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Abstract
Visual function depends on the accuracy of signals carried by visual cortical neurons. Combining
information across neurons should improve this accuracy because single neuron activity is
variable. We examined the reliability of information inferred from populations of simultaneously
recorded neurons in macaque primary visual cortex. We considered a decoding framework that
computes the likelihood of visual stimuli from a pattern of population activity by linearly
combining neuronal responses, and tested this framework for orientation estimation and
discrimination. We derived a simple parametric decoder assuming neuronal independence, and a
more sophisticated empirical decoder that learned the structure of the measured neuronal response
distributions, including their correlated variability. The empirical decoder used the structure of
these response distributions to perform better than its parametric variant, showing that their
structure contains critical information for sensory decoding. Our work shows how neuronal
responses can best be used to inform perceptual decision-making.

A central question in computational and systems neuroscience is how signals carried by
sensory neurons support perceptual judgments. To put these signals to use in behavioral
tasks, the brain must accurately decode the responses of neurons encoding a sensory signal
1-6. There are many reasons to think that the brain performs this decoding by combining
signals from populations of neurons. First, the variability of a neuron’s response to repeated
presentations of the same stimulus is considerable, and limits what can be inferred from
individual neurons 7-10. Second, the synaptic architecture of visual cortex 11 makes it
virtually impossible for a signal from any one neuron to lead directly to a behavioral
outcome. Third, perceptual judgments are only weakly correlated with variations in the
response of single neurons in sensory cortex 12,13.

Many studies have focused on how much information about a stimulus is encoded in
population activity 2,14-18. Specifying how that information could be extracted from the
population code is a challenge 19,20. This latter issue is the problem of population decoding,
a computational question that investigates how, and with what accuracy, a sensory stimulus
can be inferred from the responses of neuronal populations, for example by a downstream
neuron. Previous decoding studies have examined how a single stimulus estimate could be
directly inferred from population responses, for instance by calculating the population vector
21 or the least-squares error estimator 22. Sensory decoding is, however, more general than
reading out sensory responses for a particular psychophysical task such as estimation. A
decoding framework should provide a rigorous account of the reliability of information
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embedded in population responses for a wide range of psychophysical tasks, including
estimation and discrimination. We formulate the problem of sensory decoding as inference –
computing stimuli given an observed population response 1,4-6,23-29. The relevant
information for inference can be rigorously represented by the likelihood function: the
conditional probability of observing a neuronal response given a stimulus, evaluated across
stimuli. The likelihood function is a rich representation for decoding. It has three features
that make it a more attractive candidate for modeling decoding then ad hoc strategies 21,22.
First, it provides a rigorous explanation for many behavioral data 30,31, especially cue
combination 26,32-34. Second, it is a parsimonious representation of the underlying neuronal
responses because it can be used across a wide range of tasks such as deriving a single
stimulus estimate (for example, the maximum of the likelihood), or discriminating between
stimuli (by comparing their likelihoods). Third, it is an accurate yet simple representation
because it can often be approximated by simple linear neuronal pooling rules 5,25,26,35.
Computing likelihoods with neurons has, however, proven to be challenging 6. In earlier
work, approximations to the likelihood function were computed using parametric 8,25,35-38

or mechanistic 39 assumptions about the structure of the neuronal data. Furthermore, the
response variability between neurons is correlated 2,16,18,39,40. This property was ignored in
many decoding models 25,35,37, but not all 20,36,41,42. The impact of these interneuronal
correlations on decoding accuracy remains an open question.

We begin with a framework explored in previous theoretical work, in which the logarithm of
the likelihood function is computed by a simple feedforward network that combines
neuronal responses using weights derived from their response properties 26,43. Using
neuronal populations recorded from the primary visual cortex of anesthetized monkeys, we
quantified the decoding accuracy from this likelihood-based framework in two example
tasks: orientation estimation and discrimination. We first evaluated the predictions of a
parametric decoder that weighted neurons using a fixed rule derived from assumptions about
the structure of the neuronal data. We then extended this model and developed an empirical
decoding framework, which learned the parameters of the log-likelihood function from the
measured neuronal response distributions. This empirical decoder, unlike the parametric
one, adapted itself to the actual response distributions, including their correlated variability,
using an assumption-free data-driven pooling rule that learned how to combine neuronal
signals from the population activity. We found that the structure of the neuronal response
distributions carries sensory information that a data-driven decoder can extract to improve
its performance.

Results
To study population decoding, we recorded ensembles of single units in the superficial
layers of macaque primary visual cortex (V1) using an array of fixed microelectrodes 16. We
analyzed the responses of 5 populations recorded from 3 monkeys. We presented sinusoidal
gratings that covered the receptive fields of all recorded neurons; the gratings drifted in 72
different equally spaced directions (36 orientations). We chose spatial frequency and drift
rate to maximize the ensemble response. Each grating was presented for 1280 ms, and was
followed by blank screen for 1280 ms. The response of each neuron was taken as the
number of spikes evoked during the stimulus period. Following spike sorting, we obtained
populations of between 40 and 74 neurons. The orientation tuning curves from one array
(Fig. 1) reveal the typical heterogeneity of the neuronal response properties of our
population. Most neurons were responsive (response: 17.1 ± 1.0 impulses, mean ± s.e.m.),
and orientation selective (full-width at half height: 51.2 ± 0.9 deg).
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Deriving the likelihood function from neuronal responses
Uncertainty about a visual stimulus in the face of variable neuronal responses can be
resolved using the response of a population of neurons to compute the likelihoods of
possible stimuli 1,2,4,6,23,26-28,36,37. The computation of likelihood is often based on
assumptions about the structure of the neuronal response distributions, in particular their
variability. Our neuronal responses could be considered as belonging to the exponential
family with linear sufficient statistics (Supplementary Fig. 1), and therefore the logarithm of
the likelihood function is a linear function of the neuronal responses 26,43. The log-
likelihood of an orientation θ given a measured set of neuronal responses ri is represented by
a weighted sum of the responses from the N neurons using a vector of pooling weights W
and an offset B:

(1)

The pooling weights represent how strongly each neuron contributes to the computation of
the log-likelihood function for a given orientation, and the offset is an adjustment to the log-
likelihood function. We used the simplest member of the exponential family as our first
approximation of a likelihood-based decoder: we assumed the neuronal spike counts to be
Poisson distributed and statistically independent from neuron to neuron. For this Poisson
Independent Decoder (PID), the pooling weights are derived from the logarithm of the
neuronal tuning functions 5,25,35, and the offset incorporates the overall bias in the coverage
of orientations that inevitably results from considering neuronal samples of limited size.

The PID assumes the statistics of the neuronal response in V1, which naturally raises the
question of how its performance is affected by those assumptions. We therefore developed a
variant decoder – the Empirical Linear Decoder (ELD) – for which the pooling weights and
offset are learned from the data. For this, we considered the Support Vector Machine
(SVM), an empirical discriminator from statistical learning theory 44,45. The SVM does not
make particular distributional assumptions, but rather learns the structure of the neuronal
response distributions. To derive the ELD, we considered the linear variant of the SVM to
discriminate pairs of neighboring orientations, and used the corresponding SVM parameters
to construct an empirically derived log-likelihood function that is linear in the neuronal
responses (eq. 1). The ELD allowed us to ask whether considering the empirically observed
neuronal response distributions improved the decoding accuracy compared to working with
parametric assumptions.

The computations associated with deriving the log-likelihood function for the ELD are
illustrated in Figure 2. The average population activity for an ensemble of neurons ordered
by preferred orientations exhibits a narrow bell-shaped curve. A stimulus elicits a population
response centered on the neuron with the closest preferred orientation (black dots). The log-
likelihood function evaluated at any given orientation is the product of the population
activity and the pooling weight for this orientation. Examination of the average pooling
weights reveals that neurons with preferred orientations closest to the stimulus orientation
are pooled using the largest positive weights, and their activity therefore contributes the
most to the resulting log-likelihood. Neurons with preferred orientations farther away from
this orientation (closer to orthogonal) have negative weights, and their activity reduces the
log-likelihood. The log-likelihood function had a peak at the estimated stimulus and fell off
for more different orientations. Despite the broad neuronal pooling, the log-likelihood
function was sharply tuned, thus being an efficient re-encoding of the underlying population
response. To quantify the accuracy of decoding from populations of sensory responses, we
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tested our likelihood-based decoders in two example psychophysical tasks: orientation
estimation and discrimination.

Estimating orientation
We examined the orientation estimation accuracy of the PID by asking how closely the
maximum of the log-likelihood function matched the stimulus. We computed the
distribution of estimation errors across all orientations and trials for a population of 60
neurons. The PID orientation estimates were correct in approximately 60% of cases. The
accuracy was significantly better for the ELD (Fig. 3a). This suggests that the assumptions
inherent in the PID yield a neuronal read-out that is less accurate than empirically deriving
the log-likelihood from the data. To verify these findings for the 4 other sets of V1
population responses, we evaluated the estimation accuracy by measuring the proportion of
veridical orientation estimates (Fig. 3b). The PID yielded an estimation accuracy that was on
average 24 ± 6 % (mean ± s.e.m.) lower than the ELD, with differences among data sets
mainly due to variations in the population sizes and tuning of individual neurons (see
Discussion).

Two factors could make the ELD superior to the PID: it does not assume any particular
response distribution, and it does not assume that responses are independent. It is quite
straightforward to explore the influence of the covariance of neuronal responses. Most of
our pairs of neurons showed correlated trial-to-trial variability with an average correlation of
0.17 across all pairs and data sets (distribution of coefficients in Supplementary Fig. 2), in
agreement with most 16,40 but not all 46 other studies. To remove these correlations without
changing the response statistics of individual neurons, we randomly shuffled the responses
of each neuron to each orientation across trials. We then trained the ELD on this shuffled
(and therefore correlation-free) data, and tested its performance on the raw (unshuffled)
data. Comparing the performance of this correlation blind (CB) decoder with the full ELD
tells us how much interneuronal correlations affect the computations for decoding by
quantifying the information that is lost when (raw) neuronal responses are read-out using a
decoder that is “correlation-blind” 2,41. The CB-ELD yielded less accurate orientation
estimates than the ELD (Fig. 3a), and across data sets the estimation accuracy of the CB-
ELD was lower by 33 ± 3 % (mean ± s.e.m.) compared to the ELD (Fig. 3b). These results
show that a log-likelihood function empirically derived from measured neuronal responses is
able to reflect changes in their correlated variability, and that ignoring these correlations
hurts the decoding accuracy. In contrast, the PID used a fixed rule, and was not affected by
trial shuffling of the responses because it is correlation blind by assumption. Because the
PID and the CB-ELD had comparable accuracy (Fig. 3a,b), we wondered whether the ELD
reduces to the PID in the absence of correlations. It emerges that even though their
performance is similar, the decoders differ internally in their pooling weights; a quantitative
measure of this difference is described in Supplementary Figure 3.

Discriminating orientations
We modeled estimation from a population of neurons by using the peak of the log-likelihood
function to extract a single stimulus estimate. We now turn to orientation discrimination,
which will depend on shape of the log-likelihood function. To discriminate two orientations
given a population response, the decoder has to compare the likelihoods associated with the
alternatives, for example by computing the logarithm of the ratio of the likelihoods. This
log-likelihood ratio is a linear decision function defined by its discrimination weight vector
w and discrimination offset b:
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(2)

The parameters of the log-likelihood ratio (eq. 2) are the difference between the parameters
of the log-likelihood representation (eq. 1) evaluated at the two orientations θ1 and θ2. The
sign of the log-likelihood ratio indicates which of θ1 or θ2 is more likely to have elicited the
observed population response. We quantified discrimination performance with a population
neurometric function that measures the discrimination accuracy as a function of the angular
difference Δθ between the two orientations. Each point of the neurometric function gives the
discrimination accuracy between θ and θ+Δθ, averaged across all 72 values of θ. The
population neurometric function of the ELD in Figure 4a shows that the discrimination
accuracy increased monotonically with Δθ, as is typical of a psychometric function that
represents behavioral performance in a discrimination task. The PID and CB-ELD yielded
less accurate discrimination than the ELD, just as they were less accurate for orientation
estimation (Fig. 4a). The same was true for the other 4 sets of V1 population responses (Fig.
4b). These results generalized across neuronal population subsamples of different sizes from
our 5 data sets (Supplementary Fig. 4). In summary, orientation discrimination is more
accurate when the empirical structure of the neuronal response distributions is taken into
account, especially when including interneuronal correlations.

The function of both the PID and ELD derives from how they linearly pool sensory
responses to approximate the log-likelihood function. To understand how these decoders
assign weights to neurons with different response characteristics, we examined the
weighting profile of each decoder in a series of discrimination tasks covering a range of
values of Δθ. We averaged the discrimination weights (w in eq. 2) across neurons with
respect to the discrimination boundary, which we varied in steps of 5 deg around the clock
to sample all possible discriminations. For coarse discriminations (Δθ = 90 deg), the most
positive and negative average weights matched the target orientations (Fig. 5a,b,c light, the
arrows indicating the discriminanda). Therefore, when discriminating between very different
orientations, neurons whose preferred orientations are aligned with the discriminanda are
most strongly recruited: discrimination is facilitated because the responses of these neurons
differ strongly. However, for fine discriminations (Δθ = 5 deg), this mechanism is
ineffective because neurons tuned for one of the discriminated orientations respond almost
as well to the other. To overcome this, the decoders emphasize neurons with preferred
orientations further apart from the discriminanda (Fig. 5a,b,c dark), effectively assigning the
highest weights to neurons for which the stimuli are located at the flanks, rather than the
peaks, of the tuning curve (also illustrated in Supplementary Fig. 5). Thus when decoding
sensory responses according to a linear representation of the log-likelihood function, the
neuronal pooling mechanisms change automatically and adaptively with the perceptual task.
The importance of off-optimal neurons in fine discriminations is an automatic consequence
of likelihood-based decision-making and does not require ad hoc computations to create a
particular decision rule.

The average discrimination weights empirically derived from the data (ELD and CB-ELD)
were qualitatively similar to weights based on parametric assumptions on the neuronal
response distributions (PID). However, the superiority of the ELD over the PID in
orientation discrimination tasks (Fig. 4a,b) must be a consequence of the different
discrimination weights the two decoders assign to individual neurons, as reflected in
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Supplementary Figure 3 by the differences between their pooling weights (W in eq. 1, from
which the discrimination weights are derived in eq. 2). The ELD made adjustments to the
PID weights, and we suppose that the difference in their discrimination weights varies from
neuron to neuron in a way that may be obscured when considering only the average across
neurons as in Figure 5a,b,c.

To study the differences in neuronal pooling mechanisms for orientation discrimination on
the level of single neurons, we asked how the discrimination weights (w in eq. 2) depended
on the responsiveness of individual neurons. For fine discriminations, the weights associated
with the ELD, CB-ELD and PID were largely independent of the responsiveness of the
neurons, yielding a uniformly distributed population read-out (Fig. 5d,e,f dark). This
suggests that for fine perceptual discriminations, neuronal pooling mechanisms are
determined mostly by the neurons’ preferred orientations (off-optimal neurons, see above)
and much less by their responsiveness. However, for coarse discriminations the ELD and
CB-ELD, and to a lesser degree the PID, relied more strongly on the neurons responding
most (Fig. 5d,e,f light), approaching a winner-takes-all population code 1,23. In other words,
a subset of very responsive neurons tuned to the target orientations contributed particularly
strongly to discriminating between remote orientations. These results suggest that an
empirical neuronal pooling mechanism may recruit neurons with different response
strengths differently depending on the perceptual task. Our results also show that the impact
of correlations on the neuronal pooling mechanisms (as visualized by comparing the ELD
and CB-ELD) depended little on neuronal responsiveness. The difference between the
weights of the ELD and PID for the more responsive neurons may therefore reflect a
deviation from the Poisson hypothesis – stronger responses may be less variable than
Poisson statistics predict, perhaps because of the regularizing influence of the neuronal
refractory period. The ELD, but not the PID, can take this deviation into account to optimize
neuronal pooling, exemplifying the advantage of an empirical read-out rule (ELD) over a
fixed rule (PID).

Discussion
We investigated how the identity of sensory stimuli can be inferred from the responses of
populations of neurons in primary visual cortex, and how the neuronal pooling mechanisms
associated with a simple linear decoding framework vary with perceptual tasks and neuronal
response characteristics. This framework allowed us to probe the impact of interneuronal
correlations on population coding, a topic that is extensively debated. Some argue that in
homogenous populations of neurons correlations impair decoding 13,18. Others note that
under some conditions, correlations can increase the information available for decoding
4,14,41, especially for heterogeneous neuronal populations 20. Experimental findings reported
in the retina 39,42, in V1 of anesthetized monkeys 17, and in small populations of
somatosensory 38 and motor 36 neurons suggest that correlations can modestly increase the
information available for decoding. Our findings extend these studies by showing how
accurately stimulus information can be extracted from the responses of large ensembles of
sensory cortical neurons when the structure of the data, in particular interneuronal
correlations, is taken into account. We showed that ignoring the correlations contained in the
data decreases the decoding accuracy. We also asked whether correlations affect the total
amount of information available in population codes (Supplementary Fig. 6), and found that
discriminating neuronal data containing correlations is more accurate than discriminating
data without them. This finding suggests that correlations can help decoding when using a
read-out rule empirically derived from the data. Because neuronal response are correlated
(Supplementary Fig. 2), biological decoders must be capable of learning this structure if they
are to perform most accurately.
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Three main characteristics set apart a likelihood-based decoding strategy from other ad hoc
approaches to decoding. First, the importance of likelihood-based computations is well
known in psychophysical examinations of human behavior where subjects were shown to
rely on likelihood-based strategies to combine cues across features 33, modalities 32 and time
34. Second, likelihood function provides a unified currency for how the responses of sensory
neurons can contribute to a variety of perceptual task using the same representation. We
illustrated this point by investigated likelihood-based decoding from neuronal populations
for two tasks: orientation estimation and discrimination. Third, provided the neuronal
responses can be considered as belonging to the exponential family with linear sufficient
statistics, the linear representation of the log-likelihood function is simple, yet accurate. We
verified in Supplementary Figure 7 that decoding based on the linear log-likelihood function
is more accurate than reading out a single stimulus estimate from the neuronal response
using the population vector 21 or the least-squares error estimator 22. These point estimators
also poorly generalize across tasks: they are estimators, and thus need ad hoc rules to deal
with discriminations. Furthermore, likelihood-based decoding strategies that linearly weight
neuronal responses automatically solve the problem of finding the most informative
neurons, thus avoiding ad hoc pooling rules 1,7,8,10,15. This allows us also to see a neuronal
correlate of the orientation repulsion effect, a phenomenon known in general for
psychophysical fine discriminations for some time 30, and more recently the mechanisms of
a perceptual illusion 31.

An important test for the linear log-likelihood framework is contrast invariance: how well
does a decoder that learned its parameters at a given stimulus contrast generalize to
decoding neuronal responses elicited by a different stimulus contrast? We examine this
question in Supplementary Figure 8 using neuronal responses recorded from the same
population at high and low contrast. While the linear log-likelihood framework (eq. 1) is not
contrast invariant per se, the pooling weights W are close to contrast invariant if the offset
term B is learned for each contrast condition. The contrast-dependent offset term thus allows
the linear log-likelihood framework to function differently at each contrast, without having
to re-compute the neuronal pooling weights. One might wonder whether it is plausible to
require the offset parameter to have a contrast-dependent value, given that the contrast of
any particular scene is not known a priori. This seems less unreasonable when one considers
that contrast can be captured by the total local population activity, which could be pooled to
set the gain or offset in a neural decoding circuit using commonly-accepted mechanisms 47.

A natural question is how well our decoding accuracies compare to behavioral findings. The
discrimination thresholds that we obtained from full populations (40 to 74 neurons) were
between 2 and 5 deg (see Fig. 4b), thus reasonably close to previously reported behavioral
thresholds and also to the thresholds of the most sensitive neurons for a given orientation
discrimination 7,10. However, it is unreasonable to make direct comparisons to behavior
from our population recording because such comparisons hinge on knowing the time
window over which sensory activity contributes to the behavioral decision, and on the
particulars of the contributing neuronal population. We addressed the latter point indirectly
by asking whether the size of the neuronal population is a good indicator of decoding
accuracy. For a given neuronal population, a larger pool size yields better decoding (each
curve in Supplementary Fig. 4 is monotonically decreasing). However these studies mask an
important aspect: the heterogeneous properties of the neuronal populations that we happened
to capture in our experiments, in particular the neuronal tuning properties (amplitude,
bandwidth, preferred orientation, baseline) and response variability. This heterogeneity
accounts for the wide range in orientation discrimination thresholds across data sets for a
given neuronal pool size (the curves in Supplementary Fig. 4 are all significantly distinct).
We studied this heterogeneity in more detail by comparing the orientation discrimination
thresholds of individual neurons to those of an entire population of 60 neurons using the
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empirical decoder (Fig. 6, all dots and gray line). The population discrimination threshold at
any given orientation was slightly lower than the threshold of the most selective neuron at
that orientation, showing the distributed nature of the information useful for discrimination.
We then randomly chose a subset of 10 neurons (Fig. 6, black dots and line), and found that
on average the population discrimination threshold increased from 2.26 ± 0.13 deg to 4.26 ±
0.22 deg (mean ± s.e.m.). The population threshold was also more uneven across
orientations for the smaller population size, suggesting that the poorer decoding accuracy is
mainly due to a decrease in orientation coverage from individual neurons induced by the
smaller population sample. Furthermore, for some orientations the single neurons thresholds
were better than the population thresholds (dots below line), and the smaller population
yielded more accurate decoding than the larger one (black line below gray line), because
adding “noisy” neurons can degrade performance in our decoders. This reveals that the
decoders fall short of optimality, which is to be expected because any linear decoder can
only approximate, but never match, the full information content of the population response.
We conclude that the response heterogeneity within a neuronal sample, especially the
coverage of orientation by individual neurons, is a stronger indicator of decoding
performance than the population size.

The likelihood function captures the accuracy with which a neuronal population can
represent a sensory input. Our work shows how the nervous system could use a simple linear
pooling strategy to compute log-likelihood functions from populations of correlated neurons.
The linear log-likelihood model could be implemented in a feedforward circuit using
synaptic weights 1,25, and has thus a strong kinship to feedforward models of cortico-
cortical connections. In this interpretation, the log-likelihood function is not a decoder per
se; it rather sets the stage for decoding by re-encoding the sensory input. Regardless of how
these computations might be implemented, the access to the linear log-likelihood would
enable the central nervous system to evaluate sensory information in the context of prior
information, using Bayesian principles 23,27, through summation of neuronal response
vectors rather than through awkward multiplications of re-encoded probability distributions
26,29,43.

Our work shows that the accuracy with which linear pooling mechanisms approximate the
log-likelihood function depends on whether they take into account the neuronal response
distributions, including their correlated variability. We showed that a decoder based on
parametric descriptions of neuronal responses could infer stimuli from evoked responses
reasonably well. Our empirical decoder serves as an example for how simple modifications
of a parametric decoder can result in more accurate sensory decoding. The refinements in
the neuronal pooling evident in empirical decoding might underlie changes in behavioral
sensitivity that are learned from experience, and recent work on perceptual learning falls
comfortably within this framework 48. An empirical decoder could then reflect these
changes in the value and significance of sensory evidence. Whether – and how – the nervous
system learns more efficient decoding strategies by incorporating knowledge about the
statistics of its sensory responses remains to be discovered.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Methods
Visual stimulation

We presented stimuli on a gamma-corrected CRT monitor (Eizo T966, mean luminance 33
cd/m2) at a resolution of 1280 by 960 pixels and a refresh rate of 100 Hz. Stimuli were
generated using EXPO software on an Apple Macintosh computer
(http://corevision.cns.nyu.edu). We used drifting sinusoidal gratings at full contrast
presented through a large circular aperture and surrounded by a gray field of mean
luminance. The monkey viewed the stimuli binocularly. The orientation of the grating was
varied around the clock in steps of 5 deg, yielding a total of 72 orientations. The spatial
frequency of the grating was chosen to elicit a robust response on average from the whole
population of neurons, and was then kept fixed during the experiment. In practice, in
different experiments we used spatial frequencies between 1.1 and 1.3 c/deg. The gratings
all drifted smoothly at 6.25 Hz. Because the visual axes were relatively close together for the
first two experiments, we used single large apertures (8.7 and 9.9 deg) to cover all the
receptive fields in both eyes. Because the direction of gaze of the two eyes was particularly
divergent in the third monkey (data set 5), we presented two identical stimuli, one covering
the receptive fields of each eye, using two smaller 2.6 deg apertures. We made no attempt to
adjust the retinal disparity of the stimuli. For the purpose of this study, all data sets were
analyzed similarly. The stimuli were presented for 1280 ms, and were followed by a blank
screen of mean luminance for another 1280 ms. We recorded 50 trials for each stimulus
condition. The presentation order of the stimuli was randomized.

Recording methods
We recorded from three hemispheres of two pig-tailed (M. nemestrina) and two hemispheres
of one cynomolgus (M. fascicularis) opiate anesthetized, paralyzed adult male macaque
monkeys. The procedures for acute electrophysiology used in our laboratory have been
described in detail elsewhere 49. Briefly, we maintained anesthesia with an intravenous
infusion of 4-30 μg/kg/h of sufentanil citrate in lactate dextrose-saline (4-10 ml/kg/h). The
monkey was paralyzed to prevent eye movements by an infusion of vercuronium bromide
(100 μg/kg/h). We continuously monitored vital signs: heart rate, lung pressure,
electroencephalogram, body temperature, urine volume and specific gravity, and end-tidal
partial pressure in CO2. Gas-permeable contact lenses protected the corneas, and
supplementary lenses chosen by direct ophtalmoscopy provided refraction. At the end of the
experiment, the animal was sacrificed with an overdose of sodium pentobarbitol. All
experimental procedures were conducted in compliance with the US National Institutes of
Health Guide for the Care and Use of Laboratory Animals and with the approval of the New
York University Animal Welfare Committee.

We collected data from populations of simultaneously recorded neurons in the primary
visual cortex (area V1) using methods described elsewhere 16. The extracellular recordings
were obtained from an array of 10 by 10 fixed silicon microelectrodes of length 1 mm
spaced by 400 μm. The array was inserted using a high-velocity pneumatic gun to minimize
bleeding and tissue damage. The electrodes were inserted about 0.6 mm into cortex, yielding
recordings from the superficial layers of V1. The neuronal signal on each channel was
amplified (gain of 5000) and bandpass filtered between 250 Hz and 7.5 kHz. It was then
digitized at a sampling rate of 30 kHz. Single-unit activity was first obtained from a PCA-
based offline spike sorting algorithm. This stage was followed by a careful manual
inspection and refinement of the neuron’s isolation based on the shape of the waveforms
(multiple window discrimination).
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Evoked activity was estimated over the full stimulus presentation. We neglected the
contamination by the blank preceding each grating because 1. This period of the response
(the first ~ 60 ms corresponding to typical V1 response latencies 50) was of negligible
duration compared to the 1280 ms stimulus presentation time and 2. This contamination was
the same for each grating. Spontaneous activity was assessed on the last 500 ms of each
blank presentation to avoid contamination induced by the preceding grating. To get visually
driven neurons, we only accepted neurons of which the peak or trough of their tuning curve
fell outside of the window defined by the mean and one standard deviation of their
spontaneous activity. Furthermore, we obtained meaningful sample of V1 neurons by only
considering neurons with tuning curves that could be well approximated (r2 ≥ 0.75) by
bimodal circular Gaussian functions (the sum of two von Mises functions with different
preferred orientations, amplitudes and bandwidths), allowing us to accommodate for
direction (mono-modal) or orientation (bi-modal) tuning. We obtained populations of
simultaneously recorded neurons of sizes 40, 57, 60, 70, and 74. Each data set was obtained
in a ~ 3 hour-long recording session.

Poisson Independent Decoder
For the Poisson Independent Decoder (PID), we approximated the distribution of spike
counts with a Poisson probability distribution, and pooled the likelihood functions across
neurons assuming statistical independence. This allowed us to retrieve a representation of
the log-likelihood function of a stimulus orientation θ that linearly combines the population
response ri of the N neurons:

The pooling weight W is the logarithm of the individual tuning curves fi(θ) defined by the
average response of each neuron to a given orientation 5,25,35. Due to the steep nonlinearity
of the logarithm close to 0, we put a floor ε on fi(θ). We chose to set ε as the inverse of the
number of trials, effectively asserting that there should be at least one spike across all trials
for each stimulus orientation. The orientation-dependent component of the offset term B
represents the sum across individual tuning curves. This offset term is a measure of the
heterogeneity of the neuronal population sample. For a finite population of neurons with
regularly spaced preferred orientations and similar tuning parameters (amplitude, bandwidth,
and baseline), the offset will be very close to constant. In this case the offset just shifts the
log-likelihood function up or down independently of the stimulus, and does therefore not
influence decoding. However, for a finite population with heterogeneous neurons, especially
with non-uniform distribution of preferred orientations, the offset term is stimulus
dependent. In this case, the log-likelihood function will be affected by the offset term: the
neuronal responses are combined with the poling weights, and the offset is added to this
combination.

Empirical Linear Decoder
The discrimination between neuronal population responses corresponding to two stimulus
orientations is a pattern classification problem. A classifier divides the space spanned by the
neuronal response population vector into two classes, each of which is more strongly
associated with one of the two stimulus orientations. A good classifier makes few errors on
the training data, while generalizing well to novel data. We chose to use a simple, yet
accurate and robust classifier from statistical learning theory: the Support Vector Machine
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SVM 45. The SVM has been shown to exhibit the best generalization ability and least
overfitting for a wide range of applications, including sparse and noisy data 44. The SVM is
a non-parametric classifier that empirically derives its parameters from the structure
embedded in the data. The linear variant of the SVM is ideally suited as a model for the
Empirical Linear Decoder (ELD) in orientation discrimination tasks because 1. It
discriminates between neuronal responses corresponding to two different orientations using
a linear decision function and 2. It computes its parameters from the neuronal response
distributions without making assumptions on the shape of the spike count distributions, or
on the structure of the interneuronal interactions.

The linear SVM estimates a separating hyperplane by maximizing the normalized margin
between the two classes of responses, while minimizing the classification errors (responses
on the wrong side of the hyperplane) and the responses within the margin stripe. For a data
set of spike counts from a population of N neurons recorded on P trials, we denote the
response vector by rp ∈ RN where p = 1,K ,P and the class labels by tp = ±1 corresponding
to the two stimulus orientations. The SVM algorithm is a minimization problem that finds
the normal vector w ∈ RN and offset b ∈ R of the separating hyperplane as follows:

subject to the constraints for each p = 1,K ,P:

where ξp are “slack” variables allowing for class overlap (responses correctly classified
although being closer to the hyperplane that the margins for 0 < ξp ≤ 1) or misclassified
responses (responses on the wrong side of the hyperplane for ξp > 1). The regularization
parameter C is set by cross-validation. Discrimination between two stimulus orientations θ1
and θ2 is finally done using the sign of the SVM decision function:

We then equated the SVM decision function with the log-likelihood ratio log LR(θ1,θ2) of
the ELD. The SVM decision function was used as a local linear approximation of the
difference between the log-likelihood evaluated at two stimulus orientations. The entire log-
likelihood function was then reconstructed by computing the cummulative sum of the ELD
log-likelihood ratios between adjacent orientations, akin to reconstructing a function given
its finite differences:

with log L(θ1) = 0. Because the length of the weight vector w is arbitrary, we independently
renormalized the SVM weights corresponding to each discrimination (or equivalently scaled
the log-likelihood ratios) in order to minimize the orientation estimation bias computed from
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the reconstructed log-likelihood functions. By construction, the log-likelihood function of
the ELD is linear in the neuronal responses, and its parameters are empirically derived from
the neuronal data using the SVM algorithm.

Evaluating linear decoding
For the estimation and discrimination weights studies, we obtained directional data (mono-
modal tuning curves) by considering each neuron twice: its tuning was separated in the
range from 0–180 deg and in the range from 180–360 deg, yielding two tuning curves each
spanning 180 deg. When computing the discrimination errors and thresholds, we considered
the data in the full 360 deg range. To ensure good generalization ability, the discrimination
errors and weights were averaged across 10-fold cross-validation sets. To compute the
discrimination accuracies for neuronal subsets, we used random sampling without
replacements. The number of these samples depended on the population size, and was
governed by the following heuristic: for a subset of N neurons from a neuronal population of

size Ntot, we chose  random samplings where nc is the covering number (nc = 10 in
Fig. 4a).
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Figure 1.
Orientation tuning curves (spike count, mean ± s.e.m.) for a population of 60 neurons (data
set 3).
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Figure 2.
Scheme of the linear log-likelihood decoding framework with parameters of the Empirical
Linear Decoder derived from data set 3. To emphasize how the log-likelihood function is
constructed, we ordered neurons by preferred orientations, and averaged the neuronal
response across trials and stimulus orientations to avoid distractions due to the different
orientation responses. The average population activity was replicated for five stimulus
orientations (lower panel). A given stimulus elicited the population response represented by
the black dots, each dot corresponding to the response of one neuron. We computed the
average neuronal pooling weight across orientations and replicated it for three orientations,
one of which coinciding with the stimulus (middle panel). The population response
corresponding to a stimulus (dots in lower panel) is combined with the pooling weights for
each orientation (three colored curves in middle panel) to yield the log-likelihood function
evaluated at these orientations (three colored dots in upper panel). The pooling weights can
be seen as the coefficients of filters that determine how a neuron’s response contributes to
the log-likelihood: a neuron’s contribution is positive when the stimulus is close to this
neuron’s preferred orientation, and is negative for remote stimuli.

Graf et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Orientation estimation accuracy for the Empirical Linear Decoder (ELD), the correlation-
blind ELD (CB-ELD), and the Poisson Independent Decoder (PID). (a) The orientation
estimate corresponding to a given neuronal population response was the orientation
maximizing the log-likelihood function computed from this response. The estimation error is
the difference between the estimated and true orientations. The absolute value of the overall
estimation error (mean ± s.e.m.) for data set 3 was 0.77 ± 0.05 deg, 2.21 ± 0.06 deg and 2.27
± 0.06 deg for the ELD, CB-ELD and PID respectively. To describe estimation in more
detail, we represented the distribution of estimation errors (mean ± s.e.m. estimated by
bootstrap). The proportion of orientation estimates at the veridical stimulus orientation was
0.90 ± 0.00, 0.64 ± 0.01 and 0.62 ± 0.01 for the ELD, CB-ELD and PID respectively. (b)
We compared data sets using the proportion of veridical estimates (mean ± s.e.m. estimated
by bootstrap).
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Figure 4.
Orientation discrimination accuracy for the Empirical Linear Decoder (ELD), the
correlation-blind ELD (CB-ELD), and the Poisson Independent Decoder (PID). (a) The
population neurometric functions represent the discrimination accuracy (mean ± s.e.m.
across orientations) as function of the orientation difference. The interpolations were done
using a cumulative Weibull distribution fitted using maximum likelihood. To avoid showing
a neurometric function that mainly covers the asymptotic regime (accuracies close to 1), the
discrimination accuracies were averaged across random subsets of 20 neurons from data set
3. The orientation discrimination threshold yielding an accuracy of 0.75 (mean ± s.e.m.
estimated by bootstrap) was 2.58 ± 0.16 deg, 3.70 ± 0.17 deg and 5.99 ± 0.20 deg for the
ELD, CB-ELD and PID respectively. (b) We evaluated the discrimination accuracy across
data sets by comparing their orientation discrimination thresholds (mean ± s.e.m. estimated
by bootstrap) computed using entire populations.
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Figure 5.
Dependency of the discrimination weighting functions with respect to stimulus orientation
and neuronal response magnitude for data set 3. (a) The discrimination weights were
averaged across neurons after being aligned to each of the 72 possible discrimination
boundaries. Neuronal preferred orientations were estimated from a fit to a von Mises
function. The weights (mean ± s.e.m.) of the Empirical Linear Decoder (ELD) are shown for
fine (dark) and coarse (light) discriminations. (b,c) Same as a, but for the correlation blind
ELD (CB-ELD) and the Poisson Independent Decoder (PID). (d) The absolute value of the
discrimination weights of the ELD (mean ± s.e.m.) is plotted against the neuronal response
strength (spike counts) across all orientations by ordering for each neuron the discrimination
weights by increasing neuronal response to one of the two discriminated orientations. We
plotted their running average using a window over the 100 nearest neighbors for fine (dark)
and coarse (light) discriminations. (e,f) Same as d, but for the CB-ELD and the PID.
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Figure 6.
Orientation discrimination thresholds of the Empirical Linear Decoder corresponding to an
accuracy of 75% using data set 3. The discrimination thresholds were derived from the
neurometric functions evaluated at each stimulus orientation. We computed the
discrimination thresholds of the entire population of 60 neurons (gray line) and for each
neuron individually (all dots, each corresponding to the threshold of one neuron). We then
chose a random subset of 10 neurons, and computed the corresponding population threshold
(black line, the black dots indicating the corresponding individual thresholds).
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