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Abstract

Purpose—To investigate the efficacy of distributed compressed sensing (CS) to accelerate free-
breathing, ECG-triggered non-contrast pulmonary vein (PV) MR angiography (MRA).

Materials and Methods—~Fully sampled ECG-triggered non-contrast PV MRA, using a
spatially-selective slab inversion preparation sequence, was acquired on 7 healthy adult subjects
(27£17 years, range: 19-65 years, 4 women). The k-space data were retrospectively randomly
under-sampled by factors of 2, 4, 6, 8 and 10 and then reconstructed using distributed CS and coil-
by-coil CS methods. The reconstructed images were evaluated by two blinded readers in
consensus for assessment of major PV branches as well as presence of artifacts in left atrium (LA)
and elsewhere. Diameters of right inferior and right superior PV branches were measured.
Additionally, mean square errors (MSE) of the reconstructions were calculated.

Results—Both CS methods resulted in image quality score similar to the fully-sampled reference
images at undersampling factors up to 6-fold for distributed CS and 4-fold for coil-by-coil CS
reconstructions. There was no difference in the presence of artifacts in LA and freedom from
important artifacts elsewhere between the two techniques up to undersampling factors of 10
compared to the fully sampled reconstruction. For the PV diameters, no systematic variation
between the reference and the reconstructions were observed for either technique. There were no
significant differences in MSE between the two methods when compared at a given rate, but the
difference was significant when compared across all rates.

Conclusions—The sparsity of non-contrast PV MRA and the joint sparsity of different coil
images allow imaging at high undersampling factors (up to 6-fold) when distributed CS is used.
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INTRODUCTION

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia with a prevalence
of over 2 million adults in the Unites States and accounts for approximately one-third of all
the hospitalizations for cardiac rhythm disturbances (1). Pulmonary vein (PV) MR
angiography (MRA) is commonly used for assessment of PV anatomy in patients
undergoing PV isolation for treatment of AF (2-5). PV imaging is commonly performed
prior and post radiofrequency ablation using MRI or multi-detector computed tomography
(MDCT) (6-7). Pre-procedural assessment is used to identify any variant PV anatomy, PV
diameter and geometry and to be able to integrate image-based anatomy with
electroanatomic mapping system during ablation. Following ablation, the imaging is also
performed to diagnose stenosis and other related complications (8).

Most commonly, PV MRA is performed during the first pass injection of gadolinium (Gd)
contrast agents. The image is acquired during a prolonged breath hold of 20-25 seconds,
which does not allow for isotropic spatial resolution or electrocardiographic (ECG) gating.
In addition, CE MRA is dependent on accurate timing of the contrast bolus, which can be
problematic in clinical applications. With the recent recognition of the association of
nephrogenic systemic fibrosis (NSF) and gadolinium-based contrast media in patients with
renal impairment (9), there has been renewed interest in non-contrast enhanced PV MRA.
Non-contrast PV MRA techniques using a steady-state free precession (SSFP) sequence
with a non-selective excitation RF pulse to shorten TR and a coronal excitation slab have
been developed (10-11). An alternative non-contrast PV MRA technique using selective
blood inversion has also been described (12), in which a sagittal selective inversion is used
to enhance the conspicuity of the PV and left atrium (LA). In both techniques, images are
acquired using a three-dimensional (3D) free-breathing navigator-gated ECG triggered
sequence, resulting in significantly longer acquisition time (5—-6 min). Current parallel
imaging techniques such as SENSE or GRAPPA allows acceleration of image acquisition by
usually a factor of 2—3. Thus methods that reduce the data acquisition time beyond what is
already available with parallel imaging or partial Fourier are appealing.

Compressed sensing (CS) is a method of image reconstruction from undersampled data (13—
14). CS exploits the sparsity (or more generally the compressibility) of the MR data in a
transform domain to reduce the required minimal data for reconstruction (15-17).
Application of CS has been useful in a range of MRI problems, such as dynamic MRI (18)
and three-dimensional imaging of the upper airway (19). In a recent study, CS was used in
combination with a magnetization-prepared 3D alternating repetition time balanced SSFP
sequence for accelerating the acquisition of lower leg angiograms up to rates of 4 without
parallel imaging (20).

Recently, there has been an effort to combine parallel imaging methods with CS (17,21-23).
One such approach relies on distributed CS (24), a technique that exploits the inter-signal
correlations of images in multiple-coils. The inter-signal correlations in MRI are expressed
as joint sparsity in the image domain, because the coil sensitivities only modulate the
intensity of the voxels. Using this joint sparsity property, coil images may be simultaneously
reconstructed using distributed CS (21-22). Since distributed CS uses the inter-signal
dependence of different coil images, it has the potential to exploit redundancy across
multiple coils more efficiently than a coil-by-coil application of CS. Therefore, application
of distributed CS for pulmonary vein MRA could potentially achieve acceleration beyond
what can be achieved using either CS or parallel imaging alone.

In this study, we sought to investigate the efficacy of distributed CS to accelerate 3D free-
breathing, ECG-triggered non-contrast PV MRA. We hypothesized that distributed
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compressed sensing would enable greater image acceleration than standard compressed
sensing applied to each coil independently.

MATERIALS AND METHODS

Distributed Compressed Sensing Image Reconstruction

Consider mj(x,y,z) to be the imaging data of size mxnxp for the j! coil and F to be the
Fourier transform. The undersampling operator keeps a subset (Q2) of the k-space and
rearranges it to a vector denoted by Fg. When the k-space is undersampled using the
sampling pattern Q, the measurement in the j™ coil is given by

SjIFQ (m,) +n;j, [

where nj is an additive noise vector.

The CS reconstruction solves the following optimization problem

min|| Ym; Hp s.t.|| Sj — Fa (mj) II2 <e¢g, 2]

where W is the sparsifying transform, ¢ is a distortion threshold and p is chosen to be a
sparsity-inducing norm (e.g. p < 1). From an optimization perspective, this optimization is

2
equivalent to minimizing Il Sj — Fo (mj) [l +7ll ¥m; |7 where 7 is a function of e.

The coil sensitivity map only modulates each voxel signal therefore it does not alter the
sparsity pattern. Distributed CS has been proposed for a method of exploiting inter-signal
dependence, when signals exhibiting the same sparsity pattern are measured at different
sensors. By using the a-priori information that the images in different coils are jointly sparse
in PV-MRA, distributed CS may take better advantage of the redundancies among different
receiver coils than applying CS independently to each coil image. Thus both the sparsity of
the images and the redundancy of receiver coils can be simultaneously used in
reconstruction. The joint sparsity of multiple coil images can be characterized by the I3 »
matrix norm of the images (25), which is given by:

N, 12
I [my---m,, | ||1_2=Z{Z|mj (X, y, :)|'J :

xy.z\ j=1

[3]

where N is the number of coil elements. The I, norm is applied across the coil elements
generating a combined sum of squares (SoS) image, and Iy norm is applied to this combined
image. Application of I; norm across the voxels promotes the sparsity in terms of the
number of spatial locations, whereas the application of I, norm across the coils promote
similar voxel values across different coil elements, i.e. if mj(x,y,z) has high signal in coil
element j, then there is a good probability of high signal value in my(x,y,z) for other coil
elements k. In this case, the optimization problem for reconstruction is given by

N,

B, 320155~ Fafm) e mi - 1 )
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We solve the objective function in [4] by iteratively alternating between enforcing data
consistency and thresholding the vectors in image domain according to the joint sparsity
constraint. The reconstruction algorithm is implemented as follows:

1)  Initialize m© =o0.
2) At iteration t:
(@)

calculate F° (m(f)).
(b) replace the values at the measured k-space locations, Q, with the
measured values S;.

(©)

take inverse FFT of (b) to generate Vj,-f).

(d)  generate the root-sum-square image v(®.

©) set m(f“)=(v(') - T)JVO) ~m§”, where (-)+ = max (||,0) sgn (*) is the

soft thresholding operator.
After T iterations, the algorithm outputs the sum-of-square (SoS) image for
m....m",
The thresholding parameter () was set to 1/500 of the maximum (in absolute value) of the
zero-filled image for the first 50 iterations, and 1/100 of the maximum value for the last 10
iterations. Sixty iterations (T=60) were used to generate the final image.

Non-Contrast PV MRA

Written informed consent was obtained from all subjects and the imaging protocol was
approved by our Institutional Review Board. All subjects were scanned usinga 1.5 T
Achieva magnet (Philips Healthcare, Best, The Netherlands) with a 5 channel phased-array
coil. The image reconstruction was performed off-line using Matlab (MathWorks, Natick,
MA).

Non-contrast PV MRA images were acquired on 7 healthy adult subjects (27 + 17 years,
range: 19-65 years, 4 women). To increase the conspicuity of the PV and LA, a gradient
echo sequence with a sagittal inversion slab was used to acquire non-contrast PV images
(12). The inversion slab was prescribed to cover the LA and the superior and inferior vena
cavae. The sequence parameters included: TR/TE/a=3 ms/1.4 ms/15°, TI=500 ms, FOV =
300x400x90 mm3, isotropic spatial resolution 1.8x1.8x1.8 mm3, oversampling factor: 28%,
60 mm sagittal inversion slab, ~550 ms trigger delay, with 50 views per segment. No
parallel imaging was used to facilitate retrospective under-sampling for CS reconstruction.

The k-space data were exported and transferred to a stand-alone workstation to allow
retrospective under-sampling by factors of 2, 4, 6, 8 and 10. The central phase encode lines
in the central slices were kept (24 lines in the central k; slice, and decreasing in the outer k,
direction in a diamond-like shape). A central diamond pattern was empirically selected to
simultaneously capture most of the energy in the central k-space and allow sufficient
sampling of the edges of k-space. The edges of the k-space were sampled using a zero-mean
Gaussian probability density (20) as shown in Figure 1.

As a comparison with the distributed CS reconstruction, each coil was reconstructed
individually using conventional coil-by-coil CS reconstruction, where the l; norm of each
coil image was minimized subject to a data-consistency constraint separately. The sum of
squares (SoS) was performed to generate the final image.
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Image Analysis

Both subjective and objective image analyses were performed to evaluate the two CS
reconstructions for different undersampling factors. Eleven imaging datasets were
reconstructed from the original raw k-space data, which consisted of one from a fully-
sampled k-space, 5 datasets reconstructed using distributed CS for different undersampling
factors of 2, 4, 6, 8 and 10, and finally 5 datasets using coil-by-coil CS reconstruction for
undersampling factors of 2, 4, 6, 8 and 10. For each subject, the eleven datasets were
anonymized and randomly ordered. Subsequently, each dataset was scored (1 to 5) by two
blinded readers (each with >10 years of experience in cardiac MR) in a consensus reading (1
corresponding to “vessel not visible, or no diagnostic information obtainable” and 5
corresponding to “excellent visibility or vessel definition™). Each PV branch (i.e. right
superior (RS), right inferior (RI), left superior (LS) and left inferior (L1)) was scored
independently, as was the LA. A separate score was also given to the imaging artifact seen
outside PV and LA. The PV scores given to all branches were averaged for each subject.

For quantitative measurement, the diameters of right inferior and right superior PV branches
have been measured from axial images. Furthermore, the mean square error (MSE) of each
reconstruction was calculated as

. 2
MSE:Z Imyef (X, Y, 2) — Myeconstructed (X, Y, 2)|”.
Xy2 [5]

The normalized MSE was then calculated by dividing each individual MSE by the squared
I, norm of the reference image. The MSE was computed over the central 40 slices for each
technique.

Statistical Analysis

Imaging scores and MSE are presented as mean + one standard deviation for each of the two
techniques. Due to the small sample size, and the statistical significance of the Shapiro-Wilk
test for normality of the paired differences of the scores (person-specific difference between
each technique and the reference which is a fully sampled k-space acquisition), the
nonparametric signed rank test was used to test for the null hypothesis that the central
tendency of the difference was zero at different undersampling factors. Bonferroni
correction was performed to account for multiple comparisons. All statistical analyses were
performed using SAS (v9.2, SAS Institute Inc., Cary, NC). A Bonferroni-corrected type-I
error of 0.005 (0.05 divided by 10 comparisons) was used to consider for statistical
significance. The right superior and inferior PV diameters of the reconstructions were
combined and compared to those of the reference using Bland-Altman method. Correlation
coefficient of the reconstructed and reference diameters were also calculated. The
normalized MSE measures were compared using the paired t-test for each undersampling
factor. The normalized MSE measures of the two methods were also compared collectively
for all undersampling factors and subjects. The linear mixed effects model was used to
capture the dependency of within-subject correlation (each subject has 5 differences from 5
different undersampling factors) which was modeled using the compound-symmetry
structure of the variance-covariance matrix (26).

RESULTS

In Vivo Study

Figure 2a shows a single 2D slice of the reconstructed images using the distributed CS and
coil-by-coil CS reconstruction methods from the non-contrast PV MRA for three different
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undersampling factors. The image corresponding to the fully sampled k-space is included as
the reference image. At the slice location selected in Figure 2, the LA and RIPV and LIPV
can be visualized in the reconstructions for all undersampling factors. At higher
undersampling factors, the image quality degrades which can be associated with lower SNR.
There are minimal imaging artifacts from the aliasing caused by the undersampling of the k-
space. There is a noise-like signal inhomogeneity in all PV images reconstructed with CS,
which is associated with the under-sampling and reconstruction of CS and can be seen even
in images with undersampling factor of 2. Overall, the RIPV was better visualized (4.1+0.4)
in the fully sampled images compared to the other three PV branches (3.6+0.5, 3.940.4,
2.7+1.1 for RSPV, LIPV and LSPV, respectively), an intrinsic property of our baseline non-
contrast enhanced PV MRA technique. A lower confidence in visualization of the LSPV is
generally consistent with our clinical experience with contrast-enhanced PV MRA, as well
as fully-sampled non-contrast PV MRA, likely in part due to the smaller size of the LSPVs
as compared with the Rl and LIPVs. No variant anatomy or early branching was observed in
any of the subjects. Figure 2b depicts a coronal view of the superior PVs of the same
subject. Figures 3a and b depict sagittal view of the left and right PVs, showing the origin of
the PVs.

Tables 1 and 2 summarize the image quality scores and the corresponding P values for the
two CS techniques for different undersampling factors. There was no significant difference
(P = NS) in the reconstructed PV images using distributed CS for undersampling factors 2
through 6 compared to the fully sampled reference image. Statistically significant decreases
in image quality were seen in coil-by-coil CS reconstruction at undersampling factors 4 and
higher for PVs. There was no difference for artifacts in LA or artifacts elsewhere scores for
any reconstruction method or undersampling factors. No major artifact was observed in any
of the imaging data-sets that would reduce the confidence in their clinical interpretation. The
Bland-Altman plots of the PV diameters are depicted in Figure 4, and showed no systemic
variation between the reference and the reconstructions. Furthermore, the correlation
coefficient between the PV diameters of the reference and the reconstructed images were
greater than 0.99 in all cases.

The calculated MSEs from all datasets are shown in Figure 5. Although, the mean value of
the MSE for coil-by-coil was generally lower than the MSE of the corresponding distributed
CS reconstruction, these differences were not statistically significant (P<0.01) after
Bonferroni correction (P = 0.017, 0.014, 0.012, 0.012, 0.011 for undersampling factors 2, 4,
6, 8, and 10 respectively). Significant differences between the two methods were observed
in the collective MSE comparison for all undersampling factors and subjects (P = 0.0065).

DISCUSSION

In this study, we demonstrated that CS methods enable high acceleration of data acquisition
for non-contrast PV MRA. The sparsity of non-contrast PV MRA and the joint sparsity of
images of different coil elements allow imaging at high undersampling factors. Similar
subjective image quality was observed in reconstructed PV images using distributed CS for
undersampling factors up to 6 versus reconstruction from a fully sampled k-space dataset.
For the coil-by-coil CS reconstruction, statistically significant decrease in image quality was
observed in the PV images for undersampling factors 4 and higher. For the LA or (freedom
from) artifacts score, there was no statistically significant difference for any reconstruction
method or undersampling factor as compared with the reference images.

The utility of distributed CS methods was also investigated in our work. These methods
minimize an objective function that captures the joint sparsity property subject to a data-
consistency constraint. In contrast, if each coil image is reconstructed individually, only the
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sparsity of that coil image is used in the objective function. In terms of reconstruction time,
both proposed methods require approximately the same number of operations. The main
difference is that the distributed technique requires one thresholding operation per iteration
followed by the mapping of the combined image to individual coils, while the coil-by-coil
reconstruction requires N¢ thresholding operations per iteration. When thresholding is
performed for each voxel individually, as it is in this work, the difference is negligible.

Coil-by-coil CS had lower mean values for normalized MSE than distributed CS for all
undersampling factors. In our opinion, this discrepancy in the subjective image quality
analysis, which favors distributed CS, and MSE analysis, which favors coil-by-coil CS,
suggests that MSE may not be the optimal metric for evaluating the quality of CS
reconstructions in MRI. Although MSE is a commonly reported fidelity measure in studies,
it may not be fully capturing the criteria experienced clinical cardiac MR readers use to
evaluate image quality. Similar conclusions have also been made in the image processing
community (27), noting that the use of MSE implicitly assumes that all parts of an image are
equally important and that signal fidelity is independent of temporal or spatial relationships.
The spatial dependence of image fidelity is especially significant for MRI reconstruction,
since artifacts that can interfere with the clinical image interpretation and are mainly located
around PVs and LA are highly important, whereas the noise artifacts in areas of no signal or
blurring artifacts in regions not related to the PVs are less relevant. Alternate methods for
quantitative image quality assessment based on human visual sensitivity and attention (28)
may be adapted to MRI, however this requires further investigation and is beyond the scope
of this work.

Another quality measure for reconstructions is the SNR of the reconstructed images.
However, for CS reconstructions, it is difficult to provide a reliable SNR measurement due
to a number of reasons. The reconstruction algorithms threshold and shrink the noise in the
non-signal areas, thus the measurement noise level cannot be reliably determined from the
final reconstructed image. A region of interest (ROI) measurement for the signal level in the
anatomic structures of interest also contains noise-like signal inhomogeneity because of the
reconstruction. Due to the non-linear nature of reconstruction, how measurement noise
affects the inhomogeneity in the ROI cannot be determined explicitly, and thus cannot be
compensated for.

The CS reconstruction of MRA images has several limitations. The fully-sampled reference
image cannot be reconstructed exactly or uniquely. Instead, CS reconstructions are sparse
approximations of the reference image. Both the zero-filled image and the reference image
have perfect data consistency, i.e. their Fourier transforms at locations Q match the acquired
k-space lines exactly. Thus the minimization of the objective function in [4] is controlled by
the sparsity-enhancing term. For both coil-by-coil regularization (I, norm of each coil
image) and distributed multi-coil regularization (I, , matrix norm of coil images), the zero-
filled image had a smaller sparsity-enhancing term than the reference image. Hence, any
reconstruction algorithm minimizing an objective function of the form in [4] chooses the
zero-filled image over the reference image. Note however, this does not imply that the zero-
filled image is the global minimizer of the objective function. It only implies that the
reconstructed images are somewhere “between” the zero-filled image and the reference
image, but not exactly equal to either, providing a sparse approximation to the reference
image.

Our study has several potential limitations. The study cohort was small and consists of only
healthy subjects with presumably normal PV anatomy. The image reconstruction and
undersampling was performed in a retrospective manner to allow better understanding of the
performance of the reconstruction technique. Although this approach eliminated the
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possibility of between-scan variation, it also meant that a prospective under-sampled k-space
PV MRA, which would better reflect how the method would be used clinically, was not
performed. The parameters used in the algorithm were determined empirically based on
published literature. We have not compared our methods to parallel imaging techniques.
Additionally, we have not compared our reconstructed images with the clinically used, first-
pass contrast-enhanced MRA or MDCT.

In conclusion, we have demonstrated that acquisition of non-contrast PV MRA can be
accelerated for undersampling factors of up to 6-fold with distributed CS reconstruction and
up to 4-fold with coil-by-coil reconstruction.
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Figure 1.
Fully-sampled k-space data (UF1) and under-sampling patterns for undersampling factors

(UF) of 2, 4, 6, 8 and 10. A fully sampled center of k-space was used in all acceleration
rates. The corresponding undersampling factors with respect to the elliptical window are 1.6,
3.2,4.7,6.3and 7.8.
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Figure 2.

(@) An axial slice, (b) coronal view of a 3D non-contrast PV MRA dataset reconstructed
from fully-sampled k-space data (Reference) as well as undersampled k-space with
undersampling factors (UF) of 2, 4, and 6, using distributed CS and coil-by-coil CS. Left
atrium and PV branches can be visualized at all acceleration rates with minimal image
degradation (LA= left atrium, AAo = ascending aorta, DAo = descending aorta, RIPV =
right inferior pulmonary vein, LIPV = left inferior pulmonary vein, RSPV = right superior
pulmonary vein, LSPV = left superior pulmonary vein).
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Figure 3.

Sagittal view of (a) right, (b) left pulmonary veins from the same subject in Figure 2 for
undersampling factors (UF) of 2, 4 and 6 using both techniques, as well as the from the
fully-sampled reference (RIPV = right inferior pulmonary vein, LIPV = left inferior
pulmonary vein, RSPV = right superior pulmonary vein, LSPV = left superior pulmonary
vein).
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Figure 4.
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Bland-Altman correlation analysis of the pulmonary vein diameter measurements for the

two techniques at different undersampling factors (UF). The plots show no systemic
variation. However, the differences of measured diameters are more spread out with

increasing undersampling factors.
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Figure 5.

The normalized mean square errors (MSE) and standard deviation of the MSE for
distributed and coil-by-coil reconstructions at acceleration rates of 2, 4, 6, 8, and 10.
Normalized MSEs were calculated as the mean-square distance between each reconstruction
and the fully-sampled reference dataset, normalized by the squared |, norm of the reference.
There were no differences (P = NS) between distributed and coil-by-coil CS at any
acceleration rate. A Bonferroni-corrected P value of 0.005 is considered to be significant for
the comparison of the two techniques at a given undersampling factor (UF).
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