90, the DAF-12/
Liver X receptor α is the critical regulator in the transi-
tion from L2 larvae to dauer larvae. Our DAF-12/Liver 
X receptor α genome-wide chromatin immunoprecip-
itation (ChIP) analysis of direct targets reveals many 
important functional modules in different biological 
mechanisms (Hochbaum, Zhang and Fisher et  al in 
preparation). One is the chromatin remodeling mod-
ule, including the Mi-2/NuRD complex, the PcG 
complex and the heterochromatin silencing complex 
(Hochbaum, Zhang and Fisher et  al unpublished). 
Importantly, neither mutant animals with null alleles 
nor known loss/gain of function alleles, but only some 
daf-12 RNAi feeding on DAF-12 (rh274, gain of func-
tion) animals have a weak multivulval phenotype in 
our observations (unpublished), which is similar to the 
let-418 (loss of function) allele.74 This indicates that 
chromatin with DAF-12 could be dynamic and tightly 
controlled, and its histone methylation/demethylation 
and acetylation/deacetylation could undergo global 
changes during transition from normal L2 to dauer 
development in response to extracellular epigenetic 
cues. These chromatin-remodeling complexes could 
have instructive and programming roles during the 
development of C. elegans. Therefore, DAF-12 could 
be essential for establishing and maintaining pluripo-
tent and multipotent states in some cells, and thus pro-
vide insights for 4-2-1/SLAC. In humans, some snip 
alleles of the Liver X receptor could have a longer 
lifespan,95 and SIRT1, the longevity gene, deacety-
lates and positively regulates the Liver X receptor. 
The deacetylation of LXRs by SIRT1 may ultimately 
affect atherosclerosis and other age-related diseases 
involving lipid metabolism.96

Targeting the Mi-2/NuRD Complex in 
the mTOR Pathway to Extend Longevity
We have previously reported that TOR deficiency in 
C. elegans more than doubles the natural lifespan of 
the organism. This new function for TOR signaling 
in control of ageing may represent a link between 
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nutrition, metabolism, and longevity,97 and this 
extension of longevity has been recently proven in 
mice.98 Interestingly, there is one large genomic intron 
in the open reading frame encoding the nematode 
let-363/TOR kinase gene that includes three internal 
opposite-direction encoding genes; B0261.6  shows 
up in the library of upregulated downstream target 
genes of let-418 (loss of function) after we performed 
suppression subtractive hybridization.76 Interestingly, 
this kind of internal opposite-direction encoding gene 
even exists in the mTOR kinase gene structures for 
both mice and humans (data not shown). It is thus 
tempting to speculate that an opposite transcriptional 
antisense silencing regulation could be executed in 
these different species99 (Fig. 8). The human mTOR 
pathway is known to be involved in tumorigenesis.100 
However, in rapidly dividing tumor cells, the demand 
for nutrients is higher. mTOR pathway mutations may 
starve tumor cells, inducing a stress response to shut 
down the cell cycle machinery. However, nematodes 
bearing a let-363/TOR kinase deficiency are long-
lived, but not so healthy. Clearly, further experiments 
are needed to confirm this hypothesis. Interestingly, 
starvation protects germline stem cells and extends 
reproductive longevity in C. elegans.101 It is now 
tempting to investigate the role of TOR kinase in ger-
mline stem cells.

LSD-1 Longevity in C. elegans
In mammalian breast cancer, the histone demethylase 
LSD-1 is associated with the Mi-2/NuRD complex. 
The worm LSD-1 orthologs are T08D10.2 and spr-5. 
The latter is involved in the Notch pathway. In 
C. elegans, exposure to lithium at clinically relevant 
concentrations causes a reduction of expression of 
worm LSD-1 (T08D10.2). Knockdown of T08D10.2 
by RNA interference also extends longevity. Lithium 
may regulate survival by modulating histone methy-
lation and chromatin structure, possibly via the Mi-2/

NuRD complex. It would be of interest to know if 
lithium could extend longevity in humans.102

Mi-2/NuRD Complex and DNA Repair 
Mechanisms Under Stress
MTA1/2 and Mi-2β/CHD4, components of the core 
Mi-2β/NuRD complex, have been clearly shown to 
be involved in the DNA damage response pathway 
(Fig.  8). The MTA1/Mi-2β/NuRD complex main-
tains genome stability and orchestrates proper sig-
naling (eg, ATR-Claspin-Chk1 checkpoint signaling, 
the ATR-H2AX pathway, cell cycle progression, and 
repair of double strand breaks) and promotes cell 
survival.103–106

In response to ionizing radiation stress, cells 
delay cell cycle progression and initiate DNA repair, 
which is vital for genome integrity. In C. elegans, 
egr-1 was identified in a genome-wide RNA inter-
ference screen as having the ability to protect cells 
against ionizing radiation. Knockdown of the human 
homolog of egr-1, MTA2, and Mi-2β/CHD4, led 
to accumulation of spontaneous DNA damage and 
increased sensitivity to ionizing radiation. MTA2 
and CHD4 accumulate in chromatin tracks contain-
ing double strand breaks after laser microirradiation. 
Furthermore, Mi-2β/CHD4 becomes transiently 
immobilized on chromatin after ionizing radiation. 
Knockdown of CHD4 enhanced Cdc25A degrada-
tion and p21 (Cip1) accumulation, which resulted in 
more pronounced cyclin-dependent kinase inhibition 
and cell cycle delay. Mi-2β/CHD4  mediates poly-
(adenosine diphosphate-ribose)-dependent recruit-
ment of the Mi-2/NuRD complex to DNA damage 
sites. Directly at these double strand breaks, the 
DNA damage response kinase (ataxia, telangiectasia 
mutated) phosphorylates Mi-2β/CHD4, and promotes 
the chromatin response alongside RNF168 ubiquitin 
ligase to facilitate local ubiquitylation and BRCA1 
assembly. In addition, Mi-2β/CHD4 acts as a critical 
regulator of the G1/S cell-cycle transition by modu-
lating p53 deacetylation. Similarly, MTA1 is impli-
cated in the response to DNA damage induced by 
ionizing radiation. MTA1 is stabilized and activated 
in response to ionizing radiation through disruption 
of COP1-mediated proteolysis.

In response to ultraviolet radiation exposure, the 
Mi-2 protein level increases in cell culture systems. 
Ultraviolet light treatment results in better translation 

Figure 8. Putative antisense-silencing gene regulation (adapted from 
Wormbase). B0261.6, a LET-418/Mi-2β putative target gene, might 
encode the antisense transcripts to repress the transcription of let-363.

http://www.la-press.com


Zhang and Li

14	 Gene Regulation and Systems Biology 2011:5

through responsive elements in the 5′ untranslated 
region. Furthermore, radiation to the 5′ untranslated 
region stabilizes MTA1  in an ATR (ataxia, 
telangiectasia mutated and Rad3-related)-dependent 
manner and increases MTA1 binding to ATR, which 
phosphorylates, activating a number of downstream 
substrates, such as checkpoint kinase 1 and histone 2A 
variant X. The depletion of MTA1 results in a defect in 
the G(2)-M checkpoint and increases cellular sensitiv-
ity to ultraviolet-induced DNA damage. Thus, MTA1 
is required for the activation of the ATR-Claspin-
checkpoint kinase 1 and ATR-histone 2A variant X 
pathways following ultraviolet light treatment.

Mi-2/NuRD Complex, iPSCs,  
and Cancer Stem Cells
Cellular plasticity is remarkable. The transfer of 
nuclei from somatic cells, first in frogs, then in fish, 
and later in mammals,107–111 as well as cell fusion 
studies,112 have provided us with considerable infor-
mation on basic biology. This finally lead to the 
important technological breakthrough of iPSCs, 
ie, the forced expression of a cocktail of stemness 
factors (Oct-4, Sox-2, c-myc, and Klf4 ) to induce 
mouse fibroblast cells to show stem cell characteris-
tics, including the expression of pluripotency genes 
and a normal karyotype contribution to all three germ 
layers in teratomas and chimeric embryos.113,114 Later, 
iPSCs were established in human cell lines by using 
normal or somatic cells from patients. An adult cell 
can be reprogrammed, altering its gene expression 
profiles, and hence its fate, to that typical of another 
cell type. Several distinct nuclear reprogramming 
approaches including nuclear transfer, cell fusion, 
transcription-factor transduction, and reprogramming 
using synthetic molecules like “reversine” can induce 
nuclei from ‘terminally differentiated’ somatic cells 
to express genes that are typical of embryonic stem 
cells.115–117 However, iPSCs carry the risk of caus-
ing cells to become cancerous. Different strategies 
have been developed to create a range of iPSCs, from 
the human iPSCs with virus-containing transgenes, 
human iPSCs with factor-free viruses and iPSC made 
by using recombinant proteins for stemness factors 
alone, to enhanced human iPSCs with critical gene 
knockdown/overexpression118 (eg, p53 knockdown, 
see Fig.  9), and so on. Treatment with an inhibitor 
of DNA methylation, such as 5-aza-2’-deoxycytidine 

(5-azadC, AZA), increases the efficiency of iPSCs 
reprogramming.119 Similar results were obtained with 
the methyltransferase DNMT1 knockdown containing 
a short “hairpin”. In addition, the use of other drugs, 
such as several histone deacetylase inhibitors, eg, VPA, 
TSA, or SAHA (or BayK8644 or BIX-01294, an 
inhibitor of the G9a histone methyltransferase), 
also enhances the efficiency of reprogramming.120 
Vitamin C has been shown to enhance reprogram-
ming significantly.

The micro RNA-based strategy for reprogram-
ming somatic cells into pluripotent stem cells has 
been successful.121 Micro RNAs are critical in main-
taining the pluripotent state, cell lineage specifica-
tion, and epigenetic modifications of chromatin. 
Micro RNAs can be used for directed cellular repro-
gramming and induced cell fate conversion between 

Mi-2

UV

Figure 9. Model of stress, the Mi-2/NuRD complex and repair of DNA 
damage. Upper: Ultraviolet light upregulates the level of Mi-2 protein.6 
Bottom: Summary of the Mi-2/NuRD mechanism in the response to DNA 
damage. In response to DNA damage caused by ultraviolet light or ion-
izing radiation, the Mi-2/NuRD complex is rapidly recruited to the site of 
damaged DNA and exerts its function in DNA repair by many different 
mechanisms, including RNF168 level ubiquination, blocking the ongoing 
transcription, and so on. Adapted with permission from.103
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lineages without reversion to a pluripotent state. In 
addition, it has been recently shown that selected 
cardiac transcription factors can directly reprogram 
fibroblasts to become cardiomyocytes without first 
becoming a stem/progenitor cell. This has been real-
ized by reprogramming a combination of three devel-
opmental transcription factors122 (ie, Gata4, Mef2c, 
and Tbx5), which rapidly and efficiently reprogramm 
postnatal cardiac or dermal fibroblasts directly into 
differentiated cardiomyocyte-like cells. Interest-
ingly, the FOG-2/Mi-2/NuRD complex is the master 
regulator of Gata4 expression.123 Another novel iPSC 
method not only avoids genes, but is also more effi-
cient. Chemically modified RNAs transcribed from 
the four genes, KLF4, c-myc, OCT4, and SOX2 have 
been introduced into human fibroblast cells. Further-
more, an additional RNA transcript treating these 
iPSC cells converts these into muscle cells.124

Similarity and Difference Among 
Stemnessed Human Embryonic Stem 
Cells, Induced Pluripotent Stem Cells, 
and Cancer Stem Cells
Many of the earliest stem cell studies were performed 
on cells isolated from tumors, including research on 
embryonic carcinoma cells, a type of stem cell derived 
from teratocarcinoma. Embryonic stem cells isolated 
from the mouse, and then later from humans, shared not 
only pluripotency with their induced pluripotent stem 
cell cousins, but also robust tumorigenicity, because 
each readily form teratomas. However, iPSCs are 
predicted to possess tumorigenic potential equal to or 
greater than that of embryonic stem cells (Fig. 10).

The subtle difference between human embryonic 
stem cells and human iPSCs was revealed by recent 
cancer vaccine research using stem cells and recent 
studies of epigenetic memory in stem cell nuclear trans-
plantation, human embryonic stem cells, and iPSCs. 
The cancer vaccine research showed that an injection 
of human embryonic stem cells into mice generated 
a strong antitumor immune response in colon cancer 
but artificial iPSCs did not (Fig. 10). Moreover, a more 
recent study124 demonstrated that somatic cell nuclear 
transfer is more effective at establishing the ground 
state of pluripotency than factor-based reprogram-
ming that can keep an epigenetic memory of the tissue 
of origin. This may affect the potential applications 

of iPSCs in directed differentiation disease modeling 
or treatment. Basically, human embryonic stem cells 
and cancer stem cells share some common character-
istics (Fig. 10), especially in the way they form and 
replicate, so an human embryonic stem cell vaccine 
could fool the immune system into believing that can-
cer cells are present, and thus initiating an antitumor 
immune program, ie, immune systems could recog-
nize antigens of tumor cells, triggering an immune 
response to make antibodies to fight the tumor and 
consequently reducing tumor growth in the immu-
nized mice. Therefore, immunization with embry-
onic materials might produce antitumor responses. 
Moreover, gene profiling experiments have revealed 
similarities between cancer and embryonic stem cells 
in mice (Fig. 10). The gene expression signature of 
embryonic stem cells goes into three functional mod-
ules. The Myc nexus, including genes targeted by 
Myc-interacting proteins, accounts for most of the 
similarity between embryonic stem cells and cancer 
cells.153

Although iPSCs have a developmental potential 
similar to that of embryonic stem cells, several stud-
ies have reported distinct gene expression differences 
between iPSCs and embryonic stem cells of both 
human and mouse origin.125–127 Human iPSCs devel-
oped teratomas more efficiently and faster than human 
embryonic stem cells,128 and both seem to follow a 
stochastic model to acquire stemness block (Fig. 10). 
Another study shows that iPSCs retained epigenetic 
imprints from human parental retinal pigmented epi-
thelial cells and showed a propensity for spontaneous 
differentiation back into retinal pigmented epithelial 
cells after removal of fibroblast growth factor.129 iPSC 
lines exhibited a marked preference for redifferentia-
tion into retinal pigmented epithelial cells.129 These 
cells can be reprogrammed to pluripotency, which 
confirms that they retain a memory of their previous 
state of differentiation (Fig. 10).

However, Guenther et  al130 found that only four 
genes are consistently differentially expressed between 
human iPSCs and embryonic stem cells (Fig. 10). There 
are no significant differences between the genome-
wide distributions of the activating H3K4me3 and 
repressive H3K27me3 histone modifications in human 
iPSCs and embryonic stem cells, so human iPSCs have 
accurately reinstalled the transcriptional and epigenetic 
controls of embryonic stem cells, and there are minimal 
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overt molecular differences between human iPSCs and 
embryonic stem cells. In a separate study, Newman and 
Cooper131 observed that human iPSC and embryonic 
stem cell lines cultured in the same laboratory repro-
ducibly clustered together (Fig. 10). However there are 
many different signatures in different laboratories, and 
we cannot rule out that even a slight difference could 
have a critical biological function, eg, use of a stem 
cell antitumor vaccine (Fig. 10).

Mi-2/NuRD Complex, Micro RNAs,  
and SLAC
The biological complexity of the human body is 
enormous, but a simplicity becomes apparent if 
we turn our attention to epigenetic regulation, spe-
cifically Mi-2/NuRD complex and RNAs, such as 
LINC RNAs and micro RNAs. Micro RNAs were 

first discovered in genetic screens for regulators of 
developmental timing in the stem cell-like seam 
cell lineage in C. elegans. Micro RNAs were found 
to be expressed in different tissues, and they have 
been linked to the development of mouse and human 
stem cells. The Mi-2/NuRD complex can work on 
micro RNA-145 through deacetylation of p53132 
(Fig. 11), a direct target gene of p53 and a repressor 
of the stemness factors Oct-4, Sox2, and KLF4  in 
stem cells.

Along similar lines, loss of RB1 expression in fibro-
blasts results in reprogramming to an embryonic stem 
cell-like state by upregulation of Sox2, Oct-4, Klf4, 
and Nanog.133 These reprogrammed cells form spheres 
and are tumorigenic, exhibiting elevated Zeb1 expres-
sion and a high CD44/low CD24 cancer stem cell-like 
phenotype. Thus, loss of the Rb tumor suppressor 

Figure 10. The model of similarity and difference between stemness pluripotency and tumorigenicity. Biological and molecular links between pluripotency 
and tumorigenicity are illustrated graphically. In this model, one hypothesis is that the variation/boundary of signatures could be amplified along with 
differentiation/tumorigenesis from those in compact stemness states. 
Abbreviations: EC, embryonic carcinoma cells; hESC, human embryonic stem cells; IPSC, induced pluripotent stem cells; CSC, stem-like tumor cell/
cancer stem cells.
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Figure 11. Schematic representation of the role of the Mi-2/NuRD -p53-micro RNA network in induced pluripotent stem cells and cancer stem cells. Normal 
fibroblasts, which are mature, differentiated cells, can be reprogrammed into induced pluripotent stem cells or tumor cells by a combination of defined factors. 
Adapted by permission from Macmillan Publishers Ltd, Nature, 2009;460:1085-6, copyright 2009. Left: The transcription factors c-myc and Klf4 promote 
reprogramming of fibroblasts into induced pluripotent stem cells in a manner that conceptually parallels their roles in transforming normal cells into tumor 
cells. Oct4 and Sox2, although overexpressed in cancers, are currently thought to function specifically to promote formation of induced pluripotent stem 
cells. Right: The p53 tumor suppressor gene is a well known master regulator that helps downregulate the genes required for proliferation and survival. p53 
directly or indirectly limits the reprogramming of fibroblasts into induced pluripotent stem cells or into transformed cancer cells by inducing apoptosis, or cellu-
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may stimulate the emergence of cancer stem cells in 
concert with changes in micro RNA function.

In C. elegans, let-7 regulates longevity through the 
RAS pathway,134 which is negatively regulated by the 
Mi-2/NuRD complex. In humans, cancers may arise 
from rare self-renewing tumor-initiating cells within 
a special niche. Because micro RNAs can regulate 
cell fate, a comparison of micro RNA expression in 
self-renewing and differentiated cells from breast can-
cer lines and in breast tumor-initiating cells and non- 
breast tumor-initiating cells from first-degree breast 
cancers shows that let-7 micro RNAs were markedly 
reduced in breast tumor-initiating cells and increased 
with differentiation. Increased let-7 paralleled reduced 
H-RAS and HMGA2, which are known let-7 targets. 
Let-7 regulates multiple breast tumor-initiating cell 

stem cell-like properties by silencing more than one 
target. It has been shown that a lack of HSF-1 made 
mouse embryonic fibroblasts resistant to H-RASV12D-
induced focus formation in Hsf1-/- and wild-type 
mouse embryonic fibroblasts. HMGA2 links to cel-
lular senescence related to proliferation-associated 
genes and stem cell ageing.135 HSF-1/Mi-2/NuRD 
also has important interactions with RNA fields in 
other ways, especially via large noncoding RNAs 
(LINCs) such as Xist, HOTAIR, and HSR-1.136 RNA 
coimmunoprecipitation reveals that a significant pro-
portion of LINC RNAs are physically associated with 
chromatin-modifying complexes, such as the puta-
tive TWIST1/BMI1/PRC1, TWIST1/EZH2/PRC2 
complex. The TWIST1/Mi-2/NuRD complex has also 
been shown to be involved in epithelial-mesenchymal 
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transition. Furthermore, the breast cancer stem cell 
phenotype is characterized by high expression of 
CD44, little or no expression of CD24, and impor-
tantly, TWIST modulates breast cancer stem cells 
by transcriptional regulation of CD24 expression.151 
Because HSR-1 and Xist are closely linked to HSF-1/
Mi-2/NuRD or its equivalents, it would be interest-
ing to see if and how Mi-2/NuRD complexes function 
with LINC RNAs in regulating the epigenetic land-
scape on a genomic scale. It is known that ncRNA 
SRA binds to p68 RNA helicase137 which is associated 
with the Mi-2/NuRD complex and plays a role in RNA 
processing. p68 RNA helicase regulates a transcrip-
tome at the estrogen receptor-regulated pS2 promoter, 
which is repressed by the HSF-1/CHD-3/Mi-2/NuRD 
complex in the MCF-7 cancerous cell line. A myosin 
heavy chain IIB promoter, p68 RNA helicase, together 
with ncRNA steroid receptor RNA activator,138 stabi-
lizes the BRG-1 protein and the location of the TATA 
binding protein and RNA polII. Furthermore, HSF1 
regulates the multidrug resistance MDR1 expression 
in vivo ( Unpublished) at the heat-induced activation 
of the MDR1 promoter. The increase of multidrug 
resistance (MDR)1 could potentially increase the 
resistance against cytotoxic drugs as one of the major 
obstacles for chemotherapy of tumors and recurrence 
of malignancies.

Put simply, a number of stressors can induce 
changes in cell signaling and/or DNA damage. 
Chromatin remodelers, such as the Mi-2/NuRD com-
plex, could cause nuclear lamina disorganization and 
chromatin disruption, which in turn affects DNA dam-
age and makes nuclear fragile. The chromatin disrup-
tion could activate the autophagy in a scope and thus 
promote possibly longevity. Otherwise, disrupting 
the tertiary structure of lamina, and its subsequent 
interactions with chromatin domains and higher order 
chromatin structure, then affects gene transcription, 
repair of splicing DNA damage, DNA replication, 
and subsequently cell division. This can also cause 
disassembly of the nuclear membrane in mitosis and 
meiosis, and improper assembly at the completion of 
mitosis and meiosis leading to cell death and/or cell 
growth arrest. When the critical somatic stem cell 
pool becomes exhausted, carcinogenesis and age-
ing could be triggered. In addition, chromatin dis-
ruption could cause telomere dysfunction and lead 

to ageing and cancer. The two disease states would 
enhance defective repair and genome instability, and 
thus worsen the DNA damage further. Most of these 
processes are functionally intertwined (Fig. 12).

Mi-2/NuRD Complex and Cell 
Metabolism in SLAC
Fuel signals from cell metabolism are crucial for the 
activities of Mi-2/NuRD complexes in SLAC. For 
instance, the energy of ATP is essential for remodeling 
of the Mi-2/NuRD complex, and is generally provided 
through the glucose-pyruvate axis and the tricarboxy-
lic acid cycle. Cell metabolism also ensures that cells 
have a reservoir for acetyl-CoA, which is important 
for the balance of histone acetyltransferase-histone 
deacetylase.139 The cholesterol-citrate cycle to acetyl-
CoA is also one signal of favorable or unfavorable envi-
ronmental cues for C. elegans to determine its entry 
into the long-lived but inactive dauer state (ie, a slow 
life history) or to undergo normal development (ie, a 
fast life history, Figs. 4 and 5). Glutamine is a key factor 
that influences the axis of mTOR, hypoxia-inducible 
factor-1α, and/or p53-involved autophagy. Autophagy 
generally promotes longevity and dauer formation in C. 
elegans, and probably also in mammals. In addition, the 
oncogenic activation of Myc promotes glutamine utili-
zation. C-myc and hypoxia-inducible factor-1 regulate 
glucose metabolism and stimulate the Warburg effect. 
Firstly, deregulation of the expression of glutamine 
transporters and miR-23a/b by Myc targets glutami-
nase and triggers an addiction to glutamine.152 Isocitrate 
dehydrogenase 1 and 2 (IDH1 and IDH2)140  muta-
tions could affect methylation patterns via competitive 
inhibition of histone demethylases by 2-hydroxygl-
utarate, and this links to the histone demethylases, 
JMJD2, JHDM1, and/or LSD-1, and their substrate 
α-ketoglutarate as a cofactor in DNA hypermethyla-
tion, eg, methylation of the promoter of the DNA repair 
gene O6-methylgluguanine-DNA methyltransferase. 
Of note, IDH3 catalyzes the conversion of isocitrate 
to α-ketoglutarate in the mitochondria, producing one 
equivalent of NADH in a NAD+dependent reaction. 
It is interesting that mutations in IDH1 and IDH2 (but 
not IDH3) are found in cancer. However, we specu-
late that the LSD-1/Mi-2/NuRD complex itself could 
have a chance to function directly on oncometabo-
lites together with IDH3. Furthermore, there could 
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be a cross-talk between the Mi-2/NuRD complex 
with NAD+related SIRT 1 deacetylation and/or Lat11 
(dihydrolipoamide acetyltransferase), a longevity 
factor in the calorie restriction pathway. Finally, 
2-hydroxyglutarate produced by mutated isocitrate 
dehydrogenase might act through the accumulation of 
HIF-1α via prolyl hydroxylase inhibition, leading to 
development of cancer. In C. elegans, fumarylacetoac-
etate hydrolase, which catalyzes tyrosine metabolism 
and causes fumarate to cycle into the tricarboxylic 
acid cycle, is required for a normal life span and has 
a role in protein aggregation in connection with HSF-
1,141  holding the potential for preventing age-related 
diseases.

Normal cells can undergo aerobic glycolysis 
and inefficient glutamine breakdown when they 
are induced to proliferate. When nutrients dwin-
dle, the cells can respond by reactivating oxidative 

phosphorylation and cease proliferation through the 
activities of tumor suppressors, such as p53. Cancer 
cells, which often lack p53 and other tumor suppres-
sors, exhibit “addiction” to glucose and/or glutamine 
consumption. Moreover, cancer cells make inefficient 
use of glutamine. In normal cells, glutamine is used 
for the synthesis of amino acids and nitrogen for 
de novo nucleotide formation. Cancer cells, in con-
trast, secrete glutamine-derived nitrogen as waste.152 
The cellular uptake of L-glutamine is the rate-limiting 
step that activates mTOR. Certain tumor cell lines 
do not need L-glutamine uptake and are primed for 
mTOR activation. Thus, L-glutamine flux regulates 
mTOR translation and autophagy to coordinate cell 
growth and proliferation.143 However, the detailed 
effects of cell metabolism on Mi-2/NuRD complexes 
in SLAC remain unclear. For the moment, our pro-
posed model as (Supplementary Fig. 6).

Figure 12. Simplified summary of cross-talk among the Mi-2/NuRD complex, stress, and stemness, longevity/ageing, and cancer. The color green denotes 
promotion or activation, and the color red indicates inhibition or an abnormality.
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Potential Consequences of Mi2/NuRD 
Activity in SLAC
Direct reprogramming via a stochastic process could 
possibly require activity of Mi-2/NuRD complexes. 
Reprogramming stemness transcription factors 
(ie, Oct4, Sox2, Klf4, and c-Myc) are associated 
with the Mi-2/NuRD complex. Following a continu-
ous stochastic process, almost all mouse donor cells 
eventually give rise to iPSCs with continued growth 
and transcription factor expression. Overexpression 
of the stemness factor Lin28 or additional inhibition 
of the p53/p21 pathway, which could be modulated by 
the Mi-2/NuRD complex (Figs. 11 and 13), increase 
the cell division rate and resulted in an accelerated 
the formation of iPSCs. This is proportional to the 
increase in cell proliferation.144 The cancer stem cell 
model could be relatively easily reconciled with 
the Darwinian selection cancer model because the 
Mi-2/NuRD complex could provide a novel layer 
of dynamic influence of reversible factors, such as 
LSD-1 demethylase and RBP2. In addition to the 
reversible modifications of DNA methylation and 
histone acetylation and deacetylation, this arsenal 
governs the dynamic state of cells and regulates the 
heterogeneity of cancer cells. Put simply, the differ-
ent tissues make the cell a specific niche of cellular 
physical, chemical and physiological components, 
as well as extracellular and environmental stresses 
(eg, the basal or luminal breast cell niche). These 

components could create distinct genomic mutations 
stochastically and develop a different epigenetic 
background. Such mutations and epigenetic fac-
tors integrate environmental cues, such as nutrients 
(Figs.  4 and 5), ultraviolet light, ionizing radiation, 
or mechanical trauma. Collectively, these factors 
activate “core” functional chromatin remodeling, and 
the various percentages of cancer stem cell types, 
eg, those of the MCF-7, SK-BR-3, and MDA-MB-
231 breast cancer cell lines. In addition, the Mi-2/
NuRD complex has additional specific “isoforms”, 
including its unique histone acetyltransferase-histone 
deacetylase supercomplex. RBP2 regulates hetero-
geneity within cancer cell populations in response 
to stress, including drug treatment. In drug-sensitive 
human tumor cell lines, there is a small subpopula-
tion of reversibly “drug-tolerant” cells.146 These have 
significantly reduced drug sensitivity and maintain 
viability via engagement of IGF-1 receptor signaling, 
and RBP2/KDM5A/Jarid1A helps to alter the 
chromatin state. Treatment with IGF-1 receptor inhib-
itors or chromatin-modifying agents can selectively 
ablate the drug-tolerant subpopulation. It remains 
unknown if such a “drug-tolerant” state is a stem-like 
one. HSF-1 can directly control the promoter activity 
of the multidrug resistance gene 1.147 It remains to be 
determined if the HSF-1/Mi-2/NuRD complex has a 
role in the regulation of multidrug resistance gene 1. 
In C. elegans, the RBP2 H3K4 trimethylation com-

Figure 13. Model of soma-to-germline transformation in Caenorhabditis elegans and possible stochastic cancer stem-like formation in mammals. Adapted 
by permission from Macmillan Publishers Ltd, Nature, 2009;459:1079-84, copyright 2009.
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plex could regulate lifespan in a germline-dependent 
manner. Interestingly, the MBD2/Mi-2/NuRD 
complex represses the promoter activity of p16/
INK4a, and inactivation of p16/INK4a can increase 
longevity in progeria.148 This raises the possibility 
that epigenetic interference with MBD2/Mi-2/NuRD 
might switch progeria to longevity.

Ongoing Research on the Mi-2/NuRD 
Complex
With regard to genomic research, the ChIP DSL 
assay has been applied to the LSD-1/Mi-2/NuRD 
complex, and an interesting list of target genes has 
been established.12 Further ChIP-chip and ChIP-seq 
on individual components of different Mi-2/NuRD 
complexes for in depth comparisons are awaited.

Ribonomic research is meanwhile focusing on RNA 
IP/high-throughput sequencing of RNAs isolated by 
crosslinking immunoprecipitation (HITS-CLIP). The 
CHD-3 binding proteins, CGI-55 and Ki-1/57, might 
be involved in nuclear functions along with the remod-
eling of chromatin. Ki-1/57 may be also involved in 
modulations of the higher-order structure of chromatin. 
CGI-55 (also named PAI-RBP1 for the plasmino-
gen activator inhibitor mRNA-binding protein 1) is a 
mRNA-binding protein.149 The chromodomain of the 
Mi-2 protein may bind to noncoding RNA,150 and, thus, 
RCIP and HITS-CLIP could be worthwhile investigat-
ing to clarify further the roles of the Mi-2/NuRD com-
plex in RNA fields.

Proteonomics research primarily involves tan-
dem affinity purification walking. An Oct4-based 
tandem affinity purification walking from Oct4 to 
Nanog and Esrrb1 has generated a remarkable Oct4-
centered expended interactor network, which con-
tains a functional module of remodelers, including 
the Oct4-associated Mi-2/NuRD complex. This could 
be applied to the core Mi-2/NuRD complex as well as 
its derivatives. One question is whether some metab-
olites and RNAs could hypothetically interact with 
core or specific Mi-2/NuRD complexes to achieve 
some biological functions directly.28,29

Specific research questions that are the subject of 
ongoing research include:

•	 What can we discover about the dramatic changes 
in the genome-wide distribution of the Mi-2/NuRD 
complex during cellular senescence, and tissue and 

organism ageing? How do those changes affect 
gene expression programs in detail?

•	 Is Mi-2/NuRD involved in senescence-associated 
heterochromatic foci regulation or DNA replica-
tion in SLAC? If so, how?

•	 It is well known that the Mi-2/NuRD complex 
shares the synMuv B pathway with the HP1/Rb 
complex and has an antagonistic relationship with 
mes-2/PcG during embryonic development in 
C. elegans. What are the relationships among the 
Mi-2/NuRD, HP1/Rb, and BMI1/EZH2/PcG com-
plexes in mammals? Furthermore, how does the 
Mi-2/NuRD complex coordinate with other chro-
matin remodelers in 4-2-1/SLAC?

•	 Does any close relationship exist between the 
nuclear stress body and Mi-2/NuRD bodies, 
given that they seem to be physically tightly 
connected?154 Are there any evolutionary common 
characteristics between the p-granule in C. elegans 
and the nuclear stress body in mammals?

•	 There are clearly different “isoforms” of Mi-2/
NuRD complexes. How do the levels, assembly 
and activities of these different Mi-2/NuRD or 
Mi-2/NuRD-like complexes (eg, NODE) regulate 
4-2-1/SLAC?

•	 Do the Mi-2/NuRD complexes function differ-
ently in subpopulations of cancer stem cells and 
noncancer stem cells, and how do they differ?

•	 What is the nature of the cross-talk between the 
Mi-2/NuRD complex and environmental toxin-
induced oxidative DNA damage during cancer or 
age-related disease progression?

•	 What are the endogenous sources of chemically 
reactive species? Is the origin of stem cells and 
cancer cells the same or not? Although they have 
plenty of similarities, a quick guess is that they do 
not. Stem cells could behave like “bacteria” and the 
cancer cells could be rather like phages, viruses, 
or prions of parasites and hijack the machinery of 
life from the host. Where and how do the stem-
like traits originate in the defective Mi-2/NuRD 
complex? Some answers have been proposed, but 
how well do they correlate? The first hypothesis 
is that TWIST1/Mi-2/NuRD complex ⇒ BMI1 ⇒ 
stem-like traits. The epithelial-mesenchymal tran-
sition is associated with the acquisition of stem cell-
like characteristics. The epithelial-mesenchymal 
transition inducer directly and transcriptionally 
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targets the stemness PRC1 (Polycomb complex) 
protein Bmi1 that promotes self-renewal of cer-
tain stem cell populations.152 The second hypoth-
esis is that Mi-2/NuRD complex  ⇒ DNA repair 
defects ⇒ forced regeneration ⇒ stem-like traits.

•	 How about the bona fide CpG island DNA demeth-
ylase? Could the LSD-1 in Mi-2/NuRD complex 
perform any job for this?155,156

Conclusion
To use a simile, the Mi-2/NuRD is like democ-
racy on the planet. Its “core” always seems to be 
same. The different tissue- or cell-specific Mi-2/
NuRD complexes contribute significantly to 4-2-1/
SLAC by dynamically repressing or activating 
transcriptional activity and instructing the high-
order chromatin structure within the same para-
digm or “core”; then extensions of expended scope. 
(Supplementary Fig.  7) The activity of the Mi-2/
NuRD complexes is the hub of human physiol-
ogy and pathology in SLAC. If our comprehensive 
understanding of SLAC can be likened to a neck-
lace, the chromatin remodeling activities are the 
pearls. A further view is here put forward of the 
“core” Mi-2/NuRD complex by employing indepth 
current high-sensitivity “omics” platforms, eg, 
ChIP-seq and ChIP-chip for genomics, “tandem 
affinity purification walking” for proteomics,157 and 
HITS–CLIP, RIP -seq for ribonomics,158–160 to gen-
erate a large amount of data and then apply com-
putation tools, such as rough-set soft computing to 
extract the hub information, the functional module 
and the cause-effect regulatory network by using 
packages such as DAVID, IPA, and Metacore161 to 
glean novel information about the modulation on 
the “core” in certain contexts. Clearly, the arrival 
of the Human Proteome Project era, a preferred 
shift from “differential expression” to “differen-
tial networking” and emerging bioinformatic tools 
will provide us with significant breakthroughs. To 
take a specific example, because of the longevity 
of neurons and their special protection inside the 
skull, priority could be given to SLAC-associated 
neuron research. For the moment, one possibility 
in the near future is to target the Mi-2/NuRD com-
plex and/or its closely related determinants in 
SLAC, such as the critical steps of mechanisms 
like histone deacetylation, histone demethylation, 

and abnormal DNA methylation. For example, 
pharmacological agents can successfully modu-
late the differentiation state of a tumor. Moreover, 
cancer stem cells can be eliminated or function-
ally antagonized by inducing their differentiation. 
Thus, “differentiation-inducing” agents, such as 
salinomycin or histone deacetylase inhibitors, may 
have therapeutic value. We could also target the key 
pathways, such as the TGF-β and Wnt pathways, 
to eliminate cancer stem cells by strong activation 
of antiapoptotic signaling, such as those mediated 
by PI3K and nuclear factor-kB. Because the role 
of micro RNAs in cancer stem cell maintenance is 
now becoming fully appreciated, therapeutic deliv-
ery of micro RNAs may represent an additional 
potential strategy to disrupt cancer. Ideally, our 
efforts might reverse an entire program of events to 
blunt tumor growth and/or reverse and delay age-
ing (Supplementary Fig.  7). We look forward to 
the next decade and the likelihood of many more 
exciting discoveries that will rely heavily on the 
involvement and ingenuity of biologists and clini-
cians in both basic and clinic research fields using 
at least C. elegans and mammals. In everyday life, 
we could choose some of the anticancer, antiageing 
foods, such as red wine or grapes (containing 
resveratrol), ginseng, strawberries and similar 
fruits, and supplements/drugs, such as rapamycin, 
metformin, ginkgo bilboa. For the time being, the 
most prudent Mi-2/NuRD “epidrug”-related advice 
for healthy longevity is to avoid extremes, do not 
be “greedy”, keep a balance between Yin and Yang 
(the Chinese medicine principle), ie, work, drink, 
eat, and exercise reasonably. Simple, smart choices 
of food intake and activity level could positively 
influence the chance of living a long healthy life.

With the unlocking of more and more secrets from 
“friends” like C. elegans and even bacteria, and solving 
the mystery of the powerful reversal enzymes in epige-
netic regulation of dynamic activities of Mi-2/NuRD 
complexes, ageing could be “stopped”.162 Although 
we have not discovered the “fountain of youth”, if 
we can extrapolate from the conclusion of “nearly 
10-fold extension of both median and maximum adult 
lifespan in age-1(mg44) animals relative to its control 
wild type N2 DRM C. elegans”, we may be able to 
live remarkably long lives, and even 1000 years may 
become feasible.163
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