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Abstract
Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory net-
works as well as the quantitative level of gene expression. A multiplicity of both experimental and computational
methods is currently used to discover and characterize the underlyingTF^DNA interactions. Experimental methods
can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding
events. In this review we summarize the flexibility and performance of a selection of both types of experimental
methods. In conclusion, we argue that a serial combination of methods with different throughput and data type
constitutes an optimal experimental strategy.
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INTRODUCTION
The coordinated expression of genes drives a major-

ity of cellular processes. This coordination is in part

regulated by interactions between proteins, called

transcription factors (TFs) and sequence-specific

DNA elements, called TF-binding sites (TFBS).

Transcriptional regulation is not an isolated process,

but is rather embedded in a highly interconnected

gene regulatory network (GRN) consisting of

hundreds of TFs, their target promoters and

co-regulators (up to 10% of the human ORF-

coding genome codes for TFs) [1]. TF binding and

function is regulated on several levels. The first and

most fundamental order of regulation is achieved by

the preferential binding of a TF to specific DNA

sequences [2]. Higher orders of regulation are ac-

complished by post-translational modifications of

TF domains or binding of co-regulators. These

modifications in turn can modulate the activity

and/or cellular location of a TF [3, 4].

It is the specific binding of TFs that determines in

large part the connectivity of GRNs as well as the

quantitative level of gene expression [5]. Genetic

variations in TFBS are frequently associated with dif-

ferences in transcription among individuals, high-

lighting the necessity of precise characterization [6].

Thus, in-depth characterization of TF–TFBS inter-

actions on a genome-wide level is pivotal to our

understanding of transcriptional regulation. Any

comprehensive characterization of GRNs must in-

clude TF–DNA-binding specificities as well as the

higher-order modes of regulation such as protein

modifications and protein-protein interactions [7].

Numerous methods, both experimental and com-

putational, exist that allow one to discover and com-

prehensively characterize the specificity by which

TFs interact with cognate DNA elements. In this

review we cover a selection of experimental methods

primarily focusing on the flexibility and performance

of methods for determining TF-DNA specificities.
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Within the field of experimental TF biology, two

fundamentally different kinds of approaches are

used to characterize TF interactions: in vitro- and

in vivo-based methods.

In vitro methods generally aim to identify either

TF consensus binding sites [8], binding energy land-

scapes [9] or the biophysical parameters governing

these binding events [10]. In vivo-based methods re-

cover information on TF consensus binding sites,

sequence specificity, as well as the biological context

of sequence-specific interactions. Experimental

methods can be further subdivided into methods

that provide qualitative or quantitative data, with a

majority of methods falling in the former category

(Figure 1 and Table 1). To express these differences

more explicit we refer to data type as a qualifier to

distinguish qualitative, semi-quantitative, quantita-

tive, and kinetic data of TF–DNA interactions

(Figure 1 and Table 1, indicated as ‘þ’ to

‘þþþþ’, respectively).

We refer the reader to excellent reviews [11–14]

for a comprehensive overview of in silico methods,

which generally rely on conservation of TFBS,

either amongst a set of known co-regulated genes,

or within homologous promoters of closely related

species. The corresponding TF is generally inferred

from a priori information if it isn’t known already.

We also refer the readers who are interested in the

use and performance of ‘one-hybrid’ screens to the

following in-depth reviews [15, 16].

We argue that a combination of several in vitro
and in vivo methods is currently indispensable to

our understanding of transcriptional regulation.

Significant advancement in quantitative characteriza-

tion of genome-wide protein–DNA interactions in

space and time is required before it will be possible to

accomplish a major goal in transcriptional regulation:

the quantitative prediction of GRNs.

METHODSTO ELUCIDATETF^DNA
INTERACTIONS
Traditionally, TFBS have been mapped and charac-

terized in vitro and in vivo using electrophoretic

mobility shift assays (EMSA) [17, 18] and promoter

deletion analysis coupled to a reporter assay (e.g.

b-galactosidase) [19], respectively. In many cases

these classical approaches don’t meet the throughput

required for a systematic characterization of TF–

DNA interactions. The genome-wide characteriza-

tion of TF-binding profiles only became feasible

with the advent of microarray-based methods

[20, 21]. To date, several high-throughput

approaches have been developed, including in vivo-
based ChIP-chip and ChIP-seq methods [20–25]

and invitro methods based on binding site enrichment

[26, 27], DNA microarrays [28–32], and microfluidic

devices [9, 10, 33, 34].

IN VITROMETHODS
The first in vitro implementation to determine de novo
TF-binding sites was developed more than two dec-

ades ago. Systematic evolution of ligands by expo-

nential enrichment (SELEX) is based on incubating a

purified TF with a pool of random DNA oligos. TF

bound oligos are selected, amplified by PCR, and

re-incubated with the TF so that repeated rounds

of selection identifies high-affinity binders, or the

TF’s consensus TFBS [8, 35, 36]. SELEX was one

of the first approaches that could determine the con-

sensus binding site of a TF without prior informa-

tion. Yet the ability to accurately determine the

consensus binding site is simultaneously a drawback

of SELEX in that only few high-affinity binding

sites are selected and amplified, which is insufficient

to accurately and comprehensively capture the

non-linear relationship between sequence

Figure 1: Comparison of target DNA throughput and
obtained data type of selected methods. In vivo-based
methods (highlighted in red), offer tremendous
throughput but no quantitative data onTF^DNA inter-
action. In vitro-based methods, while decreasing
throughput, capture the quantitative nature of TF^
DNA binding events. MITOMI can in principle be
extended to collect kinetic information, as indicated
by the dotted extension.

Experimental strategies for studying transcription factors 363



composition and binding affinity of TFBS

(Figure 2A) [27, 37].

To overcome this limitation, in vitro selection was

recently coupled to massive parallel sequencing

approaches [26, 27]. Instead of multiple rounds of

binding and amplification, one round of selection is

sufficient to capture relative binding affinities as fold

enrichments of sequenced DNA fragments. TF

throughput of SELEX based methods currently re-

mains limited as sufficient protein needs to be pur-

ified and the handling steps have not yet been

adapted to high-throughput (Table 1). Nevertheless

SELEX-seq may prove to be a more cost-effective,

comprehensive and higher-throughput alternative to

protein-binding microarrays (PBMs) in the near

future [38].

With the availability of DNA microarray chips,

binding reactions can be performed on immobilized

double-stranded DNA oligonucleotide arrays

(Figure 2B) [28–32]. In short, a protein of interest

is allowed to bind to a PBM. Following stringent

washing steps, binding events are quantified by

immuno-detection using protein specific, fluoro-

phore coupled antibodies. Signal intensities are ana-

lyzed and interpreted as differential binding profiles.

Recent advances in the field of microarray technol-

ogy allow the fabrication of high-density arrays, har-

boring practically all permutations of a 10-mer

sequence. On a 44 000 feature array all �1 000 000

features of a 10-mer space are represented as a nested

De Bruijn sequence [28]. Cognate Site Identifier

arrays (CSI) based on single stranded oligos that

fold over to form dsDNA hairpins have up to

1 000 000 unique features and therefore do not

need to rely on De Brujin sequences [31, 32].

Using such ‘universal’ PBMs not only increased the

resolution by which binding motifs are detected, but

also enabled the use of a single microarray design to

examine a broad range of TFs [28]. The information

obtained from PBMs is generally significantly

reduced into the form of position weight matrices

based on the additivity assumption, which posits that

bases contribute independently to the binding

(PWMs; Figure 4A and B). Recently, Carlson et al.
have proposed a visualization method to omit this

information reduction. The display of all the infor-

mation obtained from PBMs highlights the context

dependencies of TF binding [31].

DNA immunoprecipitation (DIP-chip) [39] is

another in vitro approach, conceptually intermediate

between in vitro selection (SELEX) andTa
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Figure 2: Experimental flow chart of TF^DNA characterization. (A) In vitro selection of TF binding sites con-
sists of several rounds of binding and amplification of captured dsDNA targets. Captured targets are either
analyzed individually by cloning and sequencing or in bulk by deep sequencing approaches. (B) Protein binding micro-
array consist of micro-arrayed dsDNA oligos. A binding reaction is performed by adding TF to these
microarrays. Following a wash step, bound TFs are immunodetected by a TF specific, fluorescent antibody.
(C) Immunoprecipitation based approaches consist of cross-linking TFs to genomic loci in vivo (ChIP) or in vitro
(DIP), followed by shearing of DNA and precipitation with aTF specific antibody. Enriched DNA fragments are ana-
lyzed after reversal of cross-linking by microarray or deep sequencing. Lined and solid arrows highlight key steps
for ChIP and DIP approaches, respectively and the numbers in the arrows indicate the sequence of experimental
steps. Note the difference between ChIP and DIP approaches with regard to masked, direct, and indirect binding
events.
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immunoprecipitation of in vivo cross-linked chroma-

tin (ChIP, see following section; Figure 2C). Instead

of synthesized DNA oligos, purified chromosomal

DNA is used in binding reactions. Binding complexes

are fixed by cross-linking with formaldehyde, sheared

into shorter fragments between 100 and 500 bp, and

immunoprecipitated with a protein-specific antibody.

After reversal of the cross-links, enriched DNA frag-

ments are analyzed by microarrays. Binding site dis-

covery is limited by the inherently low experimental

resolution due to sheared fragment size.

Until recently only methods with relatively

low-throughput were available to measure the quan-

titative parameters of protein–DNA interactions,

namely surface plasma resonance platforms, like

BIAcore [40, 41], and classical gel shift assays

(EMSA) [17, 18]. This experimental gap has recently

been filled by the development of a high-throughput

microfluidics platform, which employs a novel de-

tection method based on the mechanically induced

trapping of molecular interactions (MITOMI;

Figure 3) [9]. MITOMI devices, as well as detailed

information on how to set up a valve control inter-

face can be obtained from the Stanford Microfluidics

Foundry (http://thebigone.stanford.edu/foundry/)

and the Caltech Foundry (http://kni.caltech.

edu/foundry/). In short, microfluidic chips are fab-

ricated by multilayer soft lithography and aligned

to an epoxy-coated glass slide containing thousands

of micro-arrayed DNA spots using standard DNA

microarray printing instrumentation [9, 42, 43].

Here, each spot codes for a different DNA sequence

or concentration, separated and controlled in

pL-sized reaction chambers. The concentration-

dependent binding to an immobilized TF across

the whole chip, and thus hundreds of variable

DNA sequences, enables the measurement of thou-

sands of interactions in a single experiment.

MITOMI can detect transient and low affinity inter-

actions that are usually missed by other techniques

due to the need of stringent wash steps. Indeed

mechanical trapping of the interacting molecules

completely eliminates loss of molecules and the con-

sequent skew of the apparent affinity before the

measurement. Therefore, combined with DNA con-

centration standards, absolute binding affinities (dis-

sociation constants Kd) can readily be obtained in the

nanomolar to micromolar range. Using MITOMI it

was shown that the additivity assumption (inherent

to PWMs) is not accurate for bHLH TFs (Figure 4C

and D) [9].

The same strategy can be used in a reverse con-

figuration by programming reaction chambers with

linear templates for cell-free in vitro expression of

hundreds of TFs [10, 34]. In this scenario one can

either test a promoter fragment of interest for bind-

ing to hundreds of TFs, or one can search for inter-

actions between TFs and co-regulators. As previously

mentioned, the precise and quantitative characteriza-

tion of TF–DNA, and TF–co-regulator interactions

is fundamental to our understanding of transcription-

al regulation, since quantitative modeling of

transcriptional regulation relies on quantitative

data [44].

So far, most TF–DNA binding studies focused on

measuring binding affinities of a given TF to a range

of DNA sequences. Only a few studies considered

the reverse direction by designing or selecting TFs

with altered DNA-recognition properties [45–50].

Yet these types of studies promise to provide us

with a better understanding of how TFs recognize

DNA and how this recognition could have evolved.

Combining on-chip protein synthesis and MITOMI

affinity measurement have recently made such per-

mutation studies feasible. The DNA-binding reper-

toire of 95 TF mutants of a member of the basic

Helix–Loop–Helix family [2] has been characterized

using such an approach [10]. In this study each of the

19 possible aa point substitutions of five residues

known to form DNA base-specific contacts have

been tested for binding against 64 DNA sequences.

Another, yet related strategy is the comprehensive

characterization of related TF families [7, 51–53].

Together the systematic characterization of the func-

tional significance of individual residues, as well as

the comprehensive characterization of TF families

can help build an understanding of how TF diversity

arose.

In vitro measurements of TFs are well suited for

discovering consensus sites and binding preferences,

as well as for providing a quantitative foundation of

TF function. In combination with complete genome

sequences, in vitro characterization of TF-binding

preferences enables us to map the genome-wide dis-

tribution of TFBS and discover candidate target

genes in silico [9, 54, 55]. However, a given TF

might not always regulate all targeted genes at the

same time, or in all cell types, due to cell line-specific

modulation of TF activity by co-regulators. In such

cases relating in vitro determined binding preferences

with in vivo measured protein occupancy profiles is

indispensable.
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Most in vitro and in vivo experimental approaches

rely on a computational framework to detect binding

sites [56]. Amongst those MEME, AlignACE, and

MDscan are the most commonly used programs

to find sequence elements conserved in a set of

DNA sequences [57–59]. Although computational

techniques for binding site detection have greatly

improved over the past years, the underlying as-

sumptions often oversimplify TF–DNA interactions,

which commonly results in a high rate of

false-positive predictions [11, 13, 56, 60, 61].

Finally, the quantitative modeling of GRN not

Figure 3: Experimental flow chart of MITOMI. (A) Device setup.Target DNAs are spotted on a glass substrate and
aligned to DNA chambers of the PDMS chip. One valve separates the DNA chamber from the detection area. TFs
are immobilized by selective pull-down underneath the trap. Flanking valves separate unit cells. (B and C) A binding
reaction is initiated after opening of DNA chamber valves, and diffusion of target DNA to detection area.
Equilibrium bound fraction is separated from unbound fraction by mechanical trap and washing step. From left to
right: Top view of unit cell, fluorescence image of diffused fluorescence tagged target DNA, and side view of detec-
tion area. (D) Binding affinity constants are determined by non-linear regression fitting of the saturation-binding
curve obtained from the measurements.
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only relies on estimated TF-binding affinities, but

also on the assumption that TFs bind their targets

under equilibrium conditions in vivo [12, 62, 63].

Considering the time scale of transcriptional re-

sponses under induced stress, this assumption is

likely an oversimplification. To circumvent this,

one needs to consider the kinetics of binding

events. To date only low-throughput approaches,

like the SPR BIAcore platform, allow the reliable

measurement of TF-binding kinetics. Recently it

has been shown that, in principle, MITOMI can

be utilized to measure binding kinetics in high-

throughput [64].

IN VIVOMETHODS
The most commonly used in vivo method to probe

for genome-wide TF binding is based on chromatin

immunoprecipitation (ChIP; Figure 2C) [65] inte-

grated with either DNA microarray technology

(ChIP-chip) [20, 21, 24] or more recently with mas-

sive parallel sequencing (ChIP-seq) [22, 25]. Similar

to the previously mentioned DIP-chip experiments,

TF–DNA complexes are fixed in situ by cross-linking

with formaldehyde, sheared into pieces with average

length of 100–500 bp, and precipitated from solution

using a TF-specific antibody. The enriched DNA is

quantified after reversal of the cross-links by either

hybridization to DNA microarrays or deep sequen-

cing. In general, both ChIP-chip and ChIP-seq offer

a tremendous throughput in profiling genome-wide

protein occupancies (Figure 1); while in direct com-

parison to ChIP–chip, ChIP-seq has improved reso-

lution, lower noise levels, and a higher dynamic

range [25]. However, throughput for both

Figure 4: Summary of TF binding site representation. (A) TF binding site preferences are detected as enrichment
of TF-bound DNA fragments by massive parallel sequencing or microarray approaches. (B) Sequence counts or
microarray-based relative fluorescence units (RFU) are transformed into position-specific weight matrix (PWM) by
counting base frequencies of selected DNA sequences. PWMs are commonly represented as sequence logos.
(C andD) PWM predicted binding affinities of sequences with multiple base deviations relative to consensus binding
site commonly overestimate affinity changes due to assumption of base independence.
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ChIP-based methods is limited by the fact that

experimental feasibility is strongly dependent on:

(i) protein abundance, (ii) cross-linking effi-

ciency, and (iii) antibody availability and specifi-

city [25]. Finally, to identify potential binding

sites raw ChIP data needs to be processed with

computational techniques, which might remain

unsatisfactory as the distinction of direct and indir-

ect protein–DNA interactions are problematic

(Figure 2C, see e.g. comparison between ChIP and

DIP) [66].

Recently, the use of ChIP-seq experiments across

several humans elucidated the impact of genetic vari-

ation in TFBS between individuals on TF occupancy

[6]. Interestingly, the same study could show that

genomic loci with strong ChIP-seq signal, and thus

high TF occupancy, are also more frequently occu-

pied in chimpanzee than weaker signals, pointing

towards a divergence of weaker, low-affinity binding

sites. The importance of low-affinity TF binding in

coordinating transcriptional regulation has already

been proposed in previous studies [67]. In direct

agreement the quantitative variation of TFBS occu-

pancy between closely related Drosophila species have

been attributed to modest levels of sequence diver-

gence of otherwise highly conserved binding motifs

[68]. However, it remains to be evaluated to what

extent these variations translate into alternative tran-

scriptional and developmental programs [68]. Both,

the widespread functionality of weak TFBS [67], and

the apparent evolutionary divergence of quantitative

TFBS traits [68] point towards the necessity to cap-

ture minute differences amongst binding sites across a

broad affinity regime.

Instead of cross-linking and immunoprecipitation

of proteins with DNA, the protein of interest can be

fused to Escherichia coli DNA adenine methyltransfer-

ase (DamID) [69]. Upon binding to DNA, nucleo-

tides in close vicinity of TF binding are methylated.

The methylated DNA is then immunoprecipitated

and analyzed by either microarrays or sequencing

approaches. Since methylation is restricted to aden-

ine in GATC sites, the resolution of binding site

mapping is limited by the distance between two con-

secutive such sites. This bias in resolution is omitted

in approaches that use micrococcal nuclease fusion

proteins. In chromatin endogenous cleavage (ChEC)

TF-tagged with micrococcal nuclease is activated

in vivo by rising levels of Ca2þ [70]. Binding events

are detected by mapping of induced double-strand

DNA breaks. So far ChEC has not been integrated

to high-throughput readouts by deep sequencing or

microarray approaches.

A different approach is reverse ChIP or prote-

omics of isolated chromatin segments (PICh),

which is an alternative method for identifying TFs

bound to a given locus. Briefly, following a

cross-linking step, a desthiobiotin conjugated DNA

probe is used to hybridize to a specific genomic

locus, and associated proteins are isolated and ana-

lyzed by mass spectrometry [71]. This approach

alone does not discriminate whether identified pro-

teins are TFs that bind directly or indirectly to DNA.

Also, the general applicability of PICh remains to be

evaluated, not least because probe design and mass

spectrometric analysis will need refinement to adapt

to a high-throughput setting.

None of the above-mentioned methods is un-

biased with regard to the TF or DNA segment

under investigation. DNaseI hypersensitivity assays

offer an unbiased, genome-wide mapping of protein

binding in vivo when integrated with microarray or

massive parallel sequencing [72–74]. The degree of

chromatin DNaseI sensitivity allows for the distinc-

tion between nucleosome bound and unbound gen-

omic loci. An alternative approach is the use of ChIP

based methods to profile genome-wide histone

modifications. In this case the detection of alternative

chromatin structure can be used to profile genomic

regions accessible to TFs [75]. Whether unbound

genomic regions are due to the binding of regulatory

proteins remains to be validated experimentally or

analyzed computationally by considering known

TF-binding preferences.

One of the first ChIP–chip experiments revealed

that many in silico predicted binding sites are not

occupied in vivo [23]. Thus, in addition to the preci-

sion of invitro approaches in determining TF-binding

preferences, an in vivo viewpoint is necessary to dis-

tinguish between biologically functional and

non-functional sites. The prediction of in vivo bind-

ing sites from in vitro derived TF-binding preferences

is still far from being accurate. One reason is the lack

of detailed knowledge of the combinatorial inter-

action between TFs, cofactor proteins, and chroma-

tin modifiers [76, 77]. Ravasi et al. have recently

addressed this issue by combining mammalian

two-hybrid screens with gene expression studies

[77]. Their analysis highlighted the importance

of TF–TF interactions to establish precise transcrip-

tional programs during developmental processes.

Solely considering TF–DNA interactions would
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have missed this regulatory network. On the other

hand the identification of TF-binding sites by in vivo
experimental methods suffers from drawbacks in (i)

the resolution by which binding site can be identi-

fied, (ii) the lack to distinguish between direct and

indirect interactions, (iii) that the observed inter-

actions are context dependent, and (iv) the fact that

only qualitative, or at best semi-quantitative, data can

be obtained.

CONSOLIDATIONOF IN VIVOAND
IN VITROAPPROACHES
Recent technological advances in both, in vitro as

well as in vivo methods, have greatly improved our

ability to study TF–DNA-binding specificity on a

comprehensive level. However, no single approach

provides sufficient information to reliably predict the

quantitative behavior of gene regulation. While

in vitro methods are indispensable for the biophysical

characterization and quantification of protein–

protein and protein–DNA interactions, it is still dif-

ficult to translate this information into actual in vivo
function. In many cases only a fraction of high-

affinity TFBS are occupied in vivo [23], pointing to

secondary effects like the masking of binding sites by

competing TFs, nucleosomes [78, 79] or the exist-

ence of cooperative binding events frequently missed

by in vitro approaches [79]. It will be an exciting en-

deavor to evaluate the extent to which the consoli-

dation of multiple in vitro data sets, including

reconstituted nucleosome occupancy maps and TF–

TF interactions, will reduce the discrepancy between

invitro and invivo results [62, 80]. On the other hand,

in vivo methods have the advantage of profiling bio-

logically relevant protein–DNA interactions (e.g.

ChIP-seq), albeit, at the expense of being inconclu-

sive with regard to the underlying binding causalities

(direct versus indirect binding). A significant fraction

of ChIP signals often cannot be correlated to a cor-

responding TFBS, even in cases where a TF is

known to directly bind to DNA [81]. In the near

term only a consolidated view of both, invivo as well

as in vitro results promises the unambiguous identifi-

cation and characterization of TF–DNA interactions.

While in vivo approaches differ with regard to

resolution, ‘ChIP-chip versus ChIP-seq’, and experi-

mental bias, ‘TF-centered versus unbiased DNaseI

sensitivity’, in vitro approaches greatly differ with

regard to throughput and data type (Figure 1 and

Table 1). Even without a priori knowledge of

possible sequence specificity, in vitro selection and

PBM approaches offer de novo TFBS identification.

Throughput is limited in principle by the fact that

proteins need to be purified to sufficient grade and

amounts (Table 1). However, both methods suffer

from the inability to account for sequence specific

TF dissociation rates. Prior to readout, bound frac-

tions need to be selected and thus washed under

stringent conditions. This results in sequence-specific

dissociation of TF–DNA complexes, the rates of

which are non-linear, unknown and probably vary

with sequence (in fact it is probably the dissociation

rate that dominates affinity). This results in overesti-

mation of high-affinity binders and thus returns

skewed binding profiles. Neither in vitro selection

nor PBM approaches can provide quantitative infor-

mation on affinity and kinetics of the interactions.

MITOMI based methods, on the other hand, allow

absolute binding affinity measurement at medium

throughput but are not yet suited for de novo identi-

fication of TFBS. The best experimental strategy

would be a serial combination of methods with

different throughput and data type (Figure 1 and

Table 1). Initial consensus and PWM discovery is

optimally done with ChIP, HT-SELEX, MITOMI

or PBM approaches. This initial discovery-oriented

approach can then be followed up with a MITOMI

analysis to arrive at quantitative binding information

and a controlled environment for higher-order inter-

action measurements. Indeed as the catalogues of TF

consensus sites and PWMs is growing [52, 82, 83],

quantitative measurements and their integration with

in vivo data are becoming more and more important.

TF characterization has come a long way in the

last decade, with the advent of a multitude of power-

ful and for the most part mutually complementary

methods. Consensus site and binding preferences can

now be routinely measured both in vivo and in vitro
and precise quantitative measurements can be per-

formed using new methods based on microfluidics,

interrogating both the DNA sequence space as well

as the protein space. Yet, the challenge remains the

same: developing a quantitative understanding of

GRNs. Ultimately, the most universal model

would only rely on biophysical measurements of

TFs and co-factors as these are context-independent

and therefore need only be measured once but may

be applied universally. Developing hybrid solutions,

which take into account in vivo and in vitro measure-

ments are more within our reach. Indeed, any model

must be validated with comprehensive in vivo
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measurements, including ChIP-based binding pro-

files integrated with expression and proteomic data.
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