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efficient than a number of existing methods are. We show 

that estimating the residual variance-covariance matrix in 

the GLS models without SNP effects does not lead to an ap-

preciable bias in the p values as long as the SNP effect is small 

(i.e. accounting for no more than 1% of trait variance). 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Genome-wide association studies (GWAS) have been 
offering increased opportunities for detecting suscepti-
bility genes for complex traits and disease  [1–3] . These 
studies are performed on a genomic scale involving hun-
dreds of thousands of single-nucleotide polymorphisms 
(SNPs), and bring new statistical challenges for conduct-
ing association analyses using family-based designs. Re-
cently, several family-based GWAS  [1, 4–8]  have been 
conducted and many more are currently being genotyped 
 [9] . Hence there is an increasing need for developing com-
putationally efficient and powerful approaches for con-
ducting association tests on a large group of SNPs using 
a set of nuclear or large pedigrees.

  In family-based designs, a range of association analy-
sis methods are available which fall into 2 major catego-
ries: (1) traditional family-based association analyses that 
use the transmission of alleles within informative fami-
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 Abstract 

 Genome-wide association studies (GWAS) using family data 

involve association analyses between hundreds of thou-

sands of markers and a trait for a large number of related 

individuals. The correlations among relatives bring statisti-

cal and computational challenges when performing these 

large-scale association analyses. Recently, several rapid 

methods accounting for both within- and between-family 

variation have been proposed. However, these techniques 

mostly model the phenotypic similarities in terms of genetic 

relatedness. The familial resemblances in many family-based 

studies such as twin studies are not only due to the genetic 

relatedness, but also derive from shared environmental ef-

fects and assortative mating. In this paper, we propose 2 

generalized least squares (GLS) models for rapid association 

analysis of family-based GWAS, which accommodate both 

genetic and environmental contributions to familial resem-

blance. In our first model, we estimated the joint genetic and 

environmental variations. In our second model, we estimat-

ed the genetic and environmental components separately. 

Through simulation studies, we demonstrated that our pro-

posed approaches are more powerful and computationally 
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lies  [10] , and (2) population-based analysis methods that 
have been adapted to family data  [11–15] . Traditional 
family-based association analyses, such as the quantita-
tive trait transmission disequilibrium test (QTDT)  [16]  
and the family-based association test  [17] , analyze with-
in-family variation and focus on the transmission of al-
leles from heterozygous parents to their offspring. They 
are robust to the presence of population stratification in 
the dataset, at the cost of a loss in power on a per-geno-
type basis  [18, 19] . On the other hand, population-based 
association analyses  [11, 12]  provide an overall test of 
within- and between-family variations, and tend to be 
more powerful than the family-based association tests 
 [20] . However, they are susceptible to population stratifi-
cation and are computationally intensive to apply on a 
genome-wide scale.

  The major impediment to rapid computation in pop-
ulation-based approaches adapted to family-based de-
signs involves the need to jointly estimate the fixed SNP 
effect and the family variance-covariance matrix sepa-
rately for each SNP. Recently, several approaches have 
been proposed that aim to maintain the high power of the 
population-based approaches while substantially reduc-
ing computation time. Aulchenko et al.  [15]  proposed a 
rapid association analysis (GRAMMAR) for quantitative 
trait loci (QTL) using a linear mixed model. In their 
method, familial similarities were modeled by a random 
polygenic effect. This random effect is assumed multi-
variate normally distributed with the correlation matrix 
equal to the kinship matrix. To conduct a rapid genome-
wide scan, they proposed to perform a linear regression 
accommodating this polygenic random effect and fixed 
effects for covariates using the complete pedigree but ig-
noring marker data. Regression residuals were then used 
as a quantitative trait to do single SNP association analy-
ses using a simple linear regression for unrelated indi-
viduals. Thus with GRAMMAR, the family variance-co-
variance matrix is estimated once, as a function of the 
polygenic effect, and used to residualize the observed 
quantitative phenotype data for an analysis of the indi-
vidual SNP effects. p values from the GRAMMAR meth-
od were reported to be conservative and a permutation 
test was suggested  [15] .

  Chen and Yang  [14]  developed a package for genome-
wide association analyses with family data (GWAF) using 
a method similar to GRAMMAR, but involving joint es-
timation of the variance of the random polygenic effect 
and the fixed SNP effect when doing the single SNP anal-
ysis. It thus takes much longer for a genome-wide scan 
than GRAMMAR. Chen and Abecasis  [13]  proposed 

 another rapid scan scheme using a generalized linear 
model to conduct variance components analysis. In their 
method, the quantitative trait is modeled by a multivari-
ate normal distribution where the variance-covariance 
matrix has 3 variance components: a linked major gene 
effect, background polygenic effects, and environmental 
effects. Taking the derivatives of the likelihood function, 
they constructed a score test for the fixed major gene ef-
fect. Like GRAMMAR, they proposed a rapid test by es-
timating the variance-covariance matrix of the quantita-
tive trait without taking the individual SNP effect into 
account, i.e. without the linked major gene effect in the 
variance components and in the fixed effects. This base 
matrix is then plugged into the score test for computation 
of the single SNP association analysis.

  These rapid methods have provided new opportuni-
ties for genome-wide association analyses of family-based 
design, as the number of typed markers can easily go 
above a million with advances in genotyping technology. 
However, approaches like GRAMMAR and that pro-
posed by Chen and Abecasis  [13]  only model familial re-
semblance as a function of genetic relatedness. Yet there 
is a growing list of GWAS that include familial relation-
ships (e.g. between spouses)  [1]  where phenotypic simi-
larity is likely due to shared environmental rather than 
genetic factors, and behavioral phenotypes (e.g. personal-
ity, obesity)  [6, 21]  where there are likely environmental 
as well as genetic contributions to phenotypic similarity 
amongst relatives. Although these rapid methods provide 
an efficient way for GWAS analysis when the shared en-
vironmental factors are negligible as in some studies of 
large extended families, they cannot fully express famil-
ial similarities when environmental factors are clearly 
present as in studies of nuclear families  [9] . Bravo et al. 
 [22]  have demonstrated in their study that it is advanta-
geous to model familial relatedness by including unre-
lated subjects, such as a spousal relationship, to capture 
some shared environmental factors.

  In this study, we propose an alternative approach: 2 
generalized least squares (GLS) models for the rapid as-
sociation analysis of GWAF data. Like the many popula-
tion-based approaches discussed above, our methods are 
linear-regression-based single SNP analyses, model with-
in- and between-family variation to find an efficient es-
timator of the SNP effect, and achieve computational ef-
ficiency by estimating the family variance-covariance 
matrix once and then using this estimate in every SNP 
regression. Unlike the methods discussed above, our 
methods accommodate both genetic and environmental 
contributions to familial resemblance.
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  Our first proposed method is a rapid feasible general-
ized least squares model with unstructured family cova-
riance matrices (RFGLS-UN), and our second proposed 
method is a rapid feasible generalized least squares mod-
el with family covariance matrices modeled as a function 
of 3 variance components (RFGLS-VC): genetic, shared 
environmental and non-shared environmental. Because 
RFGLS-UN places no structure on the family variance-
covariance matrix, it can accommodate patterns of fa-
milial resemblance due to both genetic and environmen-
tal mechanisms. RFGLS-VC also allows for both genetic 
and environmental contributions to familial resem-
blance, although it does so in a structured manner sepa-
rating the genetic and environmental components. Both 
RFGLS-UN and RFGLS-VC achieve computational effi-
ciency by estimating the family variance-covariance 
 matrix once and then using this estimate in every SNP 
regression. Conditioning each regression on the same es-
timated variance-covariance matrix could disturb the 
distribution of the test statistics, especially if the SNP ef-
fect is large. Consequently, we examine the type I error 
rates and power for these methods for a range of simu-
lated data.

  Specifically, we compare these 2 methods with 5 oth-
ers: an ordinary least squares (OLS) regression model that 
ignores within-family correlations, a feasible generalized 
least squares regression model (FGLS) that involves esti-
mating the residual family variance-covariance matrix 
conditional on each SNP in a genome-wide scan, the 
GWAF method  [14] , the QTDT method  [16] , and a gen-
eralized estimating equation (GEE) method. Although 
our methods can be easily extended to large pedigrees, we 
focus on their performance in studies of nuclear families 
and simulates accordingly. Our simulations show that
the rapid methods result in appropriate type I error rates 
and achieve power that approximates that achieved when 
the real familial similarities were known (i.e. the GLS 
method). An R package  rfgls  (http://www.tc.umn.edu/ �  
lixxx554/rfgls_0.0.tar.gz) was developed to implement 
the RFGLS-UN/VC and FGLS methods in studies of nu-
clear families.

  Methods 

 Models 

 For a set of pedigrees each including one or more related indi-
viduals, let  y  ij  denote the measured phenotype of individual  j  in 
pedigree  i  ( i  = 1, ...,  m ,  j  = 1, ...,  n  i , and  �  i   n  i  =  n ). Let  g  ij  denote the 
additive genotype score of a SNP with alleles ‘A’ and ‘a’ of indi-

vidual  j  in pedigree  i , and  g  ij  can take values of 0, 1, or 2 depending 
on the number of minor allele ‘A’ individual  i  has. Let vectors   Y   i  = 
{ y  i  1 , ...,  y  in i  }, and   G   i  = { g  i  1 , ...,  g  in i  } contain the phenotype and ge-
notype of individuals from pedigree  i , respectively. Let   C   i  be a
 n  i   !   p  matrix that contains  p  covariates of pedigree  i . For a con-
tinuous phenotype, we can do a single SNP association test using 
the following linear regression model:

    Y   i  =  �  +   G   i  �  g  +   C   i   �   c  +  �  i                                                                (1)

      =   X   i   �   +  �  i ,  i  = 1, ...,  m ,                                                               (2)

  where  �  is the population mean,  �  g  is the additive effect of the 
SNP,  �  c  is a size  p  vector of the covariate effects, and  �  i  is the ran-
dom residual term which is modeled as 

 �i �ind MVN(0, Vi),                                                                            (3) 

  assuming independent pedigrees. The  n  i   !   n  i  matrix  V  i  is the 
variance-covariance matrix of pedigree  i . To simplify the notation 
as shown on the right hand side of equ. 1, the observed data on
( p  + 1) fixed predictors of pedigree  i  are contained in  n  i   !  ( p  + 2) 
design matrix  X  i , and ( p  + 2) parameters are contained in vec-
tor  � . 

 If  V  i s are known, the best linear unbiased estimator of   �   is
the GLS estimator  [23] :
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  The GLS estimator is unbiased and consistent, and achieves the 
Cramer-Rao lower bound asymptotically  [23] . 

 If   V   i s are unknown, a ‘feasible generalized least squares esti-
mator’ can be used as   V   i s are estimated from the data, so that
the   V   i  in equ. 4 and 5 can be replaced by its estimator     V̂   i  
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  The efficiency of the feasible least squares estimators are often of 
interest as     V̂   i   can take various forms. If     V̂   i   is a consistent estimator 
of  V  i , like a maximum likelihood estimator (MLE), then      �  ̂   FGLS   is 
a consistent estimator of  �   [23] . If we model  V  i  by  V  i  =  V ( �  ), where 
 �  is the parameter or a vector of parameters of the covariance ma-
trix,  �  and  �  can be jointly estimated, usually through iterative 
methods  [24] . 

 If we ignore the within-family correlations and model   V   i  by  
 V   i  =  �  2  I  n i 

 , where I n i 
 , is an  n  i   !   n  i  identity matrix, we obtain the 

OLS estimator of  � :
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with variance 
 1

2

1

cov ,                   
m

T

OLS i i
i

ˆ �̂ X X��

                             

(9)

  where � ̂   2  can be easily estimated by

 �  m  i   = 1 ( Y  i  –  X  i    �  ̂    OLS ) 
T ( Y  i  –  X  i    �  ̂    OLS ). 

 The equality of OLS estimators (equ. 8) and FGLS estimators 
(equ. 6) modeling within-family correlations has been shown to 
be satisfied under certain conditions  [25] , and the efficiency of the 
2 estimators depends on their variances. In an FGLS method es-
timating   V   i  by its MLE, the jointly estimated SNP effect asymp-
totically gains efficiency (i.e. the SNP effect estimator achieves 
smaller variance) over that of an OLS estimator  [23, 26, 27] . How-
ever, the estimation of the   V   i s can slow down the analysis and be 
too computationally demanding on a genomic scale. We hence 
propose a RFGLS method to increase the computational efficien-
cy and conduct a rapid genome-wide scan. The RFGLS method 
includes the following steps:

  (1) Perform a single FGLS analysis using the complete pedigree 
but ignoring marker data. Suppose there are  m  families of  l  differ-
ent pedigree types in the data. Let   Y   ij  contain the phenotype of 
individuals from family  j  in pedigree type  i  ( i  = 1, ...,  l ,  j  = 1, ...,  m  i , 
and  �  i   m  i  =  m ). So equ. 1 becomes

    Y   ij  =  �  +   C   ij   �   c  +  �  ij ,  i  = 1, ...,  l ,  j  = 1, ...,  m  i , (10)

 where �ij �ind  MVN (0, Vi). A MLE of  V  i  by  V ̂ i  
RF    is obtained for each 

type of pedigree (see the following descriptions).
 (2) Do a single SNP analysis using the  V ̂ i  

RF   s as the variance-
covariance matrices for each pedigree. Let   V   be the block-diago-
nal matrix with  V ̂ i  

RF   s on its diagonal blocks. First, a Cholesky 
 decomposition of   V   is taken as   V   =  SS  T . Then a simple linear re-
gression for unrelated observations is carried out using the Cho-
lesky-factor-transformed data:

   S   –1    Y   =  S   –1    X   �    +  �  g , (11)

  where  X  is the  n   !  ( p  + 2) matrix containing predictor values of 
all  m  pedigrees,  Y  is the size  n  vector of phenotypes,  �  = ( � ,  �  g , 
 �  c ) as defined in equ. 2, and the residual term  �  g  is distributed as 
 N (0,  �  2  I ). 

 (3) Make association calls based on the F test statistics from 
the simple linear regressions in step 2. Here we want to test the 
null hypothesis  H  0 :  �  g  = 0. The F test statistics follows an  F (1,  s ) 
distribution, where  s  =  n  – rank( S   –1    X  ).

  Here we propose 2 ways to estimate  V ̂ i  
RF  in step 1: (i) the

RFGLS-UN method estimating unstructured family blocks. If 
different pedigree types are present in the data, for example, fam-
ilies with monozygotic (MZ) twins and families with non-twin 
biological offspring, etc., our model allows separate estimations 
of the variance-covariance blocks for different pedigree types and 
models the heteroscedasticity accordingly. Thus if there are  l  dif-
ferent pedigree types with each of pedigree size  k  i  ( i  = 1, ...,  l ), there 
are  �  l  i   = 1   k  i  ( k  i  + 1)/2 parameters in the variance-covariance matrix 
to estimate. (ii) The RFGLS-VC method estimating familial sim-
ilarities by a combination of ‘genetic relatedness’ and ‘environ-
mental relatedness’. We add a random additive polygenic effect   a   ij  
in equ. 10:

    Y   ij  =  �  +   C   ij   �   c  +   a   ij  +  �  ij ,  i  = 1, ...,  l ,  j  = 1, ...,  m  i . (12)

  We let  a  ij  follow a multivariate normal distribution  N (0,    �   2  a   �  i ), 
where  �  i  is the relationship matrix of each pedigree in pedi-
gree type  i , i.e. twice the kinship matrix, and    �   2 a    is the genetic 
variance. We also let  �  ij  follow a multivariate normal distribution 
 MVN (0, �  2   e   R  i ), where  �   2    e  is the environmental variance and  R  i  is 
a compound symmetric matrix taking the form (1 –  �  i ) I  +  �  i   J , 
where  �  i  is the within-family correlation coefficient for each ped-
igree in pedigree type  i ,  I  is the identity matrix and  J  is the 1’s ma-
trix. Hence we have 

  V ̂ i  
RF     =  �  i      � ̂   2  a  +   R̂    i   � ̂    2  e . (13)

  Our proposed methods address 2 factors that should be con-
sidered when evaluating alternative approaches to the analysis of 
family-based data on a genome-wide scale. The first is computa-
tional efficiency, which has been achieved primarily by estimat-
ing the family variance-covariance matrix a single time rather 
than separately for each individual SNP regression. The second 
concerns modeling familial resemblance, which is modeled in our 
methods as a function of both genetic and environmental factors. 
In the following sections, we study the performances of these 2 
approaches through simulation studies and compare type I error 
and power with other (FGLS, OLS, GLS, GWAF, GEE, and QTDT) 
approaches through a range of simulation studies. We also study 
the impact of ignoring environmental similarity within each ped-
igree and show how our method can gain power over the existing 
population-based approaches. In addition, we compare the com-
putational time to implement these methods to perform a single 
SNP association analysis.

  Simulations 

 Simulations of 1,800 Families 
 Simulation I: Single Causal SNP  
 In order to explore the performance of the alternative ap-

proaches to detect association in pedigrees with diverse familial 
relationships, we modeled our simulations after the family struc-
tures that exist within the Minnesota Center for Twin and Fam-
ily Research (MCTFR), which, in the process of GWAS, is ge-
notyping research participants from families that include MZ 
twins, dizygotic twins, non-twin biological offspring, and adopt-
ed offspring. We considered these types of pedigrees because they 
justify the need of proposing the RFGLS approach. Each pedigree 
type showed a very different variance-covariance structure for a 
set of behavioral phenotypes  [9] . There is evidence that the huge 
variation of phenotypes among these different pedigree types 
strongly depends on environmental as well as genetic factors  [9] . 
Hence to achieve greater power, it is essential to model the envi-
ronmental component of the phenotypic variation along with the 
genetic component.

  We simulated 1,800 4-member pedigrees for this simulation 
study. Each pedigree consisted of 2 parents and 2 siblings. Among 
the 1,800 pedigrees, there were 600 in which both offspring were 
MZ twins, 600 in which both offspring were full biological sib-
lings, and 600 in which both offspring were adopted (i.e. not 
 genetically related to each other or their rearing parents). Our
RFGLS approach allows us to include all members in twin fami-
lies and thus would be more powerful compared to approaches 
that drop one member of each twin pair. Further, we recognize 



 Genome-Wide Quantitative Trait 
Association Analysis in Families 

Hum Hered 2011;71:67–82 71

that inclusion of adoptive families in GWAS will never become a 
common occurrence even if these families are part of the MCTFR 
GWAS. Nonetheless, inclusion of adoptive families allows us to 
investigate the performance of the alternative methods with sam-
ples that include culturally defined clusters (e.g. classrooms, 
neighborhoods), where phenotypic similarity owes to shared ex-
periences rather than common genetics. Such culturally defined 
samples will, arguably, become more common in future GWAS.

  The total genotyped population consisted of 7,200 individuals. 
No ethnic stratification was included. One trait locus was simu-
lated using an additive genetic model, which explained 0.6% of the 
total trait variation. This was then repeated 1,000 times to get 
1,000 quantitative traits and 1,000 corresponding trait loci. The 
minor allele frequency (MAF) of the 1,000 trait loci varied uni-
formly from 0.2 to 0.5. To study type I error rates of the different 
methods in a large-scale analysis, we simulated 10,000 indepen-
dent SNPs that did not contribute to the phenotype.

  In order to span a diverse set of familial phenotypic similari-
ties, family variance-covariance structures were modeled using a 
quantitative behavioral trait, substance use and abuse, which 
shows both genetic and environmental contributions to famil-
ial resemblance  [9] . Specifically, we considered the following 3 
variance-covariance models when generating the continuous 
traits from multivariate normal distributions. The first model 
(HomoG) is homoscedastic with a polygenic component of 40% 
additive heritability, and no environmental contribution to famil-
ial resemblance. The first model adheres to the assumptions that 
underlie the GWAF approach. The second model (HomoGE) adds 
an environmental component to the first model with a within-
family correlation of 0.2 that is constant for all family members. 
The inclusion of an environmental contribution to familial re-
semblance violates the assumptions of the GWAF method, while 
it adheres to the assumptions that underlie the RFGLS-VC meth-
od. The third model (HetGE) introduces heteroscedasticity by 
varying phenotypic variance for fathers, mothers and offspring. 
The phenotypic variance was chosen such that the trait locus ex-
plained 0.6% of the total variance for offspring, 0.5% for mothers, 
and 0.4% for fathers. The environmental correlations were set to 
be 0.2 within a generation (i.e. between father and mother or be-
tween offspring) but 0 between generations (i.e. between parent 
and offspring). The third model, which closely parallels what is 
found with substance abuse  [9]  as well as other behavioral traits, 
sought to investigate the added effect of phenotypic variance het-
erogeneity and unequal environmental correlation.

  Simulation II: Single Causal SNP – 
RFGLS-UN versus FGLS(-UN) 
 We further sought to determine if it is valid to estimate the 

variance-covariance matrix through a single regression without 
adjusting for the SNP effect. Specifically, we varied the size of the 
major gene effect and compared the p values from the RFGLS-UN 
method and the FGLS method. Let  r  2  represent the proportion of 
the total variance explained by the trait locus. We randomly 
picked 10 trait loci out of the 1,000 trait loci simulated, and varied 
the  r  2  of each locus to be at 5 values under the HomoGE scenario, 
i.e.  r  2  = 0.1, 0.5, 1, 3 and 5%. Thus there were in total 50 sets of 
continuous traits simulated, each a composite of a QTL effect, and 
a polygenic and environmental variance component following the 
specification used in Simulation I.

  Simulation III: Multiple Causal SNPs 
 To study the performance of our rapid methods when there are 

multiple trait loci, we simulated a trait with 10 causal SNPs each 
explaining 0.6% of the total variance (with MAF ranging from 0.2 
to 0.5). The trait was simulated using the same family structures 
(HomoG, HomoGE, and HetGE) as those used in Simulation I. 
The simulation was repeated 1,000 times.

  Simulations of 180 Families 
 To study the performance of our proposed method at a much 

smaller sample size, we randomly selected 60 families from each 
of the 3 pedigree types as described in ‘Simulations of 1,800 Fam-
ilies’ above. Our study consisted of 180 4-member pedigrees. Sin-
gle causal SNP analysis was carried out with the causal SNP, non-
associated SNPs, and the 3 phenotype models simulated as de-
scribed in ‘Simulations of 1,800 Families’ above.

  The MCTFR GWAS 

 As a complement to the simulation studies presented above, 
we analyzed the MCTFR GWAS data for height. Height was mea-
sured while participants were standing with their backs straight 
against a wall and their shoes off. Height results are reported here 
for 4,711 individuals in 1,817 2-generation pedigrees. This repre-
sents the first approximately 60% of MCTFR participants to be 
genotyped. Genotyping on more than 500,000 SNP markers was 
completed using Illumina’s 660W Quad array. Markers under-
went standard quality control filters before being analyzed, re-
sulting in the final set of 527,469 markers used here.

  Analysis 

 Besides the proposed 2 rapid generalized least squares ap-
proaches, RFGLS-UN and RFGLS-VC, the data was also analyzed 
using the following methods:

  (1) FGLS(-UN): This is similar to the proposed RFGLS-UN 
method. Instead of fixing the variance-covariance matrix as in 
RFGLS-UN, the variance-covariance matrix was jointly estimat-
ed with each marker effect by a block-diagonal matrix, using un-
structured blocks. As discussed in the Models section, the FGLS 
method gives a consistent estimator of the SNP effect, and is 
 reported to be more efficient than OLS estimators. Our rapid 
method RFGLS-UN is a simplification of the FGLS method, and 
a comparison between the two will be illustrated in the Results 
section.

  (2) OLS: A single SNP association analysis was carried out ig-
noring family structure. Thus the individuals in all pedigrees 
were analyzed as independent observations. This is the fastest ap-
proach conducting simple linear regressions, and gives consistent 
estimators.

  (3) GLS: The variance-covariance matrix used to simulate the 
phenotype data was plugged into the association analysis as the 
known variance-covariance matrix (equ. 4 and 5). The GLS meth-
od gives the most efficient estimator of the SNP effect among the 
unbiased estimators  [23] , and achieves the Cramer-Rao lower 
bound asymptotically. This method was used as our ‘gold stan-
dard’ in the model comparisons.
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  (4) GWAF  [14] : This method uses the linear mixed effects 
model implemented in the R package GWAF (http://cran.r-proj-
ect.org/web/packages/GWAF/index.html). Familial similarity 
was modeled through a polygenic random effect.

  (5) GEE  [28] : A GEE model with an exchangeable within-fam-
ily correlation structure was fit. This method was implemented 
using the  geeglm  function in the R package  geepack   [29–31] .

 (6) QTDT: The orthogonal association test under an allelic 
transmission scoring model in extended pedigrees by Abecasis et 
al.  [16]  was carried out using the QTDT software.

In the rest of the paper, we will refer to QTDT as the family-
based association analysis, and methods 1–5 as population-based 
association analyses. The family-based methods analyze within-
family variation, while the population-based approaches analyze 
both within- and between-family variation. The RFGLS-UN/VC, 
FGLS, OLS, and GLS methods were implemented in our R pack-
age  rfgls .

 Results 

 Simulations of 1,800 Families 
 Simulation I 
 To evaluate the performance of our proposed RFGLS 

methods and several other available methods, we first 
checked the type I error rates (obtained by calculating the 
empirical probability of the SNP effect p values exceeding 
the prespecified significance level  �  from the 1,000 repli-
cates of the 10,000 nonassociated SNPs).  Table 1  summa-
rizes the type I error rates for each method under the
3 variance-covariance models at  �  = 1  !  10 –4  and  �  =
5  !  10 –6 , respectively, with the latter being the Bonfer-
roni adjusted nominal type I error rate. The 4 GLS meth-
ods along with the GWAF, GEE, and QTDT methods 
gave type I error rates at the prespecified  �  level. When 
within-family correlations were ignored, as in the OLS 

method, the type I error rate was clearly inflated due to 
the underestimation of standard errors. We calculated 
the genomic inflation factor  	  by computing the ratio be-
tween the median of the observed test statistics of the 
simulated independent SNPs and the median of the ex-
pected values from the same distribution ( table 2 ). Lamb-
da was close to 1 for all the implemented methods except 
for OLS which gave inflated  	 s at 1.2, 1.4 and 1.2 for the 
HomoG, HomoGE and HetGE simulations, respectively. 
Therefore, there was no evidence of additional inflation 
of the test statistic from the methods accounting for fa-
milial correlations.

 We computed the power for each method under the 3 
variance-covariance models at  �  = 1  !  10 –6  and  �  = 5  !  
10 –8  (obtained by counting the proportion of times the 
trait SNP was called significant out of the 1,000 simula-
tions). The latter significance level is often recommended 
as the genome-wide significance level  [32, 33] .  Table  3  
summarizes the empirical power for the methods imple-
mented corrected for any inflation in type I error. Over-
all, the population-based analysis methods adapted to 
family data outperformed the family-based association 
method. Under the first scenario where only genetic fac-
tors contributed to familial resemblance (HomoG), the 3 
GLS methods (RFGLS-UN, RFGLS-VC, and FGLS) and 
the mixed model approach (GWAF) gave power compa-
rable to our gold standard, the GLS method. We observed 
a minor loss of power (4% less than with the GLS method) 
using the GEE method at the more stringent  �  level of
1  !  10 –6 . The power of the OLS method correcting for 
inflated type I error was lower than that of the ones ac-
counting for within-family correlations. This can be due 
to the loss of efficiency when familial similarities are ig-

Table 1. T ype I error at two significant levels (1,800 families)

RFGLS-UN RFGLS-VC FGLS GLS OLS GWAF GEE QTDT

� = 1 ! 10–4  a

HomoG 1.0 1.0 1.0 1.0  4.2 1.0 1.1 1.0
HomoGE 1.0 1.0 1.0 1.0 10.0 1.0 1.1 1.0
HetGE 1.0 1.0 1.0 1.0  4.9 1.0 1.1 1.0

� = 5 ! 10–6  b

HomoG 5.0 5.8 5.0 5.0 45 5.1 5.7 5.0
HomoGE 5.0 5.0 5.0 5.0 120 5.0 6.6 5.0
HetGE 4.8 6.0 4.9 5.0 48 5.1 6.2 4.9

T here were 1,000 simulations and 10,000 nonassociated SNPs in each simulation.
a Values ! 10–4; b values ! 10–6.
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nored. The family-based analysis, the QTDT method, 
demonstrated very low power. When we introduced
an environmental contribution to familial resemblance 
(HomoGE), the 3 least squares methods (RFGLS-UN, 
RFGLS-VC and FGLS) continue to approximate the GLS 
gold standard, although now we observe some loss of 
power with the mixed model GWAF method, which as-
sumes familial resemblance is due entirely to genetic fac-
tors. In addition, a minor loss of power using the GEE 
method is also observed here. Finally, under the third sce-
nario, which is most realistic for behavioral data, only the 
RFGLS-UN and FGLS methods provide levels of power 
comparable to that seen with GLS.

 When we plot the p values from the GLS method ver-
sus those from the others ( fig. 1 ), we see that the RFGLS-
UN approach generally gave good alignment ( fig. 1 a–c). 

The variance components approaches, especially GWAF, 
suffer most when model assumptions are not correct 
( fig. 1 k, l). The OLS method had generally lower p values 
( fig. 1 m–o).

  Simulation II 
 From Simulation I, we plotted the p values ( fig. 2 ) from 

the rapid method (RFGLS-UN) versus those from the 
method where variance and fixed genetic effects were 
jointly estimated (FGLS). The rapid method was shown 
to be almost perfectly correlated with the latter. In Simu-
lation II, we further sought to determine the effect of dif-
ferent SNP effect sizes on the performance of the RFGLS-
UN method. Specifically, we varied the size of the major 
gene effect and compared the p values from the RFGLS-
UN method and the FGLS method. In our simulations, 

Table 2. G enomic control parameter 	 of the null SNPs (1,800 families)

median (observed test statistics)

median (expected values)
	

RFGL S-UN RFGLS-VC FGLS GLS OLS GWAF GEE QTDT

HomoG 0.998 0.999 0.999 0.998 1.210 0.998 0.999 0.998
HomoGE 0.998 0.999 0.999 0.998 1.399 0.998 0.999 0.998
HetGE 0.999 0.999 0.999 0.998 1.247 0.999 0.999 0.998

	 w as calculated using the test statistics from the independent SNPs of the 1,000 simulations each with
10,000 nonassociated SNPs.

Table 3. E mpirical powera at a given threshold (1,800 families): proportion of times out of 1,000 simulations that 
the reported p value was more significant than the listed significance level (in percentages)

RFGLS-UN RFGLS-VC FGLS GLS OLSb GWAF GEE QTDT

� = 5 ! 10–6

HomoG 93.2 93.5 94.1 93.7 83.3 93.7 93.1 4.5
HomoGE 95.8 96.1 96.3 96.2 85.3 94.6 95.4 5.4
HetGE 88.5 87.8 89.2 89.2 81.6 87.4 88.3 2.4

� = 5 ! 10–8

HomoG 77.1 77.3 78.5 78.7 – 78.1 75.2 0.4
HomoGE 81.0 81.9 82.3 83.0 – 77.2 79.5 0.5
HetGE 64.7 61.1 65.5 65.4 – 60.4 60.9 0.1

a  Power of detecting a single causal SNP which accounts for 0.6% of the variance.
b The power of the OLS method was calculated after the inflated type I error was corrected.
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no inflation/deflation of the p values was observed when 
the variance explained by the trait locus was less than 1% 
( fig. 3 ). This shows that estimating the variance-covari-
ance matrix in the GLS models under the null hypothesis 
(i.e. without conditioning on the SNP effect) does not lead 
to appreciable bias in the association p values as long as 
the major gene effect is small. When the SNP effect size 
gets bigger (i.e. the 3 and 5% levels), some inflated p values 
were observed in our rapid method which gave larger p 
values than the FGLS approach. At such a big effect size 
(greater than 1% of the total variance), however, the p val-
ues obtained from both methods have already passed 
even the most stringent significance level (5  !  10 –8 ), and 
the minor inflation of the p values in our rapid method 
will not affect the detection of the SNP.

  Simulation III 
 In our proposed rapid methods, the variance-covari-

ance matrix is estimated without adjusting for the SNP 
effect. Although one causal SNP may explain only a small 
proportion of the total variance, a group of causal SNPs 
may exist that jointly account for a larger proportion of 

the total variance. In Simulation III, we sought to com-
pare the rapid method with the standard FGLS and GLS 
methods when there are multiple causal SNPs. In our 10 
causal SNP simulations, we computed the power for de-
tecting each SNP at  �  = 5  !  10 –8 , and illustrated the 10 
power rates (obtained by counting the proportion of 
times the causal SNP was called significant out of the
1,000 simulations) in a box plot ( fig.  4 ) for each of the 
method under the 3 scenarios. When familial resem-
blance is entirely due to genetic factors (HomoG), the 3 
GLS methods (RFGLS-UN, RFGLS-VC, and FGLS) and 
the mixed model approach (GWAF) have similar power, 
which approximated that for GLS, the gold standard. 
When there are both genetic and environmental contri-
butions to familial resemblance (HomoGE), there is a no-
table loss of power with the GWAF method relative to the 
other methods. Finally, when we introduce heteroscedas-
ticity and a more complex pattern of environmental con-
tributions to familial resemblance (HetGE), relative loss 
of power is observed with both the GWAF and RFGLS-
VC methods. The GEE method suffers some loss of pow-
er as compared to the gold standard under all 3 variance-
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  Fig. 1.  –log10(p values) comparing the 
‘gold standard’ GLS method and the oth-
er methods in HomoG, HomoGE, and 
HetGE scenarios. There are 10,000 points 
on each panel. The first descriptions label 
the 6 methods, which are RFGLS-UN, 
FGLS, RFGLS-VC, GWAF, OLS, and GEE 
(from top to bottom). The second descrip-
tions label the 3 simulation scenarios, 
which are HomoG, HomoGE, and HetGE 
(from left to right). 
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  Fig. 2.  –log10(p values) comparing the rapid FGLS method (RFGLS-UN) and its corresponding full FGLS meth-
od. There are 10,000 points on each panel.  a  HomoG,  b  HomoGE,  c  HetGE. 
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covariance models. It trails all the other methods in the 
HomoG scenario, and slightly outperforms GWAF in the 
HomoGE and HetGE scenarios. The minor allele fre-
quency showed no effect on the detecting of the SNPs.

  Simulations of 180 Families 
 The performance of the proposed methods and several 

other methods were also evaluated through type I error 
rate and power using a much smaller sample size of 180 
families.  Table 4  summarizes the type I error rates (ob-
tained by calculating the empirical probability of the SNP 
effect p values exceeding the prespecified significance lev-

el  �  from the 1,000 replicates of the 10,000 nonassociated 
SNPs) for each method under the 3 variance-covariance 
models at  �  = 5  !  10 –2  and  �  = 5  !  10 –3 , respectively. The 
2 proposed GLS methods (RFGLS-UN/VC) along with the 
GLS and QTDT methods gave type I error rates at the pre-
specified  �  level. Similar to the large sample size case pre-
sented above, we observed the most inflated type I error 
rate using the OLS method where within-family correla-
tions were ignored. Under the small sample size, however, 
we also observed some inflation using the FGLS methods, 
the GEE method, and the GWAF method. The inflation of 
the type I error rate was more obvious when a relatively 

●
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Fig. 4. Power of the multiple causal SNPs in a boxplot for each method (Simulation III). y-axis is power. x-axis 
is method.  a  HomoG,  b  HomoGE,  c  HetGE. Each of the 10 causal SNP explains 0.6% of the total variance.  �  = 
5  !  10 –8 .

Table 4. T ype I error at two significant levels (180 families)

RFGLS-UN RFGLS-VC FGLS GLS OLS GWAF GEE QTDT

� = 5 ! 10–2 a

HomoG 5.0 5.0 7.2 5.0 7.6 5.1 5.4 5.0
HomoGE 5.0 5.0 7.2 5.0 9.8 5.1 5.3 5.0
HetGE 5.0 5.0 7.2 5.0 7.9 5.1 5.4 5.0

� = 5 ! 10–3 b

HomoG 5.0 5.0 10.0 5.0 11.0 5.4 6.1 5.0
HomoGE 5.0 5.0 10.0 5.0 18.0 5.3 6.1 5.0
HetGE 5.0 5.0 10.0 5.0 11.9 5.4 6.1 5.0

T here were 1,000 simulations and 10,000 nonassociated SNPs in each simulation.
a Values ! 10–2; b values ! 10–3.
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large number of parameters were estimated, as with the 
FGLS method. There was only a minor inflation in the type 
I error rate with the GWAF method. The inflation of type 
I error rate for small sample sizes due to the underestima-
tion of the variance by the FGLS method and the GEE 
method has also been reported in previous studies  [34] . 
The genomic inflation factors  	  for this small sample size 
study are listed in  table 5 . Lambda was close to 1 for all 
implemented methods except for OLS and FGLS.

  We computed the power for each method under the 3 
variance-covariance models at  �  = 5  !  10 –2  and  �  = 5  !  
10 –3  (obtained by counting the proportion of times the 
trait SNP was called significant out of the 1,000 simula-
tions).  Table 6  summarizes the empirical power for the 
methods implemented in this small sample size study 
corrected for any inflation in type I error. Similar to the 

large sample case, the population-based analysis meth-
ods adapted to family data outperformed the family-
based association method. The power of the OLS method 
correcting for inflated type I error was lower than the 

Table 5. G enomic control parameter 	 of the null SNPs (180 families)

median (observed test statistics)

median (expected values)
	

RFGLS-UN RFGLS-VC FGLS GLS OLS GWAF GEE QTDT

HomoG 1.001 1.002 1.186 1.001 1.218 1.009 1.016 1.001
HomoGE 1.000 1.002 1.183 1.002 1.405 1.005 1.013 1.000
HetGE 1.001 1.002 1.186 1.001 1.248 1.009 1.015 1.001

	 w as calculated using the test statistics from the independent SNPs of the 1,000 simulations each with
10,000 nonassociated SNPs.

Table 6. P owera at a given threshold (180 families): proportion of times out of 1,000 simulations that the report-
ed p value was more significant than the listed significance level (in percentages)

RFG LS-UN RFGLS-VC FGLSb GLS OLSb GWAFb GEEb QTDT

� = 5 ! 10–2

HomoG 47.2 49.2 47.4 50.4 42.4 50.0 50.3 16.9
HomoGE 49.7 51.5 49.9 51.8 44.3 50.1 51.2 17.7
HetGE 44.6 44.8 44.8 47.1 37.6 45.5 44.6 15.0

� = 5 ! 10–3

HomoG 16.3 19.4 16.3 19.7 13.6 19.7 18.2 2.7
HomoGE 19.1 21.6 19.7 21.3 15.3 19.5 20.2 4.2
HetGE 14.6 15.4 14.6 16.1 11.3 15.2 15.5 2.0

a  Power of detecting a single causal SNP which accounts for 0.6% of the variance.
b The power of the FGLS, OLS, GWAF and GEE methods were calculated after the inflated type I error was 

corrected.

Table 7. G enome scan of the MCTFR height data: genomic control 
parameters 	

median (observed test statistics)

median (expected values)
	

RFGLS- UN RFGLS-VC FGLS OLS GWAF GEE

1.035 1.034 1.044 2.94 1.038 1.034
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power achieved by methods that modeled the within-
family correlations. The performance of the rapid meth-
od, RFGLS-UN, continued to approximate that of FGLS 
under all 3 simulation models, after adjustment for the 
inflated type I error rates of FGLS. However, there was a 
minor loss of power using the RFGLS-UN and FGLS 
method in the 3 scenarios as compared to using the GLS 
gold standard. Due to the relatively large number of pa-
rameters in the unstructured variance-covariance matri-
ces in RFGLS-UN and FGLS, the loss of power came from 
the less accurate estimation of the parameters using
the small sample size. The performance of the proposed 

RFGLS-VC method, where fewer parameters are estimat-
ed, approximated that of the GLS gold standard in all
3 scenarios. It slightly outperformed GWAF under the 
HomoGE scenario where there is an environmental con-
tribution to familial resemblance, and the 2 methods 
were comparable in the HomoG and HetGE scenarios.

  The MCTFR GWAS 
 The genome-wide scan of the MCTFR height data of 

4,711 individuals in 1,817 2-generation pedigrees was car-
ried out using our proposed rapid methods, RFGLS-UN/
VC, as well as FGLS, OLS, GWAF and GEE. European 
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      Fig. 5.  Manhattan plot of the genome scans for the MCTFR height phenotype using the 5 methods. The x-axes 
represent the chromosome number. The y-axes represent the –log10 of p values.             
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Americans made up about 94% of the MCTFR height 
data. The rest were mostly Asian Americans (3% of the 
whole sample). To account for ethnic stratification, we 
used EIGENSOFT  [35]  and computed the principal com-
ponents using the genotype data of the founders of the 
pedigrees. The top ten principal components were used 
as covariates in the methods implemented. Height was 
also adjusted for sex and generation.

  There were 3 types of pedigrees in the data analyzed, 
which include MZ twin families, non-twin biological-off-
spring families, and adopted-offspring families. Individ-
uals in the adopted-offspring families (342 out of 4,711) 
were treated as independent observations in  RFGLS-
UN and FGLS. Pedigree kinship coefficients for the 3 types 
of families were used in RFGLS-VC and GWAF. An ex-
changeable correlation structure was estimated in GEE.

   Table 7  presents the genomic inflation factors  	 . The  	  
from the OLS method at 2.94 is much larger than 1. The 
 	 s from the other 5 methods correcting for family struc-
tures are close to 1. The OLS result is therefore excluded 
in the following discussions.  Figure 5  summarizes the ge-
nome scan results. In general, all 5 methods give similar 
results showing the most significant association with 
trait at the 3 closely located SNPs rs17034592, rs972583, 
and rs10516510 on chromosome 4. Two lower peaks on 
chromosome 3 and chromosome 2 also appear at the 
same place in the 5 outputs. The Q-Q plots ( fig. 6 a, c) 
show that the p values of the 2 proposed methods are dis-
tributed uniformly between 0 and 1. The Q-Q plots on a 
log-scale ( fig. 6 b, d) reveal outliers in the tail of the dis-

tribution. Among all 22 p values  ̂  10 –5 , 17 correspond to 
the 3 peaks on chromosome 4, 3, and 2, and map within 
200 kb of each other.  Table 8  lists all associations reach-
ing the Bonferroni corrected significance level (nominal 
p value = 1.9  !  10 –6 , using an overall  �  = 0.05) in the 5 
methods. RFGLS-VC reported 11 hits, RFGLS-UN re-
ported 10 hits, FGLS and GWAF reported 9 hits, and GEE 
reported 6 hits. All 5 methods reported the same 3 close-
ly located SNPs on chromosome 4 exceeding the genome-
wide significance level at 5  !  10 –8 , which is more strin-
gent than the Bonferroni corrected one. The genome scan 
of the MCTFR height data provides additional support 
that our proposed methods behave correctly.

  Computation Time 

  Table 9  shows the relative computation time of all im-
plemented methods. We set the computation time for the 
OLS method to be 1. It takes around 8 min to run an 
analysis of 7, 200 observations and 10,000 SNPs using a 
single core on a Dell M605 compute node which has 2 
AMD Opteron 431 six-core processors (2.4 GHz with 6 
 !  512 KB cache), 16 GB RAM and one 146 GB 10,000 
RPM SAS drive. Our proposed RFGLS approach was the 
fastest among all other methods. It is about 50 times fast-
er than the FGLS method, and 10 times faster than the 
GWAF method. It will take about 20 days for the QTDT 
or GWAF method to scan the whole genome on a single 
core, and 2 days for the RFGLS method.

Table 8. G enome scan of the MCTFR height data: SNPs reaching the Bonferroni corrected threshold

Gene Chromo-
some

SNP Position, bp p valuesa (!10–6)

RFGL S-UN RFGLS-VC FGLS GWAF GEE

NCOA1 2 rs17734306 24’575’942 0.4972 0.7124 0.6817 1.312 1.2393
NCOA1 2 rs2044148 24’591’337 0.5656 1.1625 0.7797 2.3934 1.6555
NCOA1 2 rs6720514 24’680’123 0.6306 0.8414 0.8785 1.6203 1.3927
NCOA1 2 rs2119115 24’740’285 1.0572 1.4161 1.4923 (2.6626) (2.1101)
ZBTB38 3 rs13095453 142’557’652 1.7148 1.2829 (2.0034) 0.5056 (92.0618)
ZBTB38 3 rs6763931 142’585’523 0.7525 1.2135 0.8521 0.5958 (32.7139)
ZBTB38 3 rs6785073 142’622’020 0.1372 0.1982 0.1515 0.0904 (4.0754)
– 4 rs7682418 105’647’866 (6.2730) 0.9890 (7.6710) (2.0177) (2.2290)
– 4 rs10516510 105’656’811 0.0175 0.0031 0.0168 0.0115 0.0003
– 4 rs972583 105’661’751 0.0075 0.0015 0.0116 0.0055 0.0002
– 4 rs17034592 105’674’409 0.0035 0.0009 0.0070 0.0025 0.0002

a T he Bonferroni corrected threshold is 1.9 ! 10–6. p values in brackets are those not reaching the Bonferroni corrected significance 
level using the method presented, but reaching the threshold using any other method on the list.
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  Discussion 

 We proposed 2 rapid methods (RFGLS-UN and
RFGLS-VC) for a genome-wide association analysis of 
QTL in family-based designs. These methods take advan-
tage of the fact that the genetic variance associated with 
any particular marker in a GWAS usually accounts for a 
small proportion of the total variance  [36] . Consequently, 
the rapid methods involve first estimating the variance-
covariance matrix for the family data ignoring the effects 
of individual markers, and then carrying out single SNP 
analyses using this estimated matrix. This proposed rap-
id method is a simplification of the FGLS estimator, 
where the variance and the fixed effects are jointly esti-
mated for each marker. In the RFGLS-VC method, fam-
ily covariance matrices are modeled as a function of 3 
variance components: an additive genetic effect (estimat-
ed assuming known genetic relationships among family 
members), a family environmental effect (estimated as-
suming compound symmetric structure), and a residual 

effect (estimated assuming common variance across 
family members). In the RFGLS-UN method, family 
variance-covariance matrices are estimated assuming no 
structure and phenotypic variances are allowed to vary. 
Our simulations showed that the rapid methods resulted 
in appropriate type I error rates and power that approxi-
mated that for the gold standard estimator where the real 
familial similarities were known (the GLS method).

  In the study of a large sample size of 1,800 nuclear 
families, when we simulated family data in which famil-
ial resemblance owed to additive genetic effects only, we 
found that RFGLS-UN and RFGLS-VC performed simi-
larly to the GWAF method, which assumes that familial 
resemblance is due to additive genetic factors only, and 
the FGLS method, in which the residual variance-covari-
ance matrix is estimated for each individual marker. 
When we simulated family data in which familial resem-
blance owed to both additive genetic and environmental 
factors, both RFGLS-UN and RFGLS-VC showed power 
that was greater than the one in GWAF and comparable 
to the one in FGLS. Finally, when we simulated family 
data in which there were both additive genetic and famil-
ial environmental effects as well as heterogeneity of phe-
notypic variance, the RFGLS-UN method had power that 
exceeded that for the other methods and approximated 
that for the GLS gold standard. The GEE method that 
gave robust estimation of the effect size suffered a minor 
loss of power in all simulated cases. The QTDT showed 
low power in all simulated cases, no doubt a reflection of 
the family clusters we considered, in which fully two-
thirds of the families (the MZ twin and adoptive families) 
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  Fig. 6.  Q-Q plots and log Q-log Q plots.
 a ,  b  RFGLS-UN.  c ,  d  RFGLS-VC.       

Table 9. R elative computation time of the different methods com-
pleting the 10,000 single SNP analysis

Relative time

RFGLS-UN/VC FGLS OLS GWAF GEE QTDT

1.8 100 1 19.1 3.8 11.5

The computation time for the OLS method is set to be 1.
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were not informative for the within-family QTDT test. In 
the study of a small sample size of 180 nuclear families, 
we found that RFGLS-UN was slightly underpowered 
compared to the GLS gold standard due to the many pa-
rameters required to be estimated. The performance of 
RFGLS-VC continued to approximate that of the GLS 
gold standard. Both RFGLS-UN and RFGLS-VC main-
tained the correct type I error rate, while FGLS showed 
inflated type I error rate in this small sample size.

  The rapid methods were computationally much more 
efficient than all alternatives other than OLS, whose 
speed is achieved by making the invalid assumption of no 
familial correlation. This dramatic reduction in the com-
putation time for our proposed methods means that these 
methods could be used to carry out permutation tests, 
find the null distribution of the F test implemented in this 
study or any other test to be developed, and get the em-
pirical p values. This can be especially valuable when 
dealing with no normality in data. Our rapid method also 
allows to extensively expand the genotyped marker set by 
imputation, usually by employing HapMap data as a ref-
erence. Our method can also be used as the first stage in 
a 2-stage design where the first stage genome-wide scan 
is used to select noteworthy SNPs, and a second stage 
analysis can then be carried out, e.g. with FGLS, so that 
computation time is a lesser concern.

  In general, large genetic association studies are primar-
ily interested in the detection of SNPs associated with a 
trait, and our approaches have provided a rapid and pow-
erful way to detect an association. In the proposed rapid 
methods, along with those available such as GRAMMAR, 
there is bias in the estimation of a genetic effect and it in-
creases with increased effect size. However, the rapid 
methods are powerful in detecting an association.

  Our proposed population-based association analysis 
was shown to be much more powerful than the family-
based association analysis QTDT when ethnic stratifica-
tion is not present. If there is ethnic stratification, we can 
use EIGENSOFT and compute the principal components 
using the founders of the pedigree  [35] , then select the top 
principal components and use them as covariates in our 
RFGLS approach. This was efficiently demonstrated in our 
analysis of the MCTFR height data. We can also estimate 
a genomic kinship matrix, instead of the pedigree kin-
ship matrix used in this study, to be used in the RFGLS-
VC method. The use of a genomic kinship matrix has been 
advocated by Aulchenko et al.  [15]  to get a better estima-
tion of the ‘true’ covariance between individual genomes. 
The impact of estimating the kinship matrix on the power 
of the RFGLS-VC method is a topic for future study.

  In our study, we compared our proposed approaches 
with others using simulated nuclear family data. It is 
worth noting that our methods can also be applied to ex-
tended families. In our RFGLS-UN method, within-gen-
eration or within-household constrains can be put in the 
estimation of the family variance-covariance matrix. In 
our RFGLS-VC method, the relationship matrix of an ex-
tended family instead of a nuclear family can be easily 
applied and an environmental correlation of the extend-
ed family can be estimated. The performance of our pro-
posed method applied to extended families is a topic for 
further study.

  We used an F test in our proposed method. GWAF and 
GRAMMAR use a score test. Different tests may have dif-
ferent effects on the p values, although they are asymp-
totically equivalent at a large sample size. Future study 
should include the likelihood ratio test and the score
test by Chen and Abecasis  [13]  to measure the depth of 
the effect. We did not compare the performance of the 
GRAMMAR approach in our study since the package 
does not support sparse matrix computation, and is too 
computationally demanding for the sample size we used. 
However, we did find that in methods where environ-
mental similarity was not modeled explicitly (e.g. GWAF) 
this resulted in loss of power when such similarity existed 
in the data.

  To summarize, we developed a fast and powerful ap-
proach for family-based GWAS of quantitative traits. 
Currently available approaches like GWAF and GRAM-
MAR estimate familial similarities through kinship re-
lationships. Because environmental factors are likely to 
contribute to familial resemblance for many phenotypes, 
and especially for behavioral phenotypes, we combined 
kinship relationships and ‘environmental relatedness’
in our estimation of the familial correlation structures
in 2 rapid methods, RFGLS-UN and RFGLS-VC, and 
achieved comparable power to those from the GLS anal-
ysis when the real variance-covariance matrix is known. 
Among all the alternatives implemented that did not 
show inflated type I error, our methods were computa-
tionally most efficient. Further study will aim at extend-
ing our rapid approach to categorical trait analyses using 
a GEE method.
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