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Abstract
Gene Set Enrichment (GSE) is a computational technique which determines whether a priori defined set of genes
show statistically significant differential expression between two phenotypes. Currently, the gene sets used for GSE
are derived from annotation or pathway databases, which often contain computationally based and unrepresentative
data. Here, we propose a novel approach for the generation of comprehensive and biologically derived gene sets,
deriving sets through the application of machine learning techniques to gene expression data. These gene sets can
be produced for specific tissues, developmental stages or environments. They provide a powerful and functionally
meaningful way in which to mine genomewide association and next generation sequencing data in order to identify
disease-associated variants and pathways.
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INTRODUCTION
Gene set enrichment (GSE) is a computational tech-

nique used in the analysis of gene expression data.

The technique determines whether a priori defined

set of genes show statistically significant differential

expression between two sample tissues, time points

or conditions [1]. Gene sets are determined by prior

biological knowledge relating to co-expression,

function, location or known biochemical pathways.

The fundamental principle of GSE is that all bio-

chemical pathways are determined by sets of genes

and that if that pathway is in any way related to a

biological trait then the co-functioning genes should

display a higher degree of enrichment compared

with the rest of the transcriptome. A focus on the

expression of gene sets rather than that of individual

genes makes better use of the information generated

by a microarray experiment by allowing genes which

show only minor differential expression to contrib-

ute to the calculation of the enrichment score (ES).

The GSE approach should also lead to a greater

incidence of replication within array data by iden-

tifying the same biological processes underlying a

particular phenotype. These arguments can also be

applied to the interpretation of multiple weak asso-

ciation signals in genomewide association studies

(GWAS) [2, 3].

The most commonly used algorithm to detect the

presence of enrichment for a particular gene set is

the gene set enrichment analysis (GSEA) technique

[1, 4]. GSEA determines whether members of a gene

set S tend to occur towards the top or the bottom of
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list L, indicating a correlation with a particular

phenotype. Calculation of the GSEA requires N,

the total number of genes being examined, k, the

number of samples, S, the gene set of interest

and L, a list containing the N genes ranked by

their correlation scores with a specific phenotype

(L¼ {g1, g2,. . ., gN}). For each gene set, the Phit

and Pmiss values are calculated. Phit is defined as the

difference between the fraction of the genes in S that

are present before a given position i while Pmiss is the

fraction of all the N genes (except those in S) that are

present before position i across all possible positions

i in the list L. The measure of whether there is a

significant difference in expression values for a given

gene set between two phenotypes is determined

by the ES, which is the score of the maximum

of Phit�Pmiss over all positions i in the list L.
Determining the statistical significance (P-value) of

the ES for each gene set requires a permutation test.

The two phenotypes are randomly permuted 1000

times, the ES for the gene set is then re-calculated

for each permutation and the P-value is estimated as

the proportion of the 1000 random permutations

that have an ES lower than the ES for the actual

experimental data.

Although there are several variations on the ori-

ginal GSEA algorithm (including parametric analysis

of gene set enrichment [5] and generally applicable

gene set enrichment [6]), all means of calculating

enrichment are highly dependent on the nature of

the gene sets used. One major determinant on the

ES in GSE is simply the size of the gene set. The use

of larger sets results in higher statistical power and

higher sensitivity where there is only slight enrich-

ment, making them suitable to detect subtle changes

in gene expression. Conversely, a large gene set

causes the sensitivity to be decreased where there is

a greater degree of enrichment. The composition of

the gene set is also important as each individual gene

will have a varying degree of association with the

specified trait that the set is designed to encapsulate

[7]. GSE has weak power to detect a differentially

expressed gene set where there is a mixture of

strongly associated genes and weakly associated

genes as the calculated enrichment will not reflect

the diversity of the expression values. It is also

wrong to assume that genes with large changes in

expression values are making a stronger contribution

to a pathway than those with smaller changes. Also,

some variation in expression levels may simply be a

consequence of other signal regulation events (this is

arguably a weakness of both the single gene method

and of GSE). Here, we assess the current sources of

gene sets and how gene expression data may be used

to develop methodologies for the creation of new,

more specific gene sets for GSE.

CURRENT SOURCESOF
GENE SETS
All regions of the genome interact to a greater or

lesser extent and it is therefore difficult to represent

them as a modular set of pathways that can form the

basis of gene sets. In reality, the complex nature of

the genome is such that there is no way to establish a

precise cut-off point that would determine member-

ship or non-membership of any given set. However,

a reasonable criteria by which to define membership

must be devised in order for the GSE approach to be

implemented. The most common sources of gene

sets used to calculate GSE are derived from annota-

tion databases such as GO [8] and KEGG [9]. GO,

which uses standardised biological terms to annotate

gene products, is the largest of the annotation data-

bases and the one most commonly used for GSE.

The database is composed of three main categories:

‘molecular function’, ‘biological process’ and ‘cellular

component’ which together comprise approximately

23 000 terms. Each of the three branches can be rep-

resented as a directed acyclic graph with each GO

term forming a node. Each node in the graph can

have several parents (less specific terms) and several

children (more specific terms). Annotation of a gene

by any node A implies its automatic annotation by all

ancestors of A (the set of broader terms related to A

by directed paths). Less specific terms are therefore

much easier to detect enrichment for using GSE;

however, they are typically of less interest to a re-

searcher than a more specific term. All GO annota-

tions are generated with evidence code that records

the type of information on which the annotation is

based [10]. Annotations are divided into four cate-

gories: experimental, computational, indirectly

derived from experimental or computational and un-

known. Over 95% of these annotations are compu-

tationally derived and are associated with pathways

through ‘inferred from electronic association’ evi-

dence code [10] (although even with computational

annotation, there are still regions of the genome that

are not represented within the database). KEGG is a

manually curated database, composed of pathway

maps representing molecular interaction and reaction
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networks [9]. Each KEGG pathway defines a set of

genes that can be considered for statistical enrich-

ment testing. While KEGG is not as comprehensive

as GO, is also not as reliant on inference rather than

direct annotation.

GENE SETSUSING EXPRESSION
DATA
While the use of annotation databases as the basis

for the creation of gene sets is entirely valid, there

are certain limitations. Gene sets derived in this way

can be made specific to a species but not to a par-

ticular tissue, developmental stage or array type.

It may therefore be possible to further tailor gene

sets in a way that accommodate a researcher’s point

of interest. Another concern is that manual annota-

tion of genes, even with the use of inference, will

not be able to keep pace with the genomic variants

currently being identified with GWAS and next

generation sequencing (NGS) research. An alterna-

tive approach would be to use gene expression data

as the basis for the creation of new gene sets. Gene

sets can be assigned to a particular species but this

potentially could be taken further to develop gene

sets relevant to a particular tissue (even within

sub-regions of the brain, gene expression has been

shown to be extremely tissue specific) or develop-

mental stage of the organism. We suggest that the

development of gene sets derived from tissue-specific

co-expression patterns will be a powerful new way

to perform pathway-based analyses of GWAS and

NGS data in order to gain insights into biological

mechanisms and pathways underlying disease. Such

an approach has the potential to uncover many novel

disease-associated pathways, as unlike current gene

sets, it is not limited by what is already known (or

computationally inferred) about gene function. It

also provides an immediate link between genetic

variation (both coding and non-coding) and func-

tion, which is a major limitation in current research.

Although using gene expression data will provide a

more accurate and comprehensive representation of

the genome, there is a risk of circular reinforcement

in which genes over expressed within arrays are

wrongly included in gene sets and then rediscovered

by GSE. The best approach against this would be to

use as broad a range of expression data as possible as

the basis of the gene sets, an approach which the

increasingly large public repository of gene expres-

sion data would allow.

MACHINE LEARNING
TECHNIQUES
Gene sets can be derived from gene expression data

through the use of machine learning techniques.

Machine learning has previously been used to cluster

genes based on similarities between expression

profiles. Various forms of clustering analysis have

been used including hierarchical clustering [11] the

k-means algorithm [12], self organizing maps [13],

singular value decomposition [14] and support

vector machines [15]. However, the high dimen-

sionality and sheer complexity of microarray

data have made it difficult to develop reliable clus-

tering techniques that could be used to determine

gene sets [16]. Also, none of these methods provides

formal inferences and more importantly may not be

representative of gene–gene interactions. Ideally,

gene sets developed through clustering techniques

would not only utilize all the available information

from a microarray but also incorporate any prior bio-

logical data that may be relevant to the clustering

including genomic and clinical data. One possible

way to improve gene clustering and therefore the

creation of gene sets would be to develop a

network-based approach. A dynamic network can

be generated whereby nodes represent individual

genes or loci, which can then be interlinked by

weighted values. A very simple representation of a

gene network can be provided by a Boolean

approach, where the network is represented as a

binary model in which a gene is either switched on

or off, and model the effects of other genes on a

specific target gene through a Boolean function

[17]. Although this is computationally efficient in

comparison with other techniques, the limitations

of this approach are that it does not incorporate

intermediate levels of gene expression and also that

it assumes transitions between gene activation to be

simultaneous. Linear additive regulation models re-

vealed certain linear relations in regulatory systems

but failed to capture non-linear dynamics aspects of

genes regulation [18]. A more advanced approach

would be the use of a Neuro Fuzzy Recurrent

Network which is based on a combination of

neural networks (an efficient modelling technique

in machine learning and data mining), fuzzy set

theory [19, 20] and the Dynamic Bayesian

Network (DBN) which adds dependencies between

variables at consecutive time points [21]. The DBN

consists of two networks; an initial network contain-

ing all the variables and an initial probability
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distribution and a transition network with a transi-

tion probability distribution between time steps. A

network-based approach may provide a framework

for generating more sophisticated gene sets for the

purposes of enrichment. There are several different

approaches towards modelling gene networks.

APPLICATIONSOF GSE
GWAS data
One area of research that may benefit from the

development of GSE is the area of GWAS.

Genomewide association uses highly multiplexed

genotyping platforms which systematically scan the

genome in many thousands of individuals in order to

identify common susceptibility alleles for complex

diseases and disorders [22]. In recent years, this

approach has been employed on an unprecedented

scale and has successfully identified hundreds of

disease-associated variants. However, there is disap-

pointment among researchers over the low propor-

tion of known heritability recovered for many traits

and disorders. One possible reason for this ‘missing

heritability’ maybe that a proportion of single neu-

celotide polymorphisms (SNPs) occur within the

sub-threshold (5� 10�8 <P< 0.05) tail of statistically

significant association and therefore do not survive

stringent correction for multiple testing in a typical

GWAS analysis. As a consequence, analytical

methods that systematically extract and aggregate

these multiple weaker association signals from the

sum total of GWAS data gathered, and which can

then interpret the results in a biologically context, are

of enormous interest. An approach already taken by

several groups is to treat GWAS data as analogous to

gene expression data and perform a pathway-based

analysis using the principles of GSEA [2, 3, 23–26].

Of course, challenges exist in the application of

GSE to GWAS data, including how to map SNPs to

transcripts, how best to account and correct for link-

age disequilibrium between SNPs, aggregating meas-

ures of association for multiple SNPs in a transcript

and dealing with multiple different transcripts of the

same gene. Various approaches have already been

taken, including the use of all SNPs within a gene

as individual entities (GSEA-SNP) [3], assigning the

highest statistic value among all SNPs mapped to the

gene as the statistic value of the gene [2] or by using

SNPs to define a list of significantly associated genes,

counting each only once irrespective of the number

of significantly associated SNPs that it contains

(ALIGATOR) [3]. In spite of the inherent difficulties

at interpreting SNP data at a gene level, GSE may

still offer the best opportunity to account for the

effects of genetic variation on phenotypic traits.

Next generation sequencing
Also relevant to the application of GSE is the use of

NGS technology to study genomic variation. The

cost of NGS has already come down enough to be

comparable to the cost of microarrays 5 years ago,

and therefore RNA sequencing has become a feas-

ible method of producing gene expression profiles

[27]. RNAseq profiles have compelling advantages

over gene expression microarrays. While in micro-

array methods, fluorescent background severely

limits analysis in the lower half of the range

of RNA abundance, conversely, RNAseq analysis

is based on read counts and therefore its dynamic

range is only limited by the depth of the sequencing.

Furthermore, although microarrays have become

more comprehensive as feature densities have

increased, RNAseq is intrinsically more open as an

approach. Analyses of splicing, allelic expression and

other phenomena such as RNA editing become

possible from the same data set, providing extra

dimensions to gene expression data that could be

incorporated into the creation of gene sets for

GSE. The use of these fine grained comparisons

will present their own challenges and some work

has already been done on accounting for selection

bias in GSE analysis of RNAseq data [28]. However,

while it is problematic to incorporate these extra

dimensions into the annotated approach towards

GSE it should be more straightforward to incorpor-

ate them into an expression-based approach. Also, as

the manual annotation upon which databases like

GO and KEGG rely will struggle to keep pace

with the expansion of data that NGS technology is

now providing, it seems likely that an automated

approach to GSE will have increasing application

in the future.

CONCLUSION
The processing of expression and sequencing data is

essentially a series of data reductions which are ne-

cessary to extract meaningful information. In the case

of array data, hybridisation information is converted

into pixel images, processed to turn those images into

probe-level summaries and then summarised further

into a matrix of normalised average expression
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estimates. Following that, the matrix is further fil-

tered to remove extraneous data and differential ex-

pression statistics are calculated for each gene. The

conversion of individual genes into gene sets may

therefore be seen as the last in many stages of data

reduction but one that is crucial to determining

genuine differential expression between two pheno-

types. It is clear the central dogma of GSE, that a

single expression value can be assigned to a single

gene with a single function, is challenged, firstly by

the natural overlap that occurs within biochemical

pathways and, secondly, by the genetic variants

within the coding region of a gene which can

effect expression. Whether these limitations can be

addressed is crucial to determining the future utility

of GSE. Optimisation of gene sets based on expres-

sion data using a network-based approach would

considerably benefit enrichment analysis and help

to improve our understanding of the biology

which underlies complex traits. A major long-term

challenge is the integration of genomic data from

multiple sources in order to extract maximum

value from gene expression or GWAS experiments.

These could include multiple sources of annotation,

multiple sets of gene expression across species, data

on transcription factors and epigenetic data, each

bringing some indication of functional relationships

with varying specificity and confidence. Only a

co-ordinated approach to the analysis will fully ex-

ploit the wealth of genomic data that is currently

available to us.

Key Points

� GSE is a means of analysing genomic data by studying the effects
of groups of genes on a phenotype rather than individual gene
expression.

� Currently, gene sets are usually derived from annotation
databases such as GO and KEGG. This provides a limited and
sometimes inaccurate representation of genomewide gene
expression.

� An alternative source of gene sets couldbe derived from the use
of gene expression data through the use of machine learning
techniques.

� The use of expression-derived gene sets can allow for analysis
to be adjusted to different tissues types, array types or develop-
mental stages.
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