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Abstract
A recent resurgence in logical-rule theories of categorization has motivated the development of a
class of models that predict not only choice probabilities but also categorization response times
(RTs; Fifić, Little & Nosofsky, 2010). The new models combine mental-architecture and random-
walk approaches within an integrated framework, and predict detailed RT-distribution data at the
level of individual subjects and individual stimuli. To date, however, tests of the models have been
limited to validation tests in which subjects were provided with explicit instructions to adopt
particular processing strategies for implementing the rules. The present research tests conditions in
which categories are learned via induction over training exemplars and where subjects are free to
adopt whatever classification strategy they choose. In addition, the research explores how
variations in stimulus formats, involving either spatially separated or overlapping dimensions,
influence processing modes in rule-based classification tasks. In conditions involving spatially
separated dimensions, strong evidence is obtained for application of logical-rule strategies
operating in a serial-self-terminating processing mode. In conditions involving spatially
overlapping dimensions, preliminary evidence is obtained that a mixture of serial and parallel
processing underlies the application of rule-based classification strategies. The logical-rule models
fare considerably better than major extant alternative models in accounting for the categorization
RTs.

A classic idea in the study of concept learning is that people learn and represent certain
kinds of categories by forming simple, logical rules (Bourne, 1970; Bruner, Goodnow, &
Austin, 1956; Levine, 1975; Trabasso & Bower, 1968). Through the years, however, a
variety of alternative models of multidimensional categorization, including prototype
(Posner & Keele, 1968; Reed, 1972), exemplar (Medin & Schaffer, 1978; Nosofsky, 1986),
and decision-bound models (Ashby & Townsend, 1986) have come into prominence.
Nevertheless, the idea that logical rules may underlie numerous types of category
representations has certainly not disappeared, and rule-based models continue to be
proposed, at least as components of fuller systems (e.g., Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Erickson & Kruschke, 1998; Feldman, 2000; Goodman, Tenenbaum,
Feldman, & Griffiths, 2008; Nosofsky, Palmeri, & McKinley, 1994). Until very recently,
however, a major limitation of logical-rule models is that they did not provide detailed and
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rigorous accounts of categorization response times (RTs). By contrast, a variety of exemplar
and decision-bound models have provided excellent accounts of such data (e.g., Ashby &
Maddox, 1994; Cohen & Nosofsky, 2003; Lamberts, 1995, 1998, 2000; Maddox & Ashby,
1996; Nosofsky & Palmeri, 1997). This limitation of rule-based models is significant,
because it is often extremely difficult to distinguish between categorization models based on
analysis of choice-probability data alone (e.g., Nosofsky & Johansen, 2000).

Thus, an important recent direction is that several researchers have now formulated logical-
rule accounts of categorization RTs (Bradmetz & Mathy, 2008; Fifić, Little & Nosofsky,
2010; Lafond, Lacouture & Cohen, 2009; for earlier related approaches, see Martin &
Caramazza, 1980; Trabasso, Rollins, & Shaughnessy, 1971). Bradmetz and Mathy (2008)
introduced a model that assumes that the overall classification RT associated with simple
Boolean concepts (e.g., Feldman, 2000, 2006; Shepard, Hovland & Jenkins, 1961) is the
time taken to “decompress” the concept into a series of component binary decisions
involving its features. The decompression time is determined by the number of component
decision that are involved and the order in which these decisions are processed. They
assume that decisions about the values of features are processed by “agents” that
communicate decisions in either a fixed-order serial fashion or in a dynamic (mixed-order)
fashion. Across several two-dimensional and three-dimensional Boolean concepts, the mean
classification RTs were generally consistent with the assumption that each decision was
carried out in a fixed serial order. However, in all cases, their RT measures were based on
small numbers of observations for each stimulus averaged across subjects. In addition, for
these category structures the predictions of the serial model were nearly identical to
predictions derived from the exemplar-based generalized context model (GCM; Nosofsky,
1986). Hence, strong conclusions could not be reached about whether participants were
actually engaging in logical-rule processing.

Serial-rule models such as those proposed by Bradmetz and Mathy (2008) are isomorphic to
models that assume that choices are made by progressing through the nodes of an ordered
decision tree. Building on earlier work of Trabasso et al. (1971), Lafond et al. (2009)
recently developed and tested a class of such models. In their decision-tree models, choices
are made by making decisions about the values of discrete features. Each feature is
represented by a branch on the decision tree and free parameters are estimated to represent
the decision time associated with individual branches. In general, rules combining a greater
number of sequential decisions take longer to complete. Lafond et al. fitted data at the
individual-subject level; however, like Bradmetz and Mathy, they fitted only mean RTs.
Although members of the class of decision-tree models compared favorably with exemplar
models in their study, there are some limitations in reaching very strong conclusions for the
operation of rule-based processing. First, the model comparisons all relied on measures of
quantitative fit, and there were no a priori qualitative predictions for contrasting the models.
Second, to achieve good fits, Lafond et al needed to “patch” the predictions from their
sequential decision-tree model with other free parameters. Although they provided
reasonable interpretations for the emergence of these parameters, a fully specified rule-based
process model was not provided.

In contrast to the rule-based models just discussed, Fifić et al. (2010) have proposed a set of
logical-rule models that are capable of explaining the time course of categorization not only
at the level of mean RTs but at the level of full RT distributions. As described more fully in
the next section, these models combine sequential-sampling and mental-architecture models
of RT within an integrated framework (for related approaches in other domains, see Eidels,
Donkin, Brown, & Heathcote, in press; Palmer & Mclean, 1995; Ratcliff, 1978; Thornton &
Gilden, 2007). In brief, the models assume that subjects make independent decisions about
the values that stimuli have along each of their dimensions. The time course of these
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independent decisions is governed by separate, individual random-walk processes
(Busemeyer, 1985; Luce, 1986). The outcomes of the independent decisions are then
combined via alternative mental architectures (Schweickert, 2002; Sternberg, 1969;
Townsend, 1984, 1990) to determine whether or not the logical rule that defines a category
structure has been satisfied. For example, as described more fully in the next section, the
individual-dimension random walks may be executed in either a serial, parallel, or coactive
fashion. Furthermore, the observer may use either exhaustive or self-terminating stopping
rules in evaluating the evidence about whether a logical rule has been satisfied.

One of the key contributions of Fifić et al. (2010) was that they provided a set of qualitative
contrasts for differentiating alternative processing versions of the rule-based models from
one another. That is, within the framework of the paradigm they tested, each rule model led
to its own unique RT signature. Furthermore, these signatures also allowed for strong
qualitative contrasts between the predictions from the rule-based models and major
alternative models of classification RT, such as exemplar and decision-bound models.
Moreover, as will be seen later in this article, by considering the detailed shapes of
individual-stimulus RT distributions, the rule-based models can be contrasted even with
extremely general models that do not posit forms of multiple-stage, rule-based processing.

The aims of the current research are two-fold. First, the previous experiments conducted by
Fific et al. (2010) were intended only as validation tests of the newly proposed logical-rule
models. In particular, subjects were always provided with explicit knowledge of the rule-
based structure of the categories. Furthermore, in most cases, subjects were provided with
explicit instructions for use of a serial self-terminating strategy for implementing the logical
rules. Not surprisingly, under those extreme conditions, the qualitative predictions from the
serial self-terminating rule model were observed, and the model provided an excellent
quantitative fit to the detailed RT-distribution data that were obtained in the experiments. In
a nutshell, these previous experiments simply provided validation that the new models and
experimental paradigm formed valuable tools: If subjects do indeed use logical rules as a
basis for classification, then the behavior can be sharply identified through fits of the models
to the RT data. The first purpose of the present research, therefore, is to put the tools to use.
In Experiment 1, subjects are again tested in Fific et al.'s classification paradigm. Now,
however, they receive no instructions regarding the rule-based category structure.
Furthermore, they receive no instructions regarding the type of processing strategy that they
should use. Instead, subjects are required to learn the categories from scratch by induction
over individually presented training exemplars and are free to adopt whatever classification
strategy they choose. The question is whether or not we will find evidence for use of any of
the logical-rule strategies under these open-ended learning and performance conditions.

The second purpose of the new research, which we pursue in Experiment 2, involves the
types of stimuli that subjects are required to classify. In the experiments conducted by Fific
et al. (2010) and Lafond et al. (2009), the stimuli were composed of highly separable
dimensions located in spatially separated regions. The reason for following this research
strategy was that it made more likely the possibility that subjects might process the
dimensions in a one-by-one serial fashion, and this form of serial examination of the
dimensions seems conducive to logical rule-based classification strategies. As described
earlier, however, a key idea is that evaluation of logical rules may not demand serial
processing of dimensions. Instead, under certain experimental conditions, observers may use
forms of parallel or coactive processing in evaluating whether or not a logical classification
rule has been satisfied. To investigate this possibility, in Experiment 2 we used stimuli
composed of spatially overlapping dimensions, making more plausible, for example, that
forms of parallel processing of the dimensions might take place. Thus, the new research is
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aimed at investigating the variety of types of information processing that may underlie the
application of logical-rule-based categorization strategies.

In the following section, we provide a more detailed review of the rule-based models of
classification RT proposed by Fific et al. (2010), and a review of the experimental paradigm
and sets of qualitative contrasts used for distinguishing among the models. We then evaluate
the models in the new experiments, both by testing their a priori qualitative predictions and
by quantitatively fitting the models to the detailed sets of individual-stimulus RT
distributions obtained in the tasks.

Logical, rule-based models
Because a full presentation of the logical-rule models has already been provided by Fific et
al. (2010), in this section we provide only a brief review. To explain the workings of the
models, it is convenient to make reference to the experimental paradigm illustrated in Figure
1 (left panel), which underlies the work reported in this article. The stimuli vary along two
continuous dimensions, x and y, with three values per dimension. The dimension values are
combined orthogonally to yield a 9-member stimulus set. The stimuli in the upper-right
quadrant of the stimulus space are members of the “target” category (A), whereas the
remaining stimuli are members of the “contrast” category (B).

When we say that a subject adopts a “logical-rule strategy,” we mean that the subject makes
independent decisions about the values of a stimulus along each of its dimensions, and then
combines those decisions using logical connectives such as AND, OR, and NOT to
determine if the stimulus belongs to a given category (Ashby & Gott, 1988; Nosofsky,
Clark, & Shin, 1989). In the Figure-1 example, a simple way of describing Category A is in
terms of a conjunctive rule: A stimulus is a member of Category A if it has value greater
than or equal to x1 on Dimension x AND value greater than or equal to y1 on Dimension y.
Conversely, a stimulus is a member of Category B if it satisfies a complementary disjunctive
rule, i.e., the stimulus has value less than x1 on Dimension x OR value less than y1 on
Dimension y. According to the present rule models, the subject processes the stimuli so as to
determine which rule has been satisfied and then emits the appropriate categorization
response.

Specifically, the models assume that the subject establishes decision boundaries along each
dimension, as illustrated in Figure 1, and determines to which side of the boundary each
individual dimension value of a presented stimulus falls (Ashby & Townsend, 1986). The
decision process along each individual dimension is modeled in terms of an elementary
random-walk process. As illustrated in the top panel of Figure 2, there is a random walk
counter with initial value zero. The subject establishes criteria with values +A and −B that
determine how much evidence is needed to make an A or a B decision on each individual
dimension. Along each of the dimensions, there is associated with each stimulus a normal
distribution of percepts (Figure 2, bottom panel). On each step of the random walk, a percept
is sampled from the stimulus's distribution. For Dimension x, if the percept falls to the right
of the decision bound (i.e., in Region A), then the random walk takes unit step in the
direction of criterion +A, whereas if the percept falls to the left of the bound then the
random walk takes unit step in the direction of −B. The sampling process continues until
either criterion +A or −B is reached. An analogous random-walk process takes place for
making independent decisions on Dimension y. The decision time along each dimension is
determined by the number of steps required to complete each individual random walk. Note
that, in general, stimuli with values that lie far from the decision bound (e.g., value x2 in
Figure 2) will lead to faster and more accurate independent decisions than those that lie
close (e.g., value x1 in Figure 2), because the random walk will take more consistent steps
toward the appropriate response criterion.
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To make an overall categorization response, the subject needs to determine which logical
rule is satisfied. Thus, the results from the individual-dimension random walks must be
combined. For example, an object is judged to be a member of the target category only if
both the x and y random walks lead to Region-A decisions. The formal models make
allowance for the possibility that different mental architectures and stopping rules are used
for combining the outputs of the individual-dimension random walks. First, the random
walks may operate in either serial (one at a time) or parallel (simultaneous) fashion.1
Second, the observer may use either a self-terminating or exhaustive stopping rule. For
example, if the first completed random walk leads to a decision that the object lies in Region
B along a dimension, then processing may self-terminate, because the disjunctive-rule
defining Category B has already been satisfied. By contrast, if an exhaustive stopping rule is
used, then the final classification response is not made until both random walks have been
completed, regardless of the outcome of any earlier decisions. Importantly, throughout this
article, when we refer to “self-terminating” models, we mean that processing self-terminates
only when it has the logical option to do so. Of course, even self-terminating models
presume that exhaustive processing takes place in those cases in which it is logically
required. For example, suppose that an observer employs a self-terminating stopping rule
and that stimulus x0y2 from the contrast category (B) is presented (see Figure 1). If the
random-walk process on Dimension x finishes first and correctly determines that x0 falls in
Region B, then processing will self-terminate, as explained above. But if the random-walk
process on Dimension y finishes first, then there is insufficient information to decide if the
stimulus belongs to Category A or B (i.e., both the target and contrast categories include
stimuli with value y2 on Dimension y). In this case, the observer must also process
Dimension x before he or she is able to make the classification response. Finally, note that
regardless of whether an observer is using a self-terminating or exhaustive stopping rule,
processing is always exhaustive in cases in which correct classification of a member of the
target category (A) takes place. That is, for the present paradigm, exhaustive processing is a
logical requirement to verify that the conjunctive rule that defines the target category has
been satisfied.

Combining the possibilities outlined above, we consider models that assume either serial-
self-terminating, serial-exhaustive, parallel-self-terminating, or parallel-exhaustive
processing. We consider as well a fifth possibility, based on coactive processing (e.g.,
Miller, 1982), in which sampled perceptual information from Dimensions x and y is pooled
into a single, common random walk (Fific et al., 2010). This model is discussed at greater
length in the final section of our introduction.

To implement the models, we introduce various simplifying assumptions and parameter
constraints. First, because the stimuli used in our experiments vary along highly separable
dimensions (Shepard, 1964), we assume that the perceptual distributions along Dimensions x
and y are independent for each individual stimulus. Furthermore, the mean and variance of
each stimulus's perceptual distribution along Dimension x depends only on whether it is
composed of dimension value x0, x1, or x2; and likewise for Dimension y. (These respective
assumptions are referred to as “perceptual independence” and “perceptual separability”
within the General Recognition Theory of Ashby & Townsend, 1986). Within each
dimension, the variances of the perceptual distributions are assumed to be equal; however, to
allow for the possibility that one dimension is more discriminable than the other, separate
perceptual variance parameters are allowed for Dimension x (σx

2) and Dimension y (σy
2).

Because we will be fitting RT distributions, we assume that there is a log-normal

1To allow strong contrasts, we assume independent, unlimited-capacity parallel models in this work. Fific et al. (2010) also made
preliminary investigations of certain limited-capacity parallel models. An extremely wide variety of such models could be developed,
however, so future work is needed to more fully investigate these possibilities.
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distribution of residual times with mean μR and variance σR
2 (corresponding, for example, to

encoding and motor-execution stages).2 We also need to estimate a free scaling parameter k
that specifies the time in ms for taking each individual random-walk step. Finally, the serial
self-terminating model requires a free parameter px indicating the proportion of times that
the dimensions are processed in the order x-then-y (rather than y-then-x). In sum, the logical
rule models use the following free parameters: the perceptual-variance parameters σx

2 and
σy

2; decision-bound locations on Dimensions x and y (Dx and Dy); random-walk criteria +A
and −B; residual-stage parameters μR and σR

2; time-scaling parameter k; and, for the serial
self-terminating model, the order-probability parameter px.

Given the stated assumptions, the experimental paradigm illustrated in Figure 1 is a highly
diagnostic one for telling the models apart and for contrasting them with major extant
alternatives in the field. Although we will ultimately be fitting all of the models to detailed
RT-distribution data, it turns out that sharp distinctions exist among the models even at the
level of mean RTs. In particular, each model yields its own unique signature of the predicted
pattern of mean RTs across the target and contrast categories. (These predictions assume
that error rates are fairly low, a requirement that will be satisfied in our ensuing
experiments.)

To help illustrate the predictions, we make use of the notation shown in the right panel of
Figure 1. For the target category (A), the stimuli are designated by their discriminability with
respect to the category boundaries: the low-low (LL) stimulus is close to the boundary on
both dimensions and hence has low discriminability on both dimensions. By contrast, the
high-high (HH) stimulus has high discriminability on both dimensions. The LH and HL
stimuli have low discriminability on one dimension but high discriminability on the other.
Assuming that decision making is faster for stimuli with high rather than low
discriminability, then it is expected that the HH stimulus will have the fastest RTs, the LH
and HL stimuli intermediate RTs, and the LL stimulus the slowest RTs. A quantitative
indicator of the pattern of mean RTs for the target-category stimuli is provided by a measure
known as the mean-interaction-contrast (MIC):

(1)

where RTij is the mean RT associated with target-stimulus ij (Townsend & Nozawa, 1995).
As illustrated by examples in the left panels of Figure 3, when MIC=0 the mean RTs for the
target-category stimuli show an additive pattern; when MIC<0 the mean RTs are
underadditive; and when MIC>0 the mean RTs are overadditive.

The target-category structure forms part of what is known as the double-factorial paradigm
in the information-processing literature. Under reasonable assumptions (see Townsend &
Nozawa, 1995), which are satisfied by the rule-based models used in this research, the
alternative mental architectures make clear-cut predictions of the pattern of mean RTs in this
paradigm (see Figure 3, left panels). The serial-rule models predict an additive pattern of
mean RTs (MIC=0); the parallel models predict an underadditive pattern (MIC<0); and the

2The log-normal seemed a reasonable choice for the assumed distribution of residual times because it is continuous, non-negative,
unimodal, and positively skewed; and it has minuscule probability density below a given time cutoff (with appropriate parameter
settings). These properties are commonly observed for numerous types of empirically observed RT distributions (cf. Ulrich & Miller,
1993) and they seem plausible for latent residual-time distributions as well. Regardless, the exact form of the assumed residual-time
distribution is unlikely to have any bearing on the main conclusions reached in this research. As will be seen, the alternative
categorization models to be tested make strongly contrasting qualitative predictions, and these predictions are independent of the
assumed residual-time distribution. To corroborate this point, we also fitted some of the subjects' data while assuming a uniform
distribution of residual times instead of a log-normal. An identical pattern of model-selection results was observed and none of our
conclusions was affected by the specific residual-time distribution that was assumed.
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coactive model predicts an overadditive pattern (MIC>0). See Fific, Nosofsky, and
Townsend (2008) and Fific et al. (2010) for intuitive explanations of the emergence of each
of these mean RT patterns from the alternative models.

Whereas the pattern of target-category predictions is well known in the information-
processing literature, Fific et al. (2010) noted that the pattern of mean RTs for the members
of the contrast category (B) offers additional diagnostic evidence of the type of information-
processing architecture that is involved. Again, we use the notation in the right panel of
Figure 1 to facilitate the discussion. The contrast-category stimulus that satisfies the
disjunctive rule on both dimensions is denoted the redundant (R) stimulus; the adjacent
neighbors of the R stimulus are denoted the interior stimuli (Ix and Iy); and the stimuli at the
far edges of the contrast category are denoted the exterior stimuli (Ex and Ey). In addition, in
the case of serial processing, if, say, the subject tends to process the stimuli in the order x-
then-y, then we will refer to Dimension x as the first-processed dimension and to Dimension
y as the second-processed dimension. This same terminology is also used for the parallel and
coactive models if processing tends to be faster or more accurate on one dimension than the
other.

To illustrate the diagnosticity of the contrast category, consider, for example, the predictions
from a fixed-order, serial-self-terminating rule strategy, with the subject always processing
Dimension x first and Dimension y second. Assuming perfectly accurate responding, if
presented with any of the three stimuli R, Ix, or Ex, then the subject will verify in the first
stage of processing that the disjunctive rule defining the contrast category has been satisfied
(see Figure 1, right panel). Thus, processing will self terminate, and the subject can
immediately emit a Category-B response. Therefore, the mean RTs for these three stimuli on
the first-processed dimension will tend to be fast and approximately equal to one another.
By contrast, if either of stimuli Iy or Ey is presented, the subject will need to engage in a
second stage of processing. That is, after processing only Dimension x, there is insufficient
information to determine whether the stimulus is a member of the contrast category or the
target category (because both include members with x values that fall to the right of the
decision boundary). Because the observer first processes Dimension x and then processes
Dimension y, RTs for Iy and Ey will tend to be slower than for R, Ix, and Ex. Finally, the
mean RT for the exterior stimulus Ey will be faster than the mean RT for the interior
stimulus Iy. The reason is that, in the first stage of processing, Ey is farther from the x
decision bound than is Iy, so Ey is processed faster during the first stage. In the second stage,
the time to determine that these stimuli fall below the y decision boundary is the same for Iy
and Ey. Because, for the serial model, the total decision time is just the sum of the
individual-dimension decision times, the fixed-order serial-self-terminating model therefore
predicts faster mean RTs for the exterior stimulus than for the interior stimulus on the
second-processed dimension. A summary picture of this complete set of qualitative
predictions for the fixed-order serial self-terminating model is presented in the top-right
panel of Figure 3.

Similar forms of reasoning, verified through computer simulation, lead to the qualitative sets
of predictions illustrated for all of the remaining models in the right panels of Figure 3. (See
Fific et al., 2010, pp. 315-317, for a step-by-step exposition of the basis for the predictions
for each of the models.)3 For example, according to the mixed-order serial self-terminating
model (which assumes that the order in which the dimensions are tested is a probabilistic
mixture across trials), the exterior stimuli will be classified more rapidly than the interior
stimuli on both dimensions. (Also, assuming perfect accuracy, there should be a small

3For the exhaustive models, the relative speed of the redundant stimulus compared to the interior ones depends on the precise
placement of the decision bounds. This detailed issue is not relevant in the context of the present studies.
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redundant-stimulus advantage.) By contrast, if a parallel-self-terminating strategy is used,
the RTs for the interior and exterior stimuli will be equal on both dimensions. And, to take a
final example, if a coactive rule process is involved, then RTs for the exterior stimuli will be
slower than RTs for the interior stimuli on both dimensions. Although these predictions are
not completely parameter free, they hold over the vast range of plausible parameter settings
from the models. (Extreme parameter settings that “undo” these predictions lead to other
extreme consequences that constrain the models.) From inspection of Figure 3, the reader
can verify that each of the individual rule-based models generates it own unique signature of
the predicted pattern of mean RTs taken across both the target and contrast categories. Thus,
the paradigm is a highly diagnostic one for telling apart the alternative rule models.

Comparison Models
As a source of comparison, we also consider three alternative models of classification RTs:
the exemplar-based random walk (EBRW) model (Nosofsky & Palmeri, 1997); a random-
walk version of multidimensional decision-boundary (RW-MDB) theory (Ashby, 2000;
Nosofsky & Stanton, 2005); and a very general free-stimulus-drift-rate model (Fific et al.,
2010). Because the EBRW and RW-MDB models have been discussed extensively in
previous articles, we only briefly review them here. (See Fific et al. (2010) for a fuller
statement and a listing of the free parameters.)

According to the EBRW model, people store individual exemplars of categories in memory.
Presentations of test items lead the stored exemplars to be retrieved -- the greater the
similarity of the exemplar to the test item, the higher is its retrieval probability. The
retrieved exemplars drive a random-walk process for making classification decisions. If a
retrieved exemplar belongs to Category A, then the random walk steps in the direction of
criterion +A, whereas if the exemplar belongs to Category B then the random walk steps
toward Criterion −B. The exemplar-retrieval process continues until one of the criteria has
been reached. The qualitative predictions of mean RTs from the EBRW model are shown
schematically in the bottom panels of Figure 3, and they are identical to the qualitative
predictions from the coactive model. In general, the EBRW model predicts that
classification RTs get faster as a stimulus's summed similarity to its own category grows
larger, and as its summed similarity to the opposite category grows smaller. So, for example,
for the members of the contrast category (B), summed similarity to the correct category
grows larger as one approaches the lower-left corner where the redundant stimulus is
located.

According to the RW-MDB model, the observer establishes multidimensional decision
boundaries to divide the stimulus space into category regions. For the present paradigm,
each stimulus is associated with a bivariate normal distribution of percepts. Upon
presentation of a stimulus, a percept is sampled from the bivariate distribution. If the percept
falls in Region A defined by the multidimensional decision bound, then a random walk takes
a step in the direction of criterion +A; whereas if the percept falls in region B, the random
walk steps in the direction of criterion −B. In the same manner as the previous models, the
perceptual sampling process continues until either the +A or −B criterion has been reached.
(Note that the process here is different from the serial and parallel rule models, which
assume that independent decisions are made along each dimension by a separate random
walk, with the separate decisions then being combined.) The precise predictions from the
RW-MDB model depend on the form of the multidimensional decision bound that is used
for dividing the stimulus space into category regions. In the present experiments, the stimuli
will vary along highly separable dimensions, so it is reasonable to assume that the
multidimensional bound is simply the combination of two individual decision boundaries
that are orthogonal to the coordinate axes (as illustrated in Figure 1). Likewise, we continue
to assume perceptual independence and perceptual separability of the stimulus
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representations (Ashby & Townsend, 1986). Under these assumptions, the RW-MDB model
is formally identical to the coactive model. Therefore, the coactive model will serve as our
representative from the general class of multidimensional decision-bound models.

Perhaps the most important comparison model is the free stimulus-drift-rate model. As is the
case for the EBRW and coactive models, this model assumes that classification decision-
making is governed by a single-channel random-walk process. That is, in this model,
subjects do not make separate decisions about the values that stimuli have on each of their
dimensions, and the outputs of separate random walks are not combined (as occurs in the
serial and parallel rule-based models). Instead, there is just a single random walk process
that is associated with each individual stimulus. However, within this single-channel
framework, the model is extremely general, because it simply allows each individual
stimulus to have its own freely estimated drift-rate parameter. That is, for each individual
stimulus, we estimate a separate free parameter that indicates the probability that the single
random walk moves toward criterion +A on each step. (This approach is analogous to one
that Ratcliff and colleagues often apply when fitting their continuous-time diffusion model
to different experimental conditions, e.g., Ratcliff & Rouder, 1998) For the category
structure illustrated in Figure 1, the free stimulus-drift-rate model uses 14 free parameters
for fitting the RT distributions. The first five play the same role as already described for the
logical rule-based models: the random-walk criteria +A and −B; residual-distribution
parameters μR and σR

2; and scaling constant k. The remaining 9 free parameters are the
individual-stimulus drift rates. Note that the free stimulus-drift-rate model subsumes the
EBRW and coactive models as special cases. Thus, it must provide at least as good an
absolute fit to the data as do these other models. However, because our model-fit criterion
will employ a penalty term for number of free parameters, it is not guaranteed to provide as
good a penalty-corrected fit. Possibly, the EBRW and coactive models could provide more
parsimonious accounts of the data.

Because of its generality, the free stimulus-drift-rate model can predict any pattern of mean
RTs for the nine stimuli in the classification task. Therefore, the qualitative predictions of
mean RTs shown in Figure 3 will not be useful for contrasting the logical-rule models with
the free stimulus-drift-rate model. Nevertheless, as explained in depth in the Computional
Modeling sections of our article, the present models also make different predictions of the
shapes of individual-stimulus RT distributions. As will be seen, the RT-distribution data will
be extremely useful for telling apart the logical-rule models from even this very general
free-stimulus-drift-rate model. To the extent that the logical-rule models provide better fits
than does even the free-stimulus-drift-rate model, it would provide extremely convincing
evidence of the utility of combining the mental-architecture and random-walk approaches
within an integrated framework.

Experiment 1
In Experiment 1, we test four individual subjects using the Figure-1 category structure. The
stimuli and category structure are the same as those used in Fific et al.'s (2010) Experiment
2. The crucial difference in the procedure is that the Fific et al. study served only as a
validation test of the proposed rule models. In that previous experiment, all subjects were
provided with explicit information regarding the details of the rule-based category structure.
In addition, most were also provided with explicit instructions to use particular fixed-order
serial-self-terminating procedures to apply the stated rules. By contrast, in the present
experiment, subjects learn the categories via trial-by-trial induction over the individual
training exemplars, and are free to apply whatever strategy they choose in order to classify
the stimuli. The question is whether or not we will find evidence of rule-based classification
under these open-ended learning and performance conditions.
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Following Fific et al. (2010, Experiment 2), our Experiment-1 stimuli are composed of
highly separable dimensions located in spatially separated regions (see the Method section
for details). Given the nature of the stimuli, it is likely that subjects cannot focus attention
simultaneously on the separate dimensions within the same “attentional beam”. Eye
movements may even be needed in order for subjects to sharply encode the values on the
separate dimensions. We continue to use these stimuli because they are likely to promote
serial processing of the dimensions, and we judge that serial processing is conducive to
allowing subjects to adopt rule-based classification strategies. (The idea in this initial
experiment was to arrange conditions that might bolster the chances that rule-based
strategies would be freely chosen and used.) Note, however, that serial encoding of
individual dimensions does not force the application of the logical-rule strategies
themselves. For example, serial processing may take place in an initial encoding stage, but
then a host of alternative classification strategies may operate upon the fully encoded
stimulus in a subsequent decision stage. Thus, unlike Fific et al. (2010), it is an open
question whether or not we do indeed find evidence for application of the logical rules under
the present conditions.

Method
Participants

Four Indiana University students completed Experiment 1. They received $9 dollars per
session and an extra $3 dollar bonus per session for highly accurate performance. The
participants had normal or corrected-to-normal vision. The participants were unaware of the
issues under investigation in the research.

Stimuli
The stimuli were schematic drawings of lamps composed of four parts (see example in
Figure 4): a top piece, which varied in the amount of curvature; a lamp shade, which varied
in the angle at which the sides connected the bottom of the shade to the top of the shade; the
design or body of the lamp, which varied in qualitatively different forms; and the base of the
lamp, which varied in width. Overall, the lamp shade and body of the lamp (not including
the top or the base) were 385 pixels tall and 244 pixels at the widest point (the bottom of the
shade piece). The stimuli subtended a vertical visual angle of about 10.48 degrees and a
horizontal visual angle of about 5.72 degrees at their widest point.

Only the top piece and the base were relevant for the categorization task (see Figure 4). The
curvature of the top piece was varied in three levels by drawing an arc inside of a 60 pixel-
wide rectangle with a variable height: 15, 17, or 24 pixels . Likewise, the width of the base
was varied in three levels (95, 105, and 160 pixels). The height of the base was fixed at 20
pixels. All of the lamps that had either the top piece with the smallest curvature (15 pixels)
or the narrowest base (95 pixels) formed the set of contrast-category lamps (Category B). All
of the remaining lamps formed the set of target-category lamps (Category A).

The lamp shade and design dimensions also varied across trials (3 levels each). However, as
explained more fully in the Procedure section, the lamp shade and design dimensions were
irrelevant to the categorization task. Furthermore, for each individual subject, within each
session of testing, there was no correlation between values on the relevant dimensions and
values on the irrelevant ones, either within or between categories.

As shown schematically in Figure 1, note that the difference between the dimensional values
close to the category boundary (e.g., the base width values of 95 and 105 pixels) was smaller
than the difference between the middle dimensional value and the remaining value (e.g., the
base width values of 105 and 160 pixels). In order to tell apart the predictions from the
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alternative rule models, the high-discrimination (H) dimension values must be processed
more rapidly than the low-discrimination (L) values. The difficulty of the discriminations
near the boundary was used to increase the magnitude of these desired speed-of-processing
differences.

Procedure
In describing the procedure, we will refer to each of the 9 combinations of the relevant top
and base dimensions as an item type. Specific stimuli composed of unique combinations of
all four dimension values will be referred to as tokens. (Because each of the 4 dimensions
had 3 values, there was a total of 81 tokens.) Participants completed 5 sessions across near
consecutive days. In each session, participants first completed 27 practice trials (3
repetitions of each item type). This was followed by 810 experimental trials, grouped into 6
blocks of 15 presentations of each item type, with rest breaks in between each block. In the
experimental trials of each session, each of the 81 tokens was presented 10 times each. Thus,
across the entire experiment, not including the practice trials, each of the 9 main item types
was presented 90 times per session and 450 times in total. The order of presentation of the
stimuli was randomized anew for each participant and session, within the constraints stated
above. The reader may verify that this procedure ensures that there are no spurious
correlations between values on the irrelevant dimensions and category membership.

Participants responded by pressing the left mouse button for group A and the right mouse
button for group B. Participants were instructed to rest their left and right index fingers on
the mouse buttons throughout the testing session. RTs were recorded from the onset of a
stimulus display up to the time of a response. Each trial started with the presentation of a
fixation cross for 1770 ms. After 1070 ms from the initial appearance of the fixation cross, a
warning tone was sounded for 700 ms. The stimulus was then presented on the screen and
remained visible until the participant's response was recorded.

The first session was used as a training session in which participants were required to learn
the categories through trial and error. At the outset of the experiment, participants were
shown three example stimuli that illustrated all three different top piece curvatures and all
three different base widths. To speed learning, participants were instructed that the lamp
shade and design were irrelevant for learning the categories. In the first session of
Experiment 1, participants could take as long as they desired to respond, feedback was
provided for both correct (e.g., “…CORRECT…”) and incorrect responses, and the stimulus
remained onscreen while the feedback was presented to allow further inspection of the
relevant dimensions and increase the speed of learning. In the later sessions, participants
were given feedback (“…WRONG…”) only after incorrect responses or after responses that
took longer than 5 s (“…TOO SLOW…”). A blank inter-trial interval of 1870 ms was
inserted between each trial.

Because the contrasting qualitative predictions from the competing models assume high-
accuracy responding, the instructions emphasized the need for subjects to be accurate.
Subjects were informed, however, that their RTs were being recorded, so they needed to
execute their response as soon as they had made their decision.

Results
For Experiment 1, we refer to the participants as L1 to L4 where the L designates the lamp-
stimuli experiment. The initial training/practice session (Session 1) was excluded from the
analyses. Trials with error responses were excluded from the RT analyses. Finally, for each
individual participant and stimulus, trials with RTs less than 150 ms and trials with RTs
greater than 3 standard deviations above the mean for that stimulus were removed. Less than
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2% of the trials were removed by this method. As shown in Table 1, error rates were
generally very low, with a couple of higher error rates always associated with slower
stimuli. Therefore, we now turn to analyses of the RTs.

Mean-RT Analyses
The mean RTs for each individual subject and stimulus are reported in Table 1 and are
illustrated graphically in Figure 5. The target-category results are shown in the left-hand
panels and the contrast-category results in the right-hand panels. In terms of the big picture,
comparing the observed data to the canonical prediction graphs in Figure 3, it can be seen
that the results for Subjects L1-L3 closely resemble the qualitative predictions from the
mixed-order serial-self-terminating rule model. In addition, the results for Subject L4 closely
resemble the predictions from the fixed-order serial-self-terminating rule model. In
particular, for all four subjects, the target-category RTs show the additive pattern predicted
by the serial models. Likewise, for all four subjects, the contrast-category results show that
the exterior stimulus is classified more rapidly than is the interior stimulus on the “second-
processed” dimension. For Subjects L1-L3, this same pattern also tends to be seen on the
“first-processed” dimension, which is indicative of a mixed-order serial-self-terminating
process. For Subject L4, the RTs on the first-processed dimension are nearly flat, which is
indicative of a fixed-order serial-self-terminating process. The only minor deviation of the
observed data from the predictions of the serial-self-terminating models is that the redundant
stimulus has somewhat slower RTs than expected. As explained in the Computational
Modeling section, even this pattern is a possible outcome from the model when there is a
non-zero probability of errors. Whereas the data for all of the subjects closely resemble the
predictions from the serial self-terminating rule models, they obviously strongly violate
subsets of the predictions from all of the competing models shown in Figure 3.

We conducted statistical tests to confirm the description of the results provided above. For
the target-category data, we conducted a 4×2×2 analysis of variance (ANOVA) of the RTs
of each individual subject, using as factors Session (2-5), discrimination level of the base
dimension (L or H), and discrimination level of the top-piece dimension (L or H). The
results are presented in Table 2. For all participants, there was a main effect of session,
reflecting a slight speeding up of responding over time. As is obvious from inspection of
Figure 5, the main effects of stimulus-dimension discriminability (L or H) were of course
highly significant and those results are not presented in the table. Most important for the
present analysis, there was no interaction between the base and top-piece factors, supporting
the claim of additivity (MIC=0) of the target-category RTs, and supporting the inference of
serial processing of the dimensions. Furthermore, the Session × Base × Top Piece
interaction was not significant for any of the subjects, suggesting that the processing strategy
was stable across the course of the experiment. Although not reported in Table 2, there were
some occasional interactions of session with the individual dimensions, reflecting minor
changes in relative processing speed across the course of the experiment.

For the contrast category, we conducted t-tests to compare various stimulus pairs of interest.
As reported in the table, in the case of the second-processed dimension, all subjects
classified the exterior stimulus significantly faster than the interior stimulus. In addition, for
Subjects L1-L3, this same pattern is observed on the first-processed dimension (the result is
marginally significant for Subject L3). For Subject L4, the difference between the exterior
and interior stimulus on the first-processed dimension does not approach statistical
significance. Finally, although the redundant stimulus is usually classified significantly more
rapidly than are the other members of the contrast category, some exceptions arise,
particularly in comparison to the exterior stimulus on the first-processed dimension. Despite
these small deviations involving the redundant stimulus, when considered collectively the
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pattern of mean RTs for the individual subjects points strongly towards the serial self-
terminating rule models (mixed-order for Subjects L1-L3 and fixed-order for Subject L4).

Computational Modeling
Following Fific et al. (2010), we fitted the models to the complete sets of correct RT-
distribution and error-proportion data by using a variant of the method of quantile-based
maximum likelihood estimation (QMLE; Heathcote, Brown & Mewhort, 2002).4 For each
stimulus, predictions were generated of correct RTs for the following quantile bins: the
fastest 10%, the next four 20% intervals and the slowest 10%. Because error rates were so
low, we did not attempt to fit error-RT distributions. However, the error data still strongly
constrain the models, because the models are required to simultaneously fit both the correct-
RT distributions and the overall error rates for each stimulus. In particular, the fit of the
models to the data was evaluated using the multinomial log-likelihood function:

(2)

where Ni is the number of observations of stimulus i (i = 1, n); fij is the frequency with
which stimulus i had a correct RT in the j'th quantile (j = 1,m) or was associated with an
error response (j = m+1); and pij (which is a function of the model parameters) is the
predicted probability that stimulus i had a correct RT in the j'th quantile or was associated
with an error response. The log-likelihood values were then transformed to account for the
number of free parameters used by each model. In particular, we used the Bayesian
Information Criterion (BIC; Schwarz, 1978), which penalizes the log-likelihood based on
the number of free parameters and the size of the sample being fit:

(3)

where np is the number of free parameters in the model and M is the total number of
observations in the data set. The model that yields the smallest BIC is the preferred model.

Quantitative predictions of the RT-distribution and error-probability data were generated
using 10,000 simulations for each stimulus (90,000 simulations for the entire set). To
illustrate the classification-decision stage of the simulation procedure, consider the serial-
self-terminating model and suppose that the test stimulus is xoy2 – see Figure 1. With
probability px, the simulation will first check the stimulus's value on Dimension x. Thus, the
random walk on Dimension x is simulated to produce a decision time (Tx) on this first-
processed dimension. Assuming that the random-walk process leads to the correct decision,
namely that xo lies in Region B of Dimension x, then the process self-terminates (because
the disjunctive rule that defines the contrast category has been satisfied). In this case, the
total decision time on this simulated trial is simply T = Tx. Alternatively, with probability 1-
px, the simulation will first check the stimulus's value on Dimension y. The random walk on
Dimension y is simulated, yielding a decision time Ty. Assuming a correct decision, namely
that y2 lies in Region A along Dimension y, there is insufficient information to make a
classification response. Thus, the simulation now checks Dimension x, yielding a decision
time Tx, so the total decision time on that simulated trial is T = Ty + Tx. The case just
illustrated was for a member of the contrast category (B). The basic process is the same for

4There is some debate in the literature about the merits of fitting methods that make use of variable-width quantile bins versus fixed-
width bins with varying counts (Heathcote & Brown, 2004; Speckman & Rouder, 2004). Fific et al. (2010) fitted the present models
using both methods, and they yielded identical model-selection results.
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the members of the target category (A). Note, however, that whereas for the contrast
category the process will sometimes self-terminate after the first-processed dimension has
been checked, correct classification for members of the target category always demands
exhaustive processing of both dimensions (in order to verify that the conjunctive rule is
satisfied). Finally, error responses arise from the same processes already described. For
example, if a target-category stimulus is presented, and one of the random walks incorrectly
decides that the stimulus lies in Region B along one of the dimensions, then the observer
will emit an incorrect response. See Fific et al. (2010, pp. 311-317) for analogous discussion
of the mechanics of each of the other logical-rule models.

We used a modified Hooke and Jeeves (1961) parameter-search procedure starting from 100
different random starting configurations to find the set of best-fitting parameters for each
model. In fitting the models, we assumed for simplicity that the means of the perceptual
distributions along each dimension were given by the physically specified dimension values
used for constructing the stimuli – see the Method section. (To place the x and y dimensions
on roughly the same range, the base-width dimension was arbitrarily scaled by 0.10.)

The fits of the models to the individual-subject data from Experiment 1 are shown in Error!
Reference source not found.. (For now, the reader should ignore the column labeled serial
attention-switch model.) Inspection of the table reveals that for all four participants, the
serial-self-terminating rule model yields, by far, the best BIC fit among the competing
models. The superior quantitative fit of that model compared to the other rule models is not
surprising given that the qualitative pattern of mean RTs for the individual stimuli, described
in the previous section, pointed strongly in its direction. Note as well that the serial-rule
model far outperforms both the EBRW model and the coactive model, with the latter being
our representative from the class of random-walk, multidimensional decision-bound (RW-
MDB) models. Thus, the serial rule model is far outperforming two of the leading extant
models of multidimensional perceptual classification.

Perhaps of greatest interest, the serial-self-terminating rule model provides a better fit to the
data than does even the free stimulus-drift-rate model. Indeed, even without imposing a
penalty based on number of free parameters, the serial rule model still provides a better fit to
the data than does the free drift-rate model, i.e., its absolute log-likelihood fit is better.
Because the free-drift-rate model generalizes the class of RW-MDB models, it follows that
no matter what the form of the multidimensional decision boundary, the serial-rule model
would also outperform any model from that class.

Because the free stimulus-drift-rate model can fit any pattern of mean RTs, it is likely that
the superior performance of the serial-rule-model resides in its ability to fit the detailed
shapes of the individual-stimulus RT distributions. Before pursuing that point further,
however, we first introduce an extension of the standard serial-self-terminating rule model
that yields an even better account of the full set of data.

Serial Attention-Switch Model
According to the serial rule model, the observer first makes an independent decision about a
stimulus's value along one dimension; then, if needed, the observer makes another decision
along the second dimension. A likely important component that we have left out of the
modeling is that, in cases that require processing of both dimensions, the observer needs to
switch attention from one dimension to another. Furthermore, an attention-switch process
may play a particularly important role for the present kinds of stimuli, in which the
dimensions are located in spatially separated regions. For example, there is clear evidence
from other domains of research that spatial shifts of attention take time (e.g., Sperling &
Weichselgartner, 1995).
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Thus, following Fific et al. (2010), we extend the serial rule model by also including an
attention-switch stage, which we assume is log-normally distributed with mean μAS and
variance σAS

2. Thus, in cases in which a subject must process both dimensions of a stimulus,
the total RT would be the sum of the residual time, the times to make independent decisions
on each of the dimensions, and the time to execute an attention switch. (For the contrast
category, an attention-switch occurs only on those trials in which both dimensions need to
be processed to verify if the disjunctive rule is satisfied; it does not occur on trials in which
the observer is able to self-terminate after completion of the first-processed dimension.
Correct processing of the target-category stimuli always requires an attention switch,
because, as discussed previously, verifying that the conjunctive rule is satisfied demands
exhaustive processing of the dimensions.)

The fits of the serial-attention-switch model are shown along with the other models in Table
3. Using the BIC statistic as the criterion of fit, this extended model yields dramatically
improved fits compared to even the standard serial-self-terminating model for subjects L2-
L4 (and approximately the same fit for Subject L1). Therefore, we focus on the performance
of this model in the remainder of this section.

The predicted mean RTs and error rates from the serial-attention-switch model are reported
for each individual stimulus in Table 1. Comparing the predictions to the observed data, it is
clear that the model provides a very good overall account of the mean RTs and error rates.
(The correlation between the predicted and observed mean RTs of the nine stimuli was r=.
996, r=.991, r=.978, and r=.993 for Subjects L1-L4, respectively.) The model accounts for
all of the aforementioned qualitative effects involving the mean RTs. To some extent, it is
even able to account for the finding that the redundant stimulus is sometimes classified more
slowly than the exterior stimulus on the first-processed dimension (although it clearly
underestimates the magnitude of the effect). The explanation is as follows. On some small
proportion of trials in which the redundant stimulus is presented, the subject's decision on
the first-processed dimension will be in error. On those trials, the subject will undergo a
second stage of processing in which the second dimension is examined. The most likely
outcome is that the subject classifies the redundant stimulus correctly during that second
stage of processing. Such trials will result in slow RTs, because two stages of processing
were required to achieve the correct response. By contrast, if the subject makes an error on
the interior or exterior stimulus during the first-stage or processing, the final response is
most likely to be an error (because these stimuli fall to the wrong side of the decision
boundary on the second dimension). Thus, averaging across trials, the overall correct mean
RT for the redundant stimulus may be slowed.

The fits of the serial-attention-switch model are illustrated in greater detail in Figure 6,
which plots the predicted correct-RT distributions for each individual subject and stimulus
against the observed correct-RT distributions. In these plots, the observed correct-RT
distributions (open bars) are displayed as vincentile histograms (for a review, see Van Zandt,
2000, pp. 429-430). The predicted correct-RT distributions are shown as smoothed densities
computed from the correct trials of the 10,000 simulated RTs for each individual stimulus
(using a Gaussian kernel estimator -- see Van Zandt, 2000, p. 430). As can be seen, beyond
accounting for the data at the level of mean RTs, the model generally does an excellent job
of accounting for the detailed shapes of the individual-stimulus RT distributions. None of
the other models came close to matching this degree of quantitative precision.

Survivor-Interaction-Contrast (SIC) Function Analyses
To obtain additional perspective on the model-fitting results, we analyze the RT-distribution
data by computing what is known as the survivor-interaction-contrast (SIC) function
associated with the target-category members (Townsend & Nozawa, 1995). As reviewed
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below, the SIC function provides highly diagnostic information for telling apart alternative
mental architectures and stopping rules, and an analysis involving the SIC function provides
some interesting insights regarding the present models.

The survivor function associated with a time-based random variable T is defined as the
probability that the process takes greater than t time units to complete:

(4)

The SIC function is defined analogously to the mean-interaction-contrast (MIC) described
earlier in this article (Equation 1). For each time value t, one computes:

(5)

where Sij(t) is the survivor function associated with target-category member ij. (Both the
MIC and SIC statistics are computed with respect to the target-category stimuli only, not the
contrast-category stimuli.) Because it will be useful in discussing the results below, we note
here that the MIC is equal to the integral of the SIC. As illustrated schematically in Figure 7,
the alternative mental architectures make differing predictions of the form of the SIC
function (Townsend and Nozawa, 1995). (Recall that, in the present paradigm, correct
responding to the members of the target category demands exhaustive processing of the
dimensions. Therefore, we illustrate the predictions for only the exhaustive cases.) As can be
seen, if the dimensions are processed in serial fashion, then the SIC function will be S-
shaped, with the initial part of the function being negative, the latter part positive, and the
areas subsumed by the negative and positive portions being equal to one another (MIC=0). If
processing is parallel, then the SIC function will be negative everywhere (MIC<0). And if
processing is coactive, then the function will have an initial negative blip followed by
extended positivity (MIC>0).

The observed SIC functions for the four subjects in our experiment are shown in Figure 8. It
is clear from inspection that they match the general S-shaped form of a serial processing
model. Also plotted in Figure 8 (top panels) are the precise quantitative predictions of the
SIC curves from the serial-attention-switch model. These predicted SIC functions are those
derived when holding all parameters fixed from the previous analyses in which the model
was fitted to the individual-stimulus RT distributions. For all four subjects, the model does a
very good job of characterizing the precise form of the observed SIC functions. By way of
comparison, in the bottom panels of Figure 8 we plot the derived SIC functions from the free
stimulus-drift-rate model. It can be seen that the model misses systematically the observed
functions. The cross-over point from negativity to positivity is always too late and the
positive portion of the function has too long a tail. In addition, for some of the subjects, the
area subsumed by the positive part of the function is too small relative to the area subsumed
by the negative part of the function. (The positive-tail problem would be even worse if
parameters were chosen to make the negative and positive regions equal in area.)

These SIC analyses provide insights into why the serial rule model is providing a better
account of the shapes of the RT distributions than is the free stimulus-drift-rate model.
Apparently, the free drift-rate model is predicting an RT distribution for the LL stimulus
that, relative to the other target-category distributions, has too long a tail and is too
positively skewed (see SIC definition in Equation 5). Because the mean RT for the LL
stimulus is slower than for the other stimuli, the free drift-rate model must assign that
stimulus a slower drift rate parameter. But, in the case of single-channel random-walk and
diffusion models, the slower the drift rate, the more positively skewed will be the predicted
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distribution (e.g., Ratcliff & Smith, 2004). Although similar considerations apply to the
serial-rule model, note that in that model the predicted decision-time distributions arise as
sums of multiple component distributions (i.e., two stages of independent decisions plus an
attention-switch stage). Thus, owing to considerations of the central limit theorem, the
degree of positive skewing of the slow distributions is not as extreme as in a single-channel
random-walk model, i.e., the distributions are more bell-shaped.5

In sum, the SIC analyses provide further strong support for the present logical-rule model
account of classification RTs, namely that decision making for the target category involved
serial processing of the component dimensions. Moreover, although previous researchers
have reported SIC analyses to diagnose underlying mental architectures and stopping rules,
to our knowledge the present analysis is the first to consider the quantitative match of
parameterized models to such data. Finally, the analysis provides insights into the reason
why the present serial-rule model is predicting the detailed shapes of the individual-stimulus
RT distributions better than is the single-channel, free-stimulus-drift-rate model.

Best-Fitting Parameters
The best-fitting parameters from the serial attention-switch model are reported for each
individual subject in Table 4. Overall, the parameter estimates are sensible and easy to
interpret. For example, for each subject, the best-fitting decision-bound parameters (Dx and
Dy) are located roughly midway between the means of the perceptual distributions of the
contrast-category stimuli and the adjacent target-category stimuli. The residual-time means
range between 353.3 and 648.0 ms, and the attention-switch means range between 104.4 and
259.8 ms, which also seem like reasonable estimates. According to the px estimates, Subject
L4 always processed the dimensions in the order x-then-y, which agrees with our previous
inference that Subject L4 was a fixed-order serial processor. Also in agreement with our
previous inferences, the best-fitting px parameters indicate that Subjects L1 and L2 were
mixed-order serial processors; and that Subject L3 was intermediate, most often processing
in the order x-then-y, but processing in the reverse order on roughly 10% of the trials.

Discussion
In summary, the qualitative patterns of mean RTs for the target and contrast categories, the
shapes of the derived SIC functions, and the detailed quantitative fits to the individual-
stimulus RT distributions provide strong support for the serial-self-terminating logical-rule
model of classification RTs. Although Fific et al. (2010) reported previous data that pointed
toward the serial self-terminating rule model, those previous data were collected under
conditions in which subjects were provided with explicit knowledge of the rule-based
category structures and where most were provided with explicit instructions to use a serial-
self-terminating processing strategy to implement the logical rules. By contrast, the present
results were obtained in conditions in which subjects needed to learn the categories via trial-
by-trial induction over individual training exemplars and were free to use whatever
classification strategy they chose. Thus, the data provide convincing evidence of conditions
in which subjects freely choose to use logical-rule strategies in tasks of multidimensional
perceptual classification, and provide strong support for the newly proposed logical-rule
models of classification RT.

5Fific et al. (2010) advanced a related argument to explain different amounts of skewing in individual-stimulus RT distributions
associated with the contrast category. However, in that previous study, all subjects engaged in an instructed fixed order serial-self-
terminating strategy, so the contrast-category distributions tended to have different shapes than in the present study.
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Experiment 2
Thus far, the evidence for logical-rule use has been found in situations in which the stimulus
dimensions are located in spatially separated regions. This situation held not only in our
Experiment 1 but also in the other recent studies that investigated logical-rule models of
classification RT (Fific et al., 2010; Lafond et al., 2009). The motivating idea for testing
spatially separated dimensions was to promote the possibility of serial processing of
dimensions, which, intuitively, seems conducive to applying logical-rule strategies. In the
present Experiment 2, the idea was to begin to investigate more general conditions in which
logical-rule use might take place. We tested the same logical category structure as in
Experiment 1. However, instead of using stimuli in which the dimensions are located in
spatially separated regions, we now test stimuli in which the dimensions are spatially
overlapping. Here, our expectation is that serial-self-terminating processing of the
dimensions may be far less likely. Nevertheless, alternative information-processing
architectures may still underlie the application of logical-rule strategies.

Because the manner in which subjects may process spatially overlapping dimensions in the
present categorization tasks is unclear, and because we wished to study such processing in a
context in which people do try to apply logical-rule strategies, we decided to reinstitute the
research approach from Fific et al. (2010). In particular, subjects were provided with explicit
instructions about the rule-based structure of the categories and were asked to classify the
stimuli in accord with these logical rules; however, specific processing instructions (e.g.,
serial self-terminating) for individual dimensions were not provided. Once we obtain a better
understanding of the expected performance patterns under such conditions, the stage will be
set for later investigating speeded categorization with spatially overlapping stimulus
dimensions under open-ended learning and performance conditions.

Method
Participants

Four Indiana University students completed Experiment 2 and received $9 dollars per
session (with an extra $3 dollar bonus per session for accurate performance) for their
participation. The subjects had normal or corrected-to-normal vision and were unaware of
the issues under investigation in the research.

Stimuli
The stimuli were 225 × 150 pixel rectangles displayed in red (Munsell Hue 5R, brightness
value 5) with a 10-pixel-wide black border and a 100 × 10 pixel interior vertical black line
that extended from the lower-left corner of the rectangle (also used in Nosofsky & Little, in
press). There were 9 stimuli composed of all combinations of 3 levels of saturation
(Munsell-chroma levels 3.5, 5.5 and 18) and 3 positions of the vertical line (80, 64 and 20
pixels from the left-hand side of the rectangle). The colors were generated by converting
them into RGB values with the Munsell Conversion Software v8 (http://wallkillcoor.com/).
The stimuli subtended a vertical visual angle of about 3.82 degrees and a horizontal visual
angle of about 5.72 degrees.

Similarity-ratings studies, described in previous work by Nosofsky and Little (in press),
were used to derive a two-dimensional scaling solution for the stimuli. Some details
regarding this scaling work and the derived coordinate parameters for the stimuli are
reported in Appendix A of the present article. The structure of the derived scaling solution
closely matched the schematic design illustrated in our Figure 1.
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Procedure
The procedure of Experiment 2 was identical to Experiment 1 with the following exceptions.
Prior to the start of the experiment, participants were shown a schematic diagram of the
category space that displayed all nine of the stimuli along with the rule boundaries. The
nature of the rules was explained to the subjects and they were instructed to classify the
stimuli in accord with these rules. Initial pilot tests revealed that discriminating items at the
category boundaries was difficult; hence, at the outset participants were given instructions
about the difficulty of this discrimination and were allowed to inspect the stimulus
dimensions separately. That is, participants were allowed to view rectangles displayed in the
three levels of saturation but without the inset line. Likewise, participants viewed the
position of the inset line but in a white colored rectangle. The order in which each dimension
was shown was counterbalanced across participants. The first session was used as a practice
session for participants to learn to perceptually discriminate the diagnostic dimensional
values and to practice the rules that were provided at the start of the experiment.

Results
In Experiment 2, we refer to the participants as O1 to O4 where the O designates the
overlapping-dimensions experiment. Again, the initial training/practice session (Session 1)
was excluded from the analyses. RT analyses were conducted for correct trials only. Finally,
for each individual participant and stimulus, trials with RTs less than 150 ms and trials with
RTs greater than 3 standard deviations above the mean for that stimulus were also removed.
Less than 2% of the trials were removed by this method. As shown in Table 5, error rates
were low; hence, we now turn to analyses of the mean RTs.

Mean RT Analyses
The mean correct RTs for the individual subjects and stimuli are reported in Table 5 and are
displayed graphically in Figure 9. As can be seen from inspection of the figure, the patterns
of mean RTs are considerably more variable across subjects than was observed in
Experiment 1. In addition, comparing the patterns to the canonical prediction graphs in
Figure 3, no clear-cut winners seem to emerge from among the competing process models.
The pattern of mean RTs for O1 comes close to matching the predictions from a fixed-order
serial-self-terminating rule model. The main exception is the faster-than-expected mean RT
for the redundant stimulus. For O2, the target-category RTs show a clearly under-additive
pattern, suggesting parallel processing; however, for the contrast category, the mean RTs on
the first-processed dimension are not flat, contradicting the predictions from a pure parallel
model. For O3, again, the target-category RTs are highly under-additive, suggesting parallel
processing; however, the pattern of contrast-category RTs strongly resembles the predictions
from a mixed-order serial-self-terminating model. Finally, like O2 and O3, Subject O4 also
shows signs of both parallel processing (under-additive target-category RTs), but (fixed-
order) serial-self-terminating processing for the contrast category.

Clearly, the data pose a major challenge for all of the baseline logical-rule models.
Nevertheless, to anticipate, we will argue below that a reasonable account of the data is
provided by assuming that subjects applied logical-rule strategies, with the mental
architecture for implementing the rules involving a mix of parallel and serial processing
across trials. In our view, such an occurrence seems plausible for the present kinds of
stimuli.

A full presentation of the statistical-test results for the four subjects is provided in Table 6.
In general, the statistical-test results confirm the descriptions that we provided above.
However, because of the variability across subjects, it is difficult to summarize the many
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statistical-test results in succinct fashion. Here, we provide a capsule summary of the results
for only the target-category members. We conducted a 4x2x2 ANOVA of the target-
category RTs of each subject, using as factors Session (2-5), discrimination level of the
saturation dimension (L or H), and discrimination level of the vertical-bar dimension (L or
H). For all participants, there was a main effect of session, reflecting a slight speeding of
responding over time. Although not reported in the table, the main effects of stimulus-
dimension discriminability were significant for all subjects, reflecting faster processing of
the H values than of the L values. The main result of interest is that, for Subjects O2, O3,
and O4, the interaction between discrimination levels of the bar and saturation dimensions
was statistically significant, reflecting the under-additive pattern of mean RTs seen for these
subjects in Figure 9. Also as expected from observation of Figure 9, this interaction was not
statistically significant for Subject O1. Finally, we mention that there were occasional
significant three-way interactions of Session × Saturation × Bar (see Table 6), suggesting
some changes in the form of processing over the course of the experiment.

Computational Modeling
The model-fitting procedure was identical to the one that we used in Experiment 1. In
conducting the modeling, the means of the perceptual distributions for the dimensional
values were set to equal the coordinate values derived from the two-dimensional scaling
solution for the stimuli (see Appendix A). These values were 0.00, 0.37, and 1.69 for
Dimension x (saturation); and 0.00, 0.47, and 2.63 for Dimension y (bar position).

In addition to the seven baseline models that we fitted to the data from Experiment 1, we
fitted a model that assumed a mixture of serial and parallel processing across trials.
Specifically, the model assumed that with probability ps, processing on a given trial is serial
self-terminating; and with probability 1 - ps, processing on a given trial is parallel self-
terminating. This mixture model was motivated by our observation of the mixed patterns of
mean RTs described in the Results section. Interestingly, as will be seen, our formal
analyses will lead us to obtain some independent evidence that further supports this
hypothesis of a mixture of serial and parallel processing.

To reduce the number of free parameters necessary for fitting the mixed model, we made
several simplifying assumptions. First, we assumed that identical decision-boundary
positions, random-walk criteria, and residual-time distributions operated for both the serial
and parallel processes. Second, to allow for different processing rates across trials in which
serial versus parallel-processing operated, the dimensional variances for the serial process
were multiplied by a parameter,mσ, to yield the variances for the parallel process. Finally,
we also allowed the scaling parameter for the parallel-process random walks (kp) to differ
from that of the serial-process random walks (ks). In total, the mixed serial/parallel model
had 13 free parameters (see listing in Table 7).

A complication arose in our initial fits of the mixed model to the data from Subject O1. In
particular, although the model provided a good fit to the subject's RT-quantiles data, it
systematically overestimated the mean RTs (due to predicting a small number of
exceedingly long RTs in the slowest quantile). To remedy the problem for this participant,
we added a parameter to allow for the possibility that the relative proportion of serial and
parallel processing might differ between the target and contrast category. That is, when
categorizing a target-category item, serial processing occurred with probability ps; but when
categorizing a contrast-category item, serial processing occurred with a different probability,
ps-C. Although the assumption is post hoc, we discuss plausible reasons for such an
occurrence in our General Discussion.
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The fits of all of the models are shown in Table 8. The BIC values indicate that the mixed
serial/parallel model is strongly preferred compared to all of the alternative logical-rule
models, the coactive model, and the EBRW model. This improvement in fit occurs despite
the penalty assigned to the model due to its increased number of free parameters. The
comparisons between the mixed model and the free stimulus-drift-rate model are not as
clear-cut. For two subjects (O1 and O4), the mixed model still yields dramatically improved
fits; but for the other two subjects (O2 and O3), the BIC values of those two models are in
the same ballpark. Because the mixed model appears to provide the most general account of
the full set of data, in the remainder of this section we focus our analyses on this model.
However, we revisit the free stimulus-drift-rate model in the Discussion.

The predicted mean RTs and error rates from the mixed model are shown along with the
observed data in Table 5. We start by noting that, although the error rates were low, the
model is in the right ballpark for the error data. More important, inspection of the table
indicates that the model provides a reasonably good account of the intricate patterns of mean
RTs. (The correlation between the predicted and observed mean RTs of the nine stimuli was
r=.939, r=.969, r=.906, and r=.995 for Subjects O1-O4, respectively.) Note that, when there
is a mixture of serial and parallel processing across trials, the target-category mean RTs
would be expected to show an under-additive pattern overall. The reason is that, across
trials, one would be averaging an additive pattern of RTs (from the serial process) with an
under-additive pattern (from the parallel process), thereby yielding an under-additive final
average. Likewise, the mixture of serial-self-terminating and parallel-self-terminating
processing across trials would also tend to yield the configuration of mean RTs most often
seen for the contrast category (see Figures 3 and 9). On trials in which a parallel-self-
terminating process operated, the RTs for the interior and exterior stimulus on each
dimension would be flat. But on trials in which a serial-self-terminating process operated,
the RTs for the exterior stimulus would tend to be faster than for the interior stimulus (at
least on the second-processed dimension). In the final average, the exterior stimulus would
therefore tend to have a faster RT than the interior stimulus (at least on the second-processed
dimension). This general pattern is again the main one seen in the observed data. Finally,
assuming a mixture of serial-self-terminating and parallel-self-terminating processing across
trials, one would also expect to observe an RT advantage for the redundant stimulus, which
is also the main pattern in the observed data.

In Figure 10 we show plots of the predicted RT distributions for each individual subject and
stimulus against the observed RT distributions. The same methods were used for generating
these plots as already described in Experiment 1. Overall, the mixed serial/parallel model
accounts well for the detailed shapes of the individual-stimulus RT distributions.

Further support for the mixed serial/parallel model is shown in its fits to the SIC functions
associated with the target-category members, which we plot in Figure 11. Again, the
predicted functions are derived by holding fixed all parameters that were used for fitting the
model to the individual-stimulus RT distributions. The predicted SIC functions do a
reasonably good job of following along with the observed curves.

Of particular interest in these plots are the results for Subject O4. The SIC is predominately
negative, reflecting the under-additive MIC that we have already noted for this subject.
However, the SIC switches from negative to slightly positive for large processing times t.
This pattern is not characteristic of any of the “pure” mental architectures (i.e., compare to
the schematic plots for the serial, parallel, and coactive models in Figure 7). It could be
produced, however, if there were a mix between parallel and serial processing across trials.
That is, as can be seen from consideration of Figure 7, an average of the SICs for the serial
and parallel processes could produce an SIC with the form seen for Subject O4. Thus, our
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hypothesis of a mix of serial and parallel processing across trials receives independent
supporting evidence from this hybrid SIC function.6

Best-Fitting Parameters
The best-fitting parameters for the mixed serial/parallel model are reported in Table 7. It is
straightforward to interpret most of the parameter estimates. For example, in all cases, the
decision bounds are located intermediate between the means of the contrast-category
distributions and the adjacent target-category distributions, as seems sensible. In addition,
across subjects, the mean processing times for the residual stage vary between 361.9 and
471.8 ms, which also seem like reasonable estimates. The estimates of the serial/parallel
mixture parameter indicate that Subject O2 was primarily a parallel processor, Subject O4
primarily a serial processor, whereas O1 was a serial processor for the target category but
mostly a parallel processor for the contrast category. (We explain the plausibility of the
latter result in our General Discussion.) These mixture-parameter estimates seem sensible in
light of the patterns of mean RTs already discussed for these subjects. (On the other hand,
because Subject O3 had strongly contrasting signatures of mean RTs for the target and
contrast categories, we were unsure what mixture-parameter estimate to expect for that
subject.)

Interpretation of some of the other parameter estimates, including the serial versus parallel
scaling constants, the variance multiplier, and the magnitude of the random-walk criteria, is
more complicated. We suspect that some of these parameters trade off strongly with one
another, e.g., an increased magnitude of the criteria +A and −B is compensated for with
reduced values of the step-time scaling constants ks and kp. In addition, recall that for
simplicity and to reduce the number of free parameters, we imposed some arbitrary
constraints of parameter equality across the serial and parallel processes. Thus,
interpretations regarding the values of these other free parameters should be made with
caution.

Discussion
In the present conditions involving spatially overlapping stimulus dimensions, the patterns
of classification RT data did not conform to the predictions of any of the baseline logical-
rule models, despite the fact that subjects were provided with explicit knowledge of the rule-
based category structures and with instructions to use the rules as a basis for classification.
Nevertheless, our modeling analyses lead us to suggest the possibility that, although subjects
attempted to apply the logical rules, the mental architecture for implementing the rules may
have involved a mix of serial and parallel processing. A formalized version of a mixed
serial/parallel processing model gave a good account of the mean RTs and error rates
associated with the individual stimuli; a good account of the shapes of the individual-
stimulus RT distributions; and a good account of the derived SIC functions associated with
the target-category members. Furthermore, in our view, this possibility of a mix of serial and
parallel processing across trials seems plausible for the present types of stimuli. Finally, this
version of the logical-rule model far outperformed two of the major extant contenders in the
field, namely the EBRW and RW-MDB models.

6In a previous related study, Fific et al. (2008, Experiment 1) conducted preliminary investigations of classification performance in a
condition involving spatially overlapping separable dimensions. In that preliminary study, only target-category performance was
examined, and no formal modeling of the RT data was involved. Nevertheless, it is interesting to note that both subjects who
participated in the overlapping-dimensions condition displayed SIC functions with a form that is similar to the one seen for Subject O4
in the present experiment -- see Fific et al. (2008), p. 364, Figure 7, “Overlapping Spatial Positions”. Thus, there is precedence for this
type of hybrid SIC function under similar experimental conditions, and we now have an account of such performance in terms of the
mixed serial/parallel processing model.
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In light of the good fits achieved by the mixed serial/parallel model, we decided to revisit
our results from Experiment 1 and check the model's performance in that experiment as
well. Interestingly, although the BIC fit for the mixed model was worse than for the pure
serial model for Subject L1, it yielded substantially improved BIC fits for Subjects L2-L4.
However, the best-fitting parameter estimates indicated that the Experiment-1 subjects
engaged in parallel processing on only between .12-.16 of the trials, whereas a couple of our
Experiment-2 subjects engaged in parallel processing on the majority of the trials. Thus, a
natural interpretation is that processing may have been mixed in both experiments, with the
stimulus manipulation simply influencing the proportion of serial versus parallel processing
that took place.

Finally, in the present Experiment 2, for two of the subjects the free stimulus-drift-rate
model yielded fits to the data that were as good as those of the mixed serial/parallel rule
model. Of course, a major limitation of the free stimulus-drift-rate model is that it does not
specify an underlying process that gives rise to the drift rates. This limitation does not
preclude, however, that a deeper process interpretation may eventually be forthcoming.
Thus, under conditions involving spatially overlapping stimulus dimensions, it may be that
for some subjects, classification processing is better described in terms of multiple-channel
decision making (as in the present logical-rule models of RT), whereas for other subjects the
process is better described in terms of single-channel forms of decision making (as in the
free drift-rate model). Future research will be needed to develop paradigms that can sharply
discriminate between these alternatives.

General Discussion
To summarize, a classic idea in cognitive psychology and cognitive science is that, in many
situations, people may represent categories in terms of logical rules. Until very recently,
however, researchers have not developed rigorous theories to predict what categorization
RTs should look like if such rules are indeed being used. In recent theoretical work, Fific et
al. (2010) proposed a class of logical-rule models of categorization RT to help fill this gap.
The models combine mental-architecture and random-walk approaches within an integrated
framework, and allow for the prediction of detailed RT distribution data and error rates at
the level of individual subjects and individual stimuli. A key idea within the framework is
that logical-rule strategies in categorization may be implemented via a variety of processing
modes, and diagnostic paradigms are needed to tease apart the processing modes used in
alternative tasks and situations.

In their previous work, Fific et al. provided validation tests of the proposed models by
giving subjects explicit instructions to use particular logical rules as a basis for
classification. In addition, in most cases, subjects were given explicit instructions to use a
serial-self-terminating process to implement the rules. By contrast, in Experiment 1 of the
present work, we tested the extent to which the models might provide a good account of
human categorization performance under open-ended learning conditions and where the
subjects were free to adopt whatever classification strategy they chose. Impressively, the
serial-self-terminating logical-rule model again yielded an excellent account of the
classification RT data of the individual subjects, and far outperformed a variety of
competing models of classification RT. Not only did it predict well the patterns of mean RTs
and error rates for the individual stimuli in the tasks, it also provided an excellent account of
the detailed shapes of the individual-stimulus RT distributions.

In both the present Experiment 1 and other recent work that has investigated logical-rule
models of classification RT (e.g., Fific et al., 2008, 2010; Lafond et al., 2009), a salient
aspect of the designs was that the defining dimensions of the stimuli were located in

Little et al. Page 23

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



spatially separated regions. The motivation for using this type of stimulus format was that it
might promote serial processing of the dimensions, which seems conducive to implementing
logical-rule strategies. However, logical-rule use in categorization may also be implemented
within alternative mental architectures. To begin to explore that issue, in Experiment 2 we
tested the same category structures, but now with an alternative set of stimuli in which the
dimensions were located in spatially overlapping regions. With these types of stimuli, we
expected that serial processing of the dimensions would be less likely, and that forms of
parallel or coactive processing of the dimensions might operate instead. To investigate
performance under controlled conditions, however, we decided to reinstitute part of the
research approach from Fific et al. (2010) by informing subjects of the rule-based structure
of the categories.

Under these latter conditions, the patterns of performance were more complicated than
observed in Experiment 1, and the RT data did not conform to any single one of the
“baseline” logical-rule models (nor to major extant alternatives in the field). Nevertheless, a
good working hypothesis seems to be that the logical rules were implemented via a mixture
of serial-self-terminating and parallel-self-terminating processing. A formalized mixture
model along these lines provided a good account of the intricate patterns of individual-
stimulus mean RTs and again captured well the shapes of the individual-stimulus RT
distributions.

In our view, this hypothesis of a mixture of serial and parallel processing is a very
reasonable one and it receives added plausibility from other domains of research. For
example, consider the classic studies of Shiffrin and Scheider (1977) and Schneider and
Shiffrin (1977) that investigated attention and information processing in the domains of
visual and memory search. In conditions involving “varied mappings” of stimuli to
responses, it appeared that subjects mostly engaged in serial-search processes. But in
conditions involving pure “consistent mappings,” it appeared that automatic attention
responses developed that made allowance for parallel processing.7 The varied-mapping and
consistent-mapping conditions are endpoints of a continuum, and surely there are
intermediate conditions in which both serial and parallel processes may be brought jointly
into play. Likewise, Wolfe's (1994) influential Guided Search model of visual search
involves parallel and serial components operating in concert. Cousineau and Shiffrin (2004)
also recently suggested a general model that involved combinations of both serial and
parallel processing to describe detailed forms of RT-distribution data for both hits and
misses in tasks of visual search.

Clearly, however, the idea of a serial-parallel mixture is only one possibility, and future
research will need to develop and test alternative accounts of our observed classification RT
data. For example, one source of evidence that was consistent with the hypothesis of a
mixture of serial and parallel processing was our observation of a hybrid form of the target-
category SIC function for one of our participants. To review, we found that an SIC function
that starts out strongly negative but then shifts to slightly positive was well modeled in terms
of the mixed serial-parallel model. Interestingly, Fific, Townsend and Eidels (2008) recently

7Interestingly, for Subject O1 in our Experiment 2, the evidence suggested greater parallel processing for contrast-category members
than for target-category members. In the present experimental design, dimension values x0 and y0 are consistently mapped to the
contrast category; but all remaining dimension values receive variable mappings. (Whether those remaining dimension values signal
the target or the contrast category depends on how they are combined.) Thus, because the target-category stimuli are composed only of
dimension values that receive variable mappings, serial processing may have been more likely for the members of that category. Note
that a subject does not need to “know” at the beginning of a trial which response-category is involved in order for parallel processing
to override serial processing, so the account is not circular. In particular, in the present design, consistent mappings are associated with
particular stimulus values (x0 and y0). Just as an “automatic attention” response developed for consistently mapped stimuli in Shiffrin
and Schneider's classic search experiments, a similar automatic process may develop for consistently mapped stimulus values in the
present classification paradigm.
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reported simulations that showed that an “interactive-channels” parallel model (e.g.,
Mordkoff & Yantis, 1991; Townsend & Thomas, 1994; Townsend & Wenger, 2004) could
also produce SIC functions of this form, if the individual channels of the parallel process are
allowed to facilitate one another to the proper degree. Whether such a model could
simultaneously handle our target-category SICs and also the intricate patterns of contrast-
category RT data remains an open question, but it seems like an interesting research avenue
to pursue.

Finally, although we found evidence in favor of rule-based classification in the present
research, it is critical for future research to investigate the boundary conditions on
applications of such strategies. Obviously, one critical factor in the present work was that
the category structure that we tested could in fact be described in terms of simple logical
rules, making the application of such strategies a feasible one. Even for such rule-based
category structures, however, it is a wide open question when rule-based strategies are
actually used. Based on the results from Lafond et al. (2009) and the present Experiment 1,
it appears that use of stimuli with spatially separated dimensions may be an important
contributing factor. Whether subjects will freely adopt logical rule-based strategies in cases
involving spatially overlapping dimensions, or even integral-dimension stimuli, remains to
be investigated. Likewise, we need to extend and test the present models in domains
involving more complex rules defined over more than two relevant dimensions.

In a recent experiment conducted by Nosofsky and Little (in press), the same category
structure was tested as in the present research, using the same overlapping-dimension stimuli
as in the present Experiment 2. A critical manipulation within the experiment was that some
stimuli received probabilistic feedback assignments. Despite the probabilistic feedback
assignments, the optimal decision strategy in the design was one in which the rule-based
boundaries illustrated in Figure 1 should be used (see Nosofsky & Little, in press, for
details). Nevertheless, in this design, Nosofsky and Little obtained convincing evidence that
most subjects did not use a rule-based strategy. Instead, the patterns of classification RT data
were more in accord with the predictions from an exemplar-retrieval model of classification.
(In particular, subjects showed significantly slower RTs for stimuli that received
probabilistic feedback assignments compared to deterministic stimuli that were the same
distance from the rule-based boundaries.) Clearly, a great deal of future research is needed
to understand the experimental conditions that lead human observers to adopt alternative
classification strategies. The rule-based RT models tested in the present work should serve
as valuable tools in conducting such investigations.
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Appendix A

Similarity-Scaling Results for the Stimuli Used in Experiment 2
As described in more detail in an on-line supplement that accompanies Nosofsky and Little
(in press), similarity ratings were collected for all pairs of the present Experiment-2 stimuli.
A two-dimensional scaling model was fitted to the averaged ratings by searching for the
coordinate parameters that minimized the sum of squared deviations between predicted and
observed ratings. The model assumed a decreasing linear relation between similarity and the
city-block distance between points in the derived space. In a full version of the model, each
stimulus was allowed to have its own freely estimated pair of x-y coordinates. In a
constrained version of the scaling model, all stimuli with a common physical value on
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Dimension x were constrained to have the same x-value in the scaling solution, and likewise
for Dimension y. This constrained scaling model required the estimation of only four freely
varying coordinate parameters. That is, because distances in the space are translation
invariant, the coordinate parameters associated with dimension values x0 and y0 could be
held fixed at zero without loss of generality, thereby requiring coordinate-parameter
estimates for only dimension values x1, y1, x2 and y2. A general linear test indicated that the
constrained two-dimensional scaling model did not fit the data significantly worse than the
full two-dimensional scaling version in which all coordinate parameters were free to vary.
The constrained two-dimensional scaling solution accounted for 98.2% of the variance in the
averaged similarity ratings. The best-fitting coordinate parameters were 0.00, 0.37, and 1.69
along Dimension x; and 0.00, 0.47, and 2.63 along Dimension y. The derived configuration
matches closely the intended form of the schematic design illustrated in Figure 1.
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Figure 1.
Left panel: Schematic illustration of the category structure used for testing the logical-rule
models. The stimuli are composed of two dimensions, x and y, with three values per
dimension, combined orthogonally to produce the nine members of the stimulus set. The
stimuli in the upper-right quadrant of the space are the members of the “target” category
(A), whereas the remaining stimuli are the members of the “contrast” category (B). Right
panel: Shorthand nomenclature for identifying the main stimulus types in the category
structure. H and L refer to the high- and low-salience dimension values, respectively. R =
redundant stimulus; I = interior stimulus; E = exterior stimulus.
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Figure 2.
Schematic illustration of the random-walk process that governs decision-making on each
individual dimension. In the illustration, x1 is the presented stimulus value. Percepts sampled
from distribution x1 that fall to the right side of the decision boundary lead the random walk
on dimension x to take steps towards criterion +A.
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Figure 3.
Summary predictions of mean response times (RTs) from the alternative logical-rule models
of classification. Each row corresponds to one of the models. The left panels show the
pattern of predictions for the target-category members, and the right panels show the pattern
of predictions for the contrast-category members. As explained in the text, note that
regardless of the stopping rule, correct classification of target-category members requires
exhaustive processing. Left panels: L = low-discriminability dimension value; H = high-
discriminability dimension value; D1 = Dimension 1; D2 = Dimension 2. Right panels: R =
redundant stimulus, I = interior stimulus, E = exterior stimulus. “First-processed” and
“second-processed” dimensions are as defined in the text.
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Figure 4.
Illustration of the “lamp” stimuli used in Experiment 1. Values on the irrelevant dimensions
(shade and body) varied randomly from trial to trial. (The identifying labels were not present
on the experimental stimuli.)
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Figure 5.
Experiment 1: Observed mean response times (RTs) for the individual subjects and stimuli.
Error bars represent ±1 SE. The left panels show the results for the target-category stimuli,
and the right panels show the results for the contrast-category stimuli. Left panels: L = low-
discriminability dimension value; H = high-discriminability dimension value; D1 =
Dimension 1; D2 = Dimension 2. Right panels: R = redundant stimulus; I = interior
stimulus; E = exterior stimulus. For ease in making comparisons to the prediction graphs in
Figure 3, the contrast-category stimuli are labeled with respect to whether they are on the
“first-processed” or “second-processed” dimension, as defined in the text.
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Figure 6.
Experiment 1: Fit (smooth curves) of the serial-self-terminating model (with attention
switching) to the detailed response time (RT) distribution data (open bars) of the individual
subjects. Each cell of each panel shows the RT distribution associated with an individual
stimulus. Within each panel, the spatial layout of the stimuli is the same as in Figure 1. See
text for further description of the derivation of the predicted and observed RT-distribution
plots.
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Figure 7.
Schematic illustration of the predicted survivor-interaction contrast (SIC) functions for the
serial exhaustive, parallel exhaustive and coactive models.
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Figure 8.
Experiment 1: Predicted and observed survivor-interaction-contrast (SIC) functions
computed over the target-category stimuli for each participant. Top panels: serial-self-
terminating attention-switch model. Bottom panels: free stimulus-drift-rate model.
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Figure 9.
Experiment 2: Observed mean response times (RTs) for the individual subjects and stimuli.
Error bars represent ±1 SE. The left panels show the results for the target-category stimuli,
and the right panels show the results for the contrast-category stimuli. Left panels: L = low-
discriminability dimension value; H = high-discriminability dimension value; D1 =
Dimension 1; D2 = Dimension 2. Right panels: R = redundant stimulus; I = interior
stimulus; E = exterior stimulus. For ease in making comparisons to the prediction graphs in
Figure 3, the contrast-category stimuli are labeled with respect to whether they are on the
“first-processed” or “second-processed” dimension, as defined in the text.
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Figure 10.
Experiment 2: Fit (smooth curves) of the mixed serial/parallel model to the detailed response
time (RT) distribution data (open bars) of the individual subjects. Each cell of each panel
shows the RT distribution associated with an individual stimulus. Within each panel, the
spatial layout of the stimuli is the same as in Figure 1. See text for further description of the
derivation of the predicted and observed RT-distribution plots.

Little et al. Page 38

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Experiment 2: Predicted and observed survivor-interaction-contrast (SIC) functions
computed over the target-category stimuli for each participant. The predictions are from the
mixed serial/parallel model.
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