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Abstract
With the advent of computationally feasible approaches to maximum likelihood image processing
for cryo-electron microscopy, these methods have proven particularly useful in the classification
of structurally heterogeneous single-particle data. A growing number of experimental studies have
applied these algorithms to study macromolecular complexes with a wide range of structural
variability, including non-stoichiometric complex formation, large conformational changes and
combinations of both. This chapter aims to share the practical experience that has been gained
from the application of these novel approaches. Current insights on how to prepare the data and
how to perform two- or three-dimensional classifications are discussed together with aspects
related to high-performance computing. Thereby, this chapter will hopefully be of practical use for
those microscopists wanting to apply maximum likelihood methods in their own investigations.
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Introduction
An increasing number of maximum likelihood (ML) methods for image processing have
recently become available to the electron microscopist. These methods hold great potential
for the data analysis in a variety of different cryo-electron microscopy (cryo-EM)
modalities. However, a literature search for applications of ML approaches in experimental
studies shows that these almost exclusively concern classification tasks in (asymmetric)
single-particle analysis.

If one excludes the methodological papers themselves, no reports on the application of ML
approaches to two-dimensional (2D) alignment (Sigworth, 1998) or icosahedral virus
reconstruction (Doerschuk & Johnson, 2000; Yin et al., 2001, 2003) are available. ML
processing of 2D crystals (Zeng et al., 2007) has so far only been applied to cyclic
nucleotide-modulated potassium channel, MloK1 (Chiu et al., 2007), and ML classification
of sub-tomograms by the kerdenSOM algorithm (Pascual-Montano et al., 2002) has only
been reported for cadherins (Al-Amoudi et al., 2007). In contrast, multiple reports are
available that describe applications of ML classification approaches to single-particle
analysis. Both the kerdenSOM (Pascual-Montano et al., 2001) and the ML2D algorithm
(Scheres et al., 2005) have been applied to multiple two-dimensional studies (Table 1), and
various reports describing three-dimensional analysis of macro-molecular complexes with
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different types of structural heterogeneity by ML3D classification (Scheres et al., 2007a) are
available (Table 2).

Perhaps an important reason for the relatively wide spread use of the ML algorithms for
single-particle classification lies in their implementation in the Xmipp package (Sorzano et
al., 2004b). This open-source software package has a graphical interface that guides the user
through the image processing workflow and eases the task of parallel execution on a variety
of hardware architectures (Scheres et al., 2008). This facilitates the testing of new computer
programs by the inexperienced experimentalist and enhances the visibility of novel
algorithms.

Still, it is often hard to deduce how to use new methods from the technical papers that
describe them. Moreover, it is typically not until a new method has been applied to a variety
of experimental data sets that a more profound understanding of its optimal processing
strategies is obtained. This chapter aims to facilitate the use of ML methods by sharing the
experience obtained thus far with single-particle classification. It first describes how one
typically prepares the data for ML refinement, and then discusses how to perform 2D and
3D classification. In addition, as ML approaches may require large amounts of computing
time, relevant aspects of high-performace computing are highlighted.

This chapter focuses on a range of issues that have arisen in different experimental studies.
Some of these issues are not restricted to ML classification alone, but also play a role in
other refinement approaches. Many of these issues were never published, either because
they concerned negative results or because they were not deemed relevant for the
biologically oriented publications. Taken together, I hope that this contribution will be of
practical help to others who want to apply ML image processing approaches in their
investigations.

Data preprocessing
In general terms, data preprocessing aims to provide a set of images that is as closely as
possible in accordance with the statistical model that underlies the ML approach. All
currently available ML approaches in single-particle analysis assume that each experimental
image is a noisy projection of one or more 3D objects in unknown orientations. In most
approaches the noise is assumed to be independent, additive and Gaussian. Only in two of
the currently available ML approaches (Scheres et al., 2007b; Doerschuk & Johnson, 2000)
the effects of the contrast transfer function (CTF) are included in the data model. In these
approaches the data model is expressed in Fourier space. All other approaches use a real-
space data model.

This section gives a step-wise description of the operations that are typically performed to
convert a collection of experimental micrographs into a data set of single particle images
that is suitable for ML refinement. A schematic overview of these steps is given in Figure 1.

Micrograph preprocessing
The first preprocessing step is to estimate the CTF effects by fitting a theoretical model to
the power spectra of the experimental micrographs. This is a common step in many cryo-EM
image processing strategies and a variety of programs are available for this task (Frank,
2006). The reciprocal-space variant of single-particle ML refinement (MLF, Scheres et al.,
2007b) is capable of handling theoretical CTF models provided they are rotationally
symmetric. Therefore, micrographs with strong drift or astigmatism should be discarded at
this stage, and non-astigmatic CTF models should be calculated for the remaining
micrographs. Currently available real-space ML approaches do not model CTF effects. Still,
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it is also useful for these approaches to discard micrographs with strong astigmatism or drift
as they lead to inconsistencies in the data. In addition, to partially make up for the absence
of a CTF model, real-space ML approaches often benefit from a phase-flipping correction in
the micrographs.

Particle selection
One then needs to identify individual particles of interest in the micrographs. One can
perform this task manually or use (semi-)automated procedures. This choice will often
depend on the amount and quality of the data, and on the size and shape of the particles
under study. Automated procedures are typically a much faster and less tedious option, but
one should be aware that human experts still outperform automated approaches in most
cases (Zhu et al., 2004). Data sets obtained from (semi-) automated particle selection
procedures often contain more false positives than those selected manually. False positives
may comprise a wide range of artifacts, such as irreproducibly damaged or aggregated
particles, contaminations or spurious background features. The number of false positives
should be minimized because they violate the most basic assumption of the data model: that
every image contains a reproducible signal.

Particle extraction
Once the particles of interest have been selected, they are to be extracted (boxed) from the
micrographs as individual images. The only parameter to be adjusted at this step is the size
of the squared images. Several considerations play a role in deciding on the image size. One
one hand, the extracted images should obviously be large enough to accomodate the
particles in all directions and should include sufficient space to account for residual origin
offsets. On the other hand, smaller images will reduce the computational load and have the
advantage that fewer neighbouring particles are present in the images. Neighbouring
particles are artifacts that are not accounted for in the data model and should thereby be
avoided. In conventional refinement approaches one often deals with neighbouring particles
by masking the experimental images. However, masks also fall outside the scope of the data
model of currently available ML approaches. Masking the experimental images would lead
to a systematic under-estimation of the standard deviation in the experimental noise, since
this estimation is performed using all pixels of the image. By extracting the particles in
smaller images one reduces the amount of neighbouring particles without violating the data
model, which is the main reason why one often performs ML refinements with relatively
tightly boxed particles.

Scaling
Often cryo-EM micrographs are sampled at higher frequencies than needed. According to
information theory, the highest resolution that can be obtained from the images is two times
the pixel size, while limits of at least three times are more common in practice. That means
that a pixel size of say 2 Å allows estimating the underlying signal up to a resolution of
approximately 6 Å. However, while 2 Å pixels are relatively common in cryo-EM, very few
reconstructions up to 6 Å resolution have been reported. In many cases other factors like
CTF envelope functions or structural heterogeneity put stronger limitations on the resolution
than the sampling frequency. In those cases, the images may be resampled onto larger
pixels, i.e. one may use smaller images, without compromising the attainable resolution.

Other problems may be separated into subtasks that may be solved at distinct resolutions. A
typical example is 3D refinement of structurally heterogeneous projection data. Often the
structural variability can be described at low-intermediate resolutions so that ML3D
classification (see below) may be performed with downscaled images. Then, after the
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structural heterogeneity has been dealt with, the resulting classes may be refined separately
to higher resolutions using the original images.

Downscaling has the obvious advantage that subsequent image processing will be
computationally cheaper, which is especially relevant for ML approaches that require large
amounts of computing time and memory. However, using small images has yet another,
perhaps less obvious, advantage. Since signal to noise ratios in cryo-EM data tend to fall off
with resolution, downscaling typically results in an increase of the overall signal to noise
ratio. Consequently, refinements with smaller images tend to be more robust to overfitting
and model bias. Similar effects could be achieved by low-pass filtering of the data. But low-
pass filtering introduces correlations among the pixels, which conflicts with the data model
and is therefore not recommended in combination with ML approaches.

Normalization
All images in the data set are assumed to have equal powers in the noise and in the signal.
Since this may not be necessarily true for a cryo-EM data set, one typically normalizes the
images. Image normalization aims to bring the entire data set to a common greyscale by
applying additive and multiplicative factors to each of the individual images. Perhaps the
most straightforward approach to image normalization would be to subtract the image means
and to divide by the standard deviations, resulting in zero mean and unity standard deviation
for all images in the data set. Although this is a resonable approximation for more or less
spherically shaped particles, it will yield suboptimal results for strongly elongated particles
(Sorzano et al., 2004a). For the latter, projections along the long axis of the particle will be
significantly more intense than projections perpendicular to that axis, which will give rise to
systematic differences in the image means and standard deviations. Therefore, it is better to
calculate the mean and standard deviation values for a defined area of the images that only
contains noise. One often uses the area outside a circle with a diameter that is typically
several pixels smaller than the image size (see Figure 2). Additional advantages of this
procedure are that the signal will be positive, the expected value for the solvent will be zero
and the standard deviation in the noise will be one. Based on the latter, one may start the
likelihood optimization with an initial estimate for the standard deviation in the noise of
unity.

Several modifications of the normalization procedure may yield better results in specific
cases (see Figure 2). Often, locally ramp-shaped gradients in background intensity are
visible in the micrographs. In those cases, rather than subtracting a constant value one may
fit a least squares plane through the pixels in the noise area of each image and subtract the
resulting plane. Alternatively, one could apply high-pass filters to deal with these low-
resolution effects. However, high-pass filters fail to describe the physics of the underlying
problem and introduce correlations among the pixels in the filtered image, thereby again
violating the assumption of independency in real-space ML approaches.

Other micrographs contain exceptionally white or black pixel values, which may result from
broken pixels in the digital camera, from X-rays that hit the film or camera, or from dust
particles or other artifacts in the process of scanning photographic film. These extremely
high or low pixel values correspond to outliers in the assumedly Gaussian distributions of
the experimental noise and should be removed from the data. One possibility to do so is to
replace pixels with values larger than a given number (e.g. four or five) times the standard
deviation in the image by a random instance from a Gaussian with zero mean and unity
standard deviation. Typically, one does not perform this correction if there are no visual
indications of these artifacts in the data, since statistically a small fraction of the pixels is
always expected to have such large or small values.
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Data cleaning
Finally, it is often useful to check (once more) for remaining outliers in the data. In
particular automated particle selection procedures tend to yield data sets with large amounts
of artifacts, but also manually selected data may still contain features that are not described
by the statistical data model. One could again propose completely automated procedures for
the detection of atypical features, but one should keep in mind that human experts are
typically much better at this task than computer algorithms. Therefore, visual inspection of
the selected particles is often the best way to remove remaining artifacts from the data.

Still, computer algorithms may alleviate the tedious task of looking at all particles. One
example is an ad hoc sorting procedure that was implemented in the
xmipp_sort_by_statistics program and that has resulted useful on multiple occasions. This
simple algorithm sorts all particles on a continuous scale from typical to atypical particles.
To this purpose the program calculates a large number of features for every individual
particle. These features include mean, standard deviation, minimum and maximum values,
but also features like the number of pixels with values above or below one standard
deviation and features related to differences between image quadrants. The current
implementation contains a total of 14 features and this list could in principle be expanded or
reduced to better reflect specific cases. For every feature f, the program calculates a mean
(μf) and a standard deviation (σf) value over all particles in the data set. (Alternatively, in
some cases improved results may be obtained by calculating μf and σf over a subset of the
particles that one is confident about.) For each ith image, one then calculates the average Z-
score over all F features:

(1)

where fi is the feature value for the ith image. Subsequently, one sorts the images on Z ̄i and
visualizes them in typical matrix views where images with low average Z-scores are at the
top and images with high values are at the bottom. It is still up to the human expert to decide
which particles to discard, but often this process is much easier as nice particles tend to be at
the top and many more artifacts are present near the bottom of the sorted particle list (see
Figure 3).

2D classification
2D analysis of cryo-EM data may be a useful tool to answer a wide range of biological
questions. Most often however, it is used as a means of data quality assessment or as a
preprocessing step prior to 3D reconstruction. In general, 2D averaging procedures are much
faster and more robust than their 3D counterparts. The lower complexity of the problem
often allows retrieving 2D signals (class averages) from the noisy data in a reference-free
manner, i.e. without a prior estimate of the signal. This greatly reduces the pitfalls of model
bias as encountered in 3D procedures. Still, images cannot be aligned well without
separating distinct classes and it is hard to separate classes when the images are not aligned
well. Conventionally, this chicken and egg problem has been addressed by iterative schemes
of alignment, classification and re-alignment of the resulting classes, see (Frank, 2006) for a
comprehensive overview. Two ML approaches have recently emerged as powerful add-ons
to existing approaches: a multi-reference alignment scheme called ML2D (Scheres et al.,
2005) and a neural network called kerdenSOM (Pascual-Montano et al., 2001). A schematic
overview of how these approaches are used is shown in Figure 4 and both approaches are
described in more detail below.
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ML2D
The ML2D algorithm may be used to simultaneously align and classify single-particle
images (Scheres et al., 2005). Reference-free class averages are obtained in a completely
unsupervised manner by starting multi-reference alignments from average images of random
subsets of the unaligned data. The only parameter that is is adjusted by the user is the
number of references (K). This number should ideally reflect the number of different 2D
structures that are present in the data, but that number is typically not known. In practice,
one afronts this problem by running the algorithm multiple times with different values for K.
Higher values for K are accepted if interpretation of the resulting class averages leads to new
information. However, a maximum number of classes does exist. The more classes, the
fewer particles participate in each class (or more strictly, the lower the weighted sums of
particle contributions to each class). Averaging over a low number of particles leads to noisy
averages, which result in suboptimal alignments and classifications. Therefore, in practice
one often limits K so that on average there are at least 200–300 cryo-EM particles per class,
while these numbers are typically much lower for negative stain data.

An intrinsic characteristic of the ML approach is that it does not assign images to one
particular class or orientation. Instead, images are compared to all references in all possible
orientations and probability weights are calculated for each possibility. Class averages are
then calculated as weighted averages over all possible assignments and used for the next
iteration. Still, in practice the probability distributions often converge to approximate delta-
functions. In this situation, each image effectively contributes to only a single class and
orientation, and division of the data into separate classes or the assignment of optimal
orientations is justified. The sharpness of the probability distributions may be monitored by
their maximum value. Since the distributions integrate to unity, maximum values close to
one indicate near-delta functions and values close to zero indicate broad distributions. This
value may also serve to identify outliers as those particles that still have relatively broad
distributions upon convergence.

Two theoretical drawbacks of the real-space ML2D approach are that it does not take the
CTF into account and that it assumes white noise in the pixels. Although this does not
withhold ML2D from obtaining useful results in many cases, more precise descriptions of
the CTF-affected signal and non-white noise are employed by the MLF2D algorithm
(Scheres et al., 2007b). An additional advantage of this algorithm is its intrinsic multi-
resolution approach where higher frequencies are only included in the optimization process
if the class averages extend to such resolutions. For some cases the MLF approach has been
observed to yield much improved results compared to its real-space counterpart. Often, these
cases concern data with a large spread in defocus values or with relatively low-resolution
signals. For other cases however, the MLF algorithm has been observed to converge to
suboptimal solutions with a few highly populated and many empty classes. Sometimes,
these problems are alleviated by running the MLF algorithm without CTF correction. In
general, it is difficult to predict whether the real-space or the reciprocal space approach will
be better for a given data set and one typically performs tests with both algorithms. The
approach that works best in 2D is often also the optimal choice in 3D. Thereby, the
relatively cheap tests in 2D may save computing time in subsequent 3D refinements.

An additional advantage of the unsupervised character of ML(F)2D is that it is easily
incorporated into high-throughput data processing pipelines. One example is the
implementation of the ML2D approach inside the Appion pipeline (Lander et al., 2009).
This interface aims to streamline cryo-EM data processing by facilitating the use of flexible
image processing workflows that use multiple programs from various software packages, for
more information see the chapter by Carragher in this issue. Typical applications of ML2D
inside this pipeline include the generation of templates for automated particle picking, data
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cleaning (by discarding images that give rise to bad class averages or with relatively flat
probability distributions), and the generation of class averages for subsequent random
conical tilt or common lines reconstructions (Voss et al., 2010).

kerdenSOM
The kerdenSOM algorithm, which stands for kernel density self-organizing map, is a neural
network based on ML principles (Pascual-Montano et al., 2001). The kerdenSOM algorithm
may be used to classify images that have been pre-aligned. However, rather than classifying
the particles in a predefined number of classes, the algorithm outputs a two-dimensional
map of average images called code vectors. A regularized likelihood target function results
in an output map that is organized. This means that the differences between neighbouring
code vectors are relatively small and that structural differences vary smoothly across the
map. Then it is up to the user to decide how many structural classes are present in the map.

Although the user does not have to choose a fixed number of classes, he does have to decide
on the size of the output map and on the parameters that determine its regularization. Larger
output maps can accomodate more different structures, but too large maps may have very
few particles contributing to each code vector. Too strong regularization results in very
smooth output maps that cannot describe the structural variability in the data, while too
weak regularization leads to unorganized maps where it is difficult to identify continuous
structural variations among the data. Therefore, the kerdenSOM algorithm is often run
multiple times with different sizes of the output map and different regularization parameters.
This is facilitated by the reduced computational costs compared to ML2D classification, but
interpretation of the corresponding results does make the kerdenSOM algorithm relatively
user-intensive.

An important advantage of using prealigned particles is that the classification may be
focused on a particular region of interest in the images. In this scenario only pixels inside a
binary mask are included in the likelihood optimization. This speeds up the calculations and
prevents structural variations in other regions of the images to interfere with the
classification. This strategy has proven particularly useful in combination with the ML2D
algorithm (e.g. see ML2D+kerdenSOM entries in Table 1). Here one first uses ML2D to
align the images and separate classes corresponding to relatively large structural differences.
Then, one focuses the kerdenSOM on a particular area of a given class. For example, ML2D
may be used to separate top and side views of a complex and the kerdenSOM may be
focused on the non-stoichiometrical binding of a factor that is only visible in the side view.
Apart from its implementation in the Xmipp package, this workflow is also accessible
through the Appion pipeline.

3D classification
Because molecules are 3D objects, 3D reconstructions from cryo-EM single-particle
projections typically provide much more information than 2D class averages. However, 3D
reconstruction is a much more complex mathematical problem than 2D averaging. One
consequence of this increased complexity is that 3D reconstructions often depend on the
availablity of an initial estimate of the underlying signal. Suitable initial models may be
derived from known structures of similar complexes or they may be determined de novo by
angular reconstitution or random conical or orthogonal tilt experiments, see (Frank, 2006)
and the chapter by Leschziner in this issue for more details. Still, even for structurally
homogeneous data sets obtaining a reliable model is often far from straightforward, and bias
towards incorrect models may introduce important artifacts in the results.
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The situation is even more complex if multiple 3D structures are present in the data. The
combination of distinct conformations in a single reconstruction leads at best to a general
loss of resolution or to the loss of electron density in specific areas for partially flexible or
non-stoichiometric complexes. Larger conformational changes may cause much more
prominent artifacts, even up to the point where the refined structure no longer reflects any of
the conformations in the sample. Nevertheless, structural heterogeneity also offers a unique
opportunity to obtain information about multiple functional states, provided that projections
from different structures can be classified. ML methods have recently emerged as powerful
tools for this complicated task. 3D multi-reference refinement by ML (ML3D, Scheres et al.,
2007a) has provided the first unsupervised classification tool that is applicable to a wide
range of structurally heterogeneous data sets (e.g. see Table 2). An overview of the image
processing workflow for ML3D classification is shown in Figure 5 and the separate steps are
discussed in detail below.

Preparing the starting model
ML3D refinement depends on an initial 3D reference structure and the selection of a suitable
model has been found to be a pivotal step for successful classification. The expectation
maximization algorithm that underlies the ML3D approach is a local optimizer, i.e. it
converges to the nearest local minimum. Despite the marginalization over the orientations
and class assignments, model bias has still been observed to play an important role in ML3D
classification. Therefore, it is recommended to start ML3D classifications from a consensus
model that ideally reflects to some extent all the different structures in the heterogeneous
data set. This is almost a contradiction in terms. Perhaps a hypothetical example illustrates
the role of the consensus model: if the data were already separated into K structurally
homogeneous subsets, separate refinements of the consensus model against each of the
subsets should be able to converge to the K different structures that are present in the data.

In many cases a suitable starting model may be obtained by refinement of the complete data
set against a single 3D reference, followed by a strong low-pass filter. The effective
resolution of the low-pass filter plays a crucial role here, as high frequencies in the starting
model are prone to induce local minima and too restrictive filters result in featureless blobs
that cannot be refined. One typically filters the consensus model “as much as possible”. That
is, one filters the consensus model to the lowest possible resolution for which refinement
against the heterogeneous data still converges to a solution that is similar to the unfiltered
model. For many cases useful low-pass filters have been observed to lie in the range of
0.05–0.07 pixel−1 (using downscaled images as described above).

The direct use of low-pass filtered PDB models, negative stain reconstructions or
geometrical phantoms as starting models in ML3D classification has been observed to yield
suboptimal results. It is often better to first refine such a model against the complete,
structurally heterogeneous data set. In principle, any program could be used for this task.
Rather than aiming at high-resolution information (the resulting model will be low-pass
filtered anyway), this refinement should aim at removing false low-resolution features from
the model. For example, negative stain models may be flattened, the dimensions of
geometrical phantoms may be off, atomic models may be incomplete or have an
unrealistically high contrast, etc. Another common pitfall is a small difference in pixel size
between the starting model and the actual data set, which may arise from suboptimal
calibrations of the microscope magnification. The latter may also be checked by comparing
projections of the starting model with reference-free class averages of the structurally
heterogeneous data, as for example obtained using ML2D.

Although any refinement program could be used to generate the starting model, one should
keep in mind that some software packages provide reconstructions for which the absolute
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intensity (or grey scale) is not consistent with the intensity of the experimental images. This
may be because the reconstruction algorithm itself is not implemented in a consistent way,
or because the reconstruction is normalized internally. Re-projections of such maps are on a
different grey scale than the signal in the experimental images. This is typically harmless in
conventional refinements where maximum cross-correlation searches are insensitive to
additive or multiplicative factors. However, the squared difference terms inside the Gaussian
distributions are highly sensitive to these factors and ML refinements of models with
inconsistent grey scales may give rise to extreme artifacts. A typical observation in such
cases is that all experimental images contribute to only a single projection direction and the
corresponding reconstruction is severely artifactual.

All algorithms from the Xmipp package yield reconstructions with consistent grey scales.
Consequently, in case of doubt one may correct the grey scale by performing a
reconstruction inside the Xmipp package. To this purpose, one could transfer the
orientations from the other software package to Xmipp, but this may involve cumbersome
conversion issues. Often it is easier to subject the refined model from the other package to a
single, additional iteration of conventional projection matching refinement inside the Xmipp
package. As the resulting model will be low-pass filtered anyway, this step may be
performed in a quick manner using a coarse angular sampling and a fast reconstruction
algorithm.

Multi-reference refinement
ML3D classification is a multi-reference refinement scheme and thus requires multiple
starting models. A key achievement of the ML3D approach is that distinct structures can be
separated in an unsupervised manner, i.e. without prior knowledge about the structural
variability in the data. In particular, multi-reference ML refinements were observed to
converge to useful solutions when starting from initial models (seeds) that are random
variations of a single consensus model. To generate randomly different seeds one typically
divides the structurally heterogeneous data set into random subsets and performs a single
iteration of ML3D refinement of the consensus model against each of the subsets separately.
Perhaps, alternative ways like adding different instances of random noise to the consensus
model would also work. However, the division of the data in random subsets is more closely
related to traditional k-means and does not introduce any additional parameters (e.g. how
much noise to add).

Apart from the starting model itself, the most important parameter in ML3D classification is
K, the number of 3D models that are refined simultaneously. As in ML2D classification, K
should ideally reflect the number of different structures in the data, but because that number
is unknown K is typically varied over multiple runs. Again, the maximum number of
references is ultimately determined by the amount of experimental data available. Often,
(asymmetric) reconstructions from less than 5,000–10,000 cryo-EM particles become too
noisy to allow reliable alignment and classification. In practice, K may also be limited by
available computing resources. In general, 3D ML refinement is computationally demanding
and the current implementation was optimized for speed by storing the reference projections
of all models in memory. Thereby, memory requirements scale linearly with K so that high
numbers may require more computer memory than physically available.

Hardware limitations also put stringent limitations on the angular sampling rate. Because
memory requirements scale quadratically with the angular sampling rate, and computing
times scale even cubically, high angular sampling rates quickly become computationally
prohibitive. Therefore, ML3D classification is typically performed with relatively coarse
angular sampling rates. In most applications reported thus far an angular sampling rate of
approximately 10 degrees was used. This intrinsically limits the resolution that can be
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obtained by ML3D, but fortunately in many cases the structural variability can be resolved
at medium-low resolutions. An additional effect of the coarse sampling is that otherwise
similar reference structures may rotate several degrees with respect to each other during the
optimization process. These rotated references may better accomodate particles with
orientations that fall in between the coarse angular sampling used in the refinement (Scheres
et al., 2007a). The latter should also be taken into account when choosing K, because the
presence of different rotated versions of the same conformation reduces the number of
different conformations that can be separated for a given number of K.

ML3D multi-reference refinement is typically performed for a user-defined number of
iterations, often around 25. Convergence may be monitored by analysis of the log-likelihood
value during the iterations and the number of particles that change their optimal orientations
or class from one iteration to the next. Typically, one stops the calculations when the log-
likelihood increase has leveled off and when the number of the particles that still change
their optimal orientation or class has stabilized to a small fraction of the data set. As in the
ML2D case, the width of the probability distributions may be monitored by their maximum
values, and these distributions tend to converge to approximate delta functions. The latter
again allows one to divide the data set into separate classes, which ideally should be
structurally homogeneous. These classes may then be refined separately to higher resolution
using conventional refinement algorithms and the original images without downscaling.

Interpretation of the classification results
As mentioned above, one of the main advantages of ML3D classification is its unsupervised
character. This circumvents the main pitfall of biasing the classification towards a false
assumption about the classes in supervised approaches. Still, the starting model may lead to
bias in the alignment of the particles, which will in turn affect classification (e.g. see Figure
6). The problem of model bias is not unique to ML3D classification. It plays an important
role in many 3D refinement programs for cryo-EM single particle data. A typical sign that
the refinement process is affected by model bias is that the references do not gain new
structural details. Often, the refined structures remain similar to the initial seeds at
intermediate-low resolution and only seem to accumulate noise at higher frequencies. In
other cases, the references may even disintegrate during the refinement process. A good
indication that the refinement is not affected by model bias is that various, different starting
models all converge to a similar solution. Still, especially for relatively small particles with
no or low symmetry, the absence of a good starting model may be an important obstacle for
successful 3D alignment and classification.

Even if a good starting model is available, the results of 3D classifications of cryo-EM data
should be interpreted with care. Many hypothetical divisions of the data may give rise to 3D
reconstructions with plausible structural differences. However, due to the high noise levels
in the data, these differences are not necessarily related to actual structural variability in the
data. Although interpretation of the classes in the light of prior biochemical and structural
knowledge may be an extremely powerful criterion to decide on the plausibility of a
classification, it is often also a highly subjective endeavour with a considerable risk of
overinterpretation. Fortunately, there are several, more objective tests that one can (and
perhaps should) perform.

Firstly, the differences between the refined structures could have arisen from the random
variations among the initial starting seeds. Although the initial variations are typically small,
they may be amplified during the refinement of the noisy data. However, in that case a
second classification starting from different random seeds will not likely result in the same
classes. Therefore, it is often useful to check the reproducibility of the classification by
comparing classes from multiple classification runs that were started from different random
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seeds. Significant class overlaps (e.g. of more than 75%) are usually an indication of reliable
classification.

Secondly, structurally homogeneous data sets should behave better in refinement than
structurally heterogeneous data sets. Therefore, to test whether classes obtained by ML3D
are more homogeneous than the original structurally heterogeneous data set, one could
compare conventional refinement statistics. However, this comparison is complicated by the
fact that the classes obtained by ML3D classification are per definition smaller than the
original data set. A solution to this problem is to randomly divide the original data set into
subsets of identical size as those obtained by ML3D classification. The random division is
not expected to resolve any of the structural heterogeneity. Therefore, refinements of the
subsets obtained by ML3D classification should then yield better statistics, e.g. Fourier Shell
Correlations, than refinements of the random subsets of identical size. Similarly, the refined
ML3D classes should give rise to less intense 3D variance maps (Penczek et al., 2006) than
the refined random subsets.

Indications for remaining structural heterogeneity in the classes are the same ones as those
that were used to identify the heterogeneity in the first place. Low density values for factors
that bind non-stoichiometrically, fuzzy density or relatively low resolution for flexible
domains, or overall too low resolutions may indicate that the classes are still heterogeneous.
In that case one could opt to repeat the original classification with a higher number of
classes, but this may not be feasible because of limited computing resources. Alternatively,
one may also divide one or more of the classes separately into multiple subclasses. In this
way, the structural heterogeneity may be removed in a hierarchical manner, focusing on ever
smaller details in subsequent steps (e.g. see Figure 7).

A final comment on the analysis of structural differences between classes concerns the use
of normalized difference maps. Rather than comparing two maps that are rendered at a given
threshold side by side in a 3D visualization program, it is often much more informative to
visualize the positive and negative differences between both. If ones assumes that the
differences between two independent reconstructions of identical structures is zero-mean
and Gaussian distributed, one may interpret the difference map in a statistical manner. In
such an interpretation, areas of positive or negative difference density above a certain
threshold (e.g. three times the standard deviation) may be considered as significant. In the
difference maps, presence or absence of factors typically show up as isolated peaks, domain
movements are characterized by positive density on one side of the domain and negative
density on the other, and the solvent region should not contain strong difference density (e.g.
see Figure 8).

However, in order to subtract one map from the other several issues need to be taken into
consideration. Firstly, it is important that both maps are aligned. As maps may rotate with
respect to each other during ML3D refinement, realignment of the output maps is often
necessary. Secondly, both maps should be on the same resolution. Typically, subsets of
different sizes yield reconstructions at different resolutions, and both maps should be filtered
to the lowest common resolution. Finally, both maps should be on the same intensity scale
and have similar power spectra, or B-factor decays. This will generally be true for maps that
were reconstructed from subsets of a single data set, but special care should be taken when
subtracting maps obtained from other microscopy experiments or atomic structures.

High-performance computing
Because of their elevated computational costs, 3D ML approaches rely heavily on high-
performance computing approaches. For example, classification of 91,000 ribosome
particles into four classes was reported to take more than six months of computing time
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(Scheres et al., 2007a), while these calculations were actually performed within a few days
using 64 processors in parallel. In order to make efficient use of available computing
resources it may be necessary to have some understanding of the available hardware and the
parallelization strategies employed.

The most expensive part of the expectation maximization algorithm is the E-step, where for
every particle an integration over all possible orientations and classes is evaluated. This step
is similar to the alignment step in conventional refinement approaches. Fortunately, each of
the typically thousands of individual particles can be processed independently within each
E-step. In parallel computing such problems are called embarrassingly parallel, as very little
effort is typically required to split them into a number of parallel tasks. Only when reaching
the M-step (i.e. the reconstruction step) the information from all particles is to be combined,
but this step is typically much less expensive.

Parallelization strategies may be divided into two categories depending on the computer
hardware that is used. Shared-memory parallelization employs multi-core processors that
share a single centralized memory1, while distributed parallelization is used for computing
nodes with their own local memory that are connected via a network. As parallel processes
in a multi-core processor have access to the same memory, the implementation of shared-
memory parallelization is often relatively easy. Single processes may be programmed to
launch multiple threads to perform separate tasks simultaneously. Apart from the relative
ease of software development (which may be of little concern to the experimentalist) multi-
threaded programs are also relatively easy to use. Executing these programs in parallel does
not involve additional complications and they can be run on commonly available multi-core
desktop computers.

In distributed parallelization, parallel tasks are executed on different nodes that cannot see
each other’s memory, and information exchange between nodes is typically performed by
message passing. Thereby, the efficiency of distributed parallelization schemes is often a
trade-off between the costs of computation and communication. The main advantage of
distributed parallelization is scalability. Many thousands of nodes may be used
simultaneously in large computing clusters, whereas shared-memory parallelization is
limited by the number of cores on a single processor (currently up to eight). However, even
when using common standards like MPI (Gropp et al., 2009), the installation of message
passing programs is often more complicated than for sequential programs. Moreover, not all
electron microscopy labs have access to a computing cluster, and jobs are often executed
through specific queueing systems that may present an additional stumbling block for the
experimentalist.

The ML2D and ML3D programs in the XMIPP package have been implemented using a
hybrid parallelization approach using both threads and MPI2. Thereby, one can take full
advantage of modern, multi-core computer clusters. In this scenario MPI takes care of
passing messages between a possibly high number of multi-core nodes, each of which runs
multiple threads in parallel. The shared-memory parallelization is particularly useful in 3D
classification where memory resources pose important limitations on the angular sampling
and the number of classes. By sharing the memory inside a multi-core node one prevents the
duplication of part of the memory as would be the case in distributed parallelization.

1Parallel computing on the graphics processing unit (GPU) may also be considered as a form of shared-memory parallelization. This
recent trend in computer science is promising much increased computing capacities with relatively cheap hardware. However, as GPU
implementations of ML2D or ML3D are not yet available, this development is not discussed here. For a recent review on this topic,
the reader is referred to (Schmeisser et al., 2009).
2Note that current implementations of the MLF2D and MLF3D programs only use MPI.
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Thereby, within a single node much more memory is available so that a higher number of
classes may be refined and with finer angular samplings.

In most cases, parallelization of the E-step can be done with excellent efficiency, but this is
not the case for the M-step. The M-step of ML2D is very quick, basically the calculation of
K 2D average images, and thus does not play an important role. The M-step in ML3D
comprises K 3D reconstructions which are performed using a modified weighted least-
squares (wls) ART algorithm (Scheres et al., 2007a). These reconstructions are relatively
fast compared to the E-step, but a distributed parallelization scheme is not straightforward
for this type of algorithm (Bilbao-Castro et al., 2009). Therefore, the current wlsART
implementation only uses threads, although the K independent reconstructions may each be
performed by a different MPI process. The M-step may thereby become a bottle neck if the
number of MPI processes is much larger than K. Therefore it is important to realize that if
the M-step starts taking similar amounts of time as the E-step, using more MPI processes
will no longer lead to important gains in speed.

Outlook
Image classification plays an increasingly important role in single-particle cryo-EM as it
offers the unique opportunity to characterize multiple structural states from a single sample.
While these potentials are being illustrated for a growing number of macromolecular
complexes, it is becoming clear that these complexes are even more flexible than
anticipated. For example, using biophysical single-molecule techniques and single-particle
cryo-EM it was shown that even at room temperature thermal energy alone appears to be
sufficient to induce major conformational changes in the 70S ribosome (Cornish et al., 2008;
Julian et al., 2008; Agirrezabala et al., 2008). These observations are changing our view of
molecular machines in a profound way and will eventually lead to even bigger challenges in
image classification. In response to these insights, many different 3D classification tools
have recently emerged, see (Spahn & Penczek, 2009) for a recent review. Compared to
existing alternatives, ML classification may be an attractive choice in many experimental
studies because of its unsupervised character, its robustness to high noise levels, and its
simultaneous assignment of orientations and classes.

As mentioned in the introduction, their implementation in the Xmipp package (Sorzano et
al., 2004b) may have played an important role in the relatively wide spread use of ML
single-particle classification approaches. Therefore, it is promising that similar programming
efforts are being made for ML approaches in other cryo-EM modalities as well. Recently, a
dedicated program has been written for ML refinement of icosahedral viruses (Prust et al.,
2009), while the ML approach for 2D crystals has been implemented in the 2dx software
package (Gipson et al., 2007) that provides a user-friendly interface to the MRC package
(Crowther et al., 1996).

New results with ML methods in other cryo-EM modalities are other promising indicators
that ML approaches may eventually become of general use in many aspects of cryo-EM data
processing. Recently, the ML approach for icosahedral virus refinement by Doerschuk &
Johnson (2000) and Yin et al. (2001, 2003) was successfully applied to classify an assembly
mutant of CCMV (Lee, 2009), and ML sub-tomogram averaging (Scheres et al., 2009)
provided reference-free alignment and classification of 100S ribosome particles (submitted,
in collaboration with Julio Ortiz). Together with the continuing increase in available
computing power, ML methods and related statistical approaches are thereby expected to
play progressively central roles in a wide range of experimental cryo-EM studies.
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Figure 1.
Schematic view of a typical image preprocessing workflow. Important parameters that are
discussed in the main text are highlighted in grey. These are the dimension of the boxed
particles (Dim), the dimension of the downscaled particles (newDim), the radius of the circle
that determines the particle noise area (bgRadius) and the threshold in standard deviations of
the image that is used to discard outlier pixel values (thrOutlier).
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Figure 2.
An illustration of image normalization. All pixels outside the white circle in the upper right
image are assumed to contain only noise. These pixels are used to fit a least-squares
background plane and to calculate the standard deviation of the noise. The upper row shows
original images as they were extracted from the micrographs. The two images on the left
show ramping backgrounds, the two images on the right show pixels with extremely low
(i.e. black) intensity values. The lower row shows the same four images after normalization.
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Figure 3.
The results of automated image sorting based on average Z-scores. The top row shows
images with relatively low Z-scores, the middle row images with average Z-scores and the
bottom row shows images with relatively high Z-scores. The number of bad particles
typically increases with higher Z-scores, which may facilitate the interactive removal of
outliers by the user.
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Figure 4.
Schematic view of the use of the ML2D (A) and kerdenSOM (B) algorithms. Important
parameters that are discussed in the main text are highlighted in grey. These are the number
of classes to be used in ML2D classification (K) and the size of the map (mapSize) and its
regularization parameters (regParam) for the kerdenSOM algorithm.
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Figure 5.
Schematic view of the ML3D classification workflow. Important parameters that are
discussed in the main text are highlighted in grey. These are the initial 3D model (iniRef3D),
the frequency of the low-pass filter (Freq), and the number of classes (K) and the angular
sampling (angSam) to be used in the ML3D refinement.
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Figure 6.
An example of model bias affecting ML3D classification. Using a suboptimal initial
reference (A), ML3D classification yielded suboptimal results (B). Using an improved initial
model (C), ML3D classification separated uncomplexed CCT from CCT:Hsc70NBD
complexes. See (Cuellar et al., 2008) for more details.
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Figure 7.
An example of hierarchical classification by ML3D. In three consecutive runs (run 1–3)
ML3D classification is used to separate a dataset of 74,400 ribosome particles into multiple
classes. Run1 separates intact ribosomes from disintegrated, 50S particles; run2 separates
particles with strong density for tmRNA and run3 classifies the remaining intact ribosomes
into particles without apparent tmRNA density and particles with weak tmRNA density in
an alternative conformation. See (Cheng et al., 2010) for more details.
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Figure 8.
An illustration of the use of difference maps in the analysis of distinct structural classes.
Side-by-side visualization of maps rendered at the same threshold does not readily reveal the
structural differences between them (A). Positive (black) and negative (white) difference
maps rendered at five standard deviations better reveal compositional and conformational
differences (B).
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Table 1

ML applications in single particle 2D analysis

Reference Sample ML approach

(Gomez-Lorenzo et al., 2003)a SV40 large T antigen kerdenSOM

(Dang et al., 2005)b cytolysin kerdenSOM

(Gomez-Llorente et al., 2005)c MCM kerdenSOM

(Gubellini et al., 2006)d photosynthetic core complex ML2D+kerdenSOM

(Nunez-Ramirez et al., 2006)e G40P kerdenSOM

(Stirling et al., 2006)f CCT:PhLP3:tubulin ML2D

(Valle et al., 2006)g SV40 large T antigen kerdenSOM

(Martin-Benito et al., 2007a)h CCT:Fab ML2D

(Martin-Benito et al., 2007b)i thermosome:prefoldin ML2D

(Arechaga et al., 2008)j TrwK ML2D

(Cuellar et al., 2008) CCT:Hsc70NBD ML2D

(Radjainia et al., 2008)k Adiponectin ML2D

(Rehmann et al., 2008)l EPAC2:cAMP:RAP1B ML2D

(Tato et al., 2007)m TrwA:trwB ML2D+kerdenSOM

(Boer et al., 2009)n repB ML2D

(Greig et al., 2009)o Colicin Ia ML2D

(Klinge et al., 2009)p DNA polymerase α ML2D

(Landsberg et al., 2009)q AAA ATPase Vps4 ML2D

(Recuero-Checa et al., 2009)r DNA ligase IV-Xrcc4 ML2D

(Reiriz et al., 2009)s α, γ-peptide nanotubes ML2D

(Albert et al., 2010)t groEL:AGXT ML2D+kerdenSOM

a
EMBO J. 22, 6205–6213.

b
J. Struct. Biol. 150, 100–108.

c
J. Biol. Chem. 280, 40909–40915.

d
Biochemistry 45, 10512–10520.

e
J. Mol. Biol. 357, 1063–1076.

f
J. Biol. Chem. 281, 7012–7021.

g
J. Mol. Biol. 357, 1295–1305.

h
Structure 15, 101–110.

i
EMBO Rep. 8, 252–257.

j
J. Bacteriol. 190, 4572–5479.

k
J. Mol. Biol. 381, 419–430.
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l
Nature 455, 124–127.

m
J. Biol. Chem. 281, 7012–7021.

n
EMBO J. 28, 1666–1678.

o
J. Biol. Chem. 284, 16126–16134.

p
EMBO J. 28, 1978–1987.

q
Structure 17, 427–437.

r
DNA Repair 8, 1380–1389.

s
J. Am. Chem. Soc. 131, 11335–11337.

t
J. Biol. Chem. 285, 6371–6376.
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Table 2

ML applications in single particle 3D analysis

Reference Sample Heterogeneity type

(Recuero-Checa et al., 2009)a DNA ligase IV-Xrcc4 data cleaning

(Wang et al., 2009)b RISC loading complex substoichiometric complex

(Nickell et al., 2009)c 26S proteasome substoichiometric complex

(Klinge et al., 2009)d DNA polymerase α flexible arm

(Greig et al., 2009)e Colicin Ia unclear

(Julian et al., 2008) Hybrid state 70S Ribosome ratcheting and ligand occupation

(Rehmann et al., 2008)f EPAC2:cAMP:RAP1B data cleaning

(Cuellar et al., 2008) CCT:Hsc70NBD substoichiometric complex

(Cheng et al., 2010) Stalled 70S Ribosome ligand occupation

a
DNA Repair 8, 1380–1389.

b
Nat. Struct. Mol. Biol. 16, 1148–1153.

c
Proc. Natl. Acad. Sci. U.S.A. 106, 11943–11947.

d
EMBO J. 28, 1978–1987.

e
J. Biol. Chem. 284, 16126–16134.

f
Nature 455, 124–127.

Methods Enzymol. Author manuscript; available in PMC 2011 April 21.


