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Abstract
Magnetic resonance image (MRI) reconstruction using SENSitivity Encoding (SENSE) requires
regularization to suppress noise and aliasing effects. Edge-preserving and sparsity-based
regularization criteria can improve image quality, but they demand computation-intensive
nonlinear optimization. In this paper, we present novel methods for regularized MRI
reconstruction from undersampled sensitivity encoded data—SENSE-reconstruction—using the
augmented Lagrangian (AL) framework for solving large-scale constrained optimization
problems. We first formulate regularized SENSE-reconstruction as an unconstrained optimization
task and then convert it to a set of (equivalent) constrained problems using variable splitting. We
then attack these constrained versions in an AL framework using an alternating minimization
method, leading to algorithms that can be implemented easily. The proposed methods are
applicable to a general class of regularizers that includes popular edge-preserving (e.g., total-
variation) and sparsity-promoting (e.g., ℓ1-norm of wavelet coefficients) criteria and combinations
thereof. Numerical experiments with synthetic and in-vivo human data illustrate that the proposed
AL algorithms converge faster than both general-purpose optimization algorithms such as
nonlinear conjugate gradient (NCG) and state-of-the-art MFISTA method.
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I. Introduction
PArallel MR imaging (pMRI) exploits spatial sensitivity of an array of receiver coils to
reduce the number of required Fourier encoding steps, thereby accelerating MR scanning.
SENSitivity Encoding (SENSE) [1], [2] is a popular pMRI technique where reconstruction
is performed by solving a linear system that explicitly depends on the sensitivity maps of the
coil array. While efficient reconstruction methods have been devised for SENSE with
Cartesian [1], as well as non-Cartesian k-space trajectories [2], they inherently suffer from
SNR degradation in the presence of noise [1] mainly due to k-space undersampling and
instability arising from correlation in sensitivity maps [3].

Regularization is an attractive means of restoring stability in the reconstruction mechanism
where prior information can also be incorporated effectively [3]–[9]. Tikhonov-like
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quadratic regularization [3]–[6] leads to a closed-form solution (under a Gaussian noise
model) that can be numerically implemented efficiently. However, with the advent of
compressed sensing (CS) theory, sparsity-promoting regularization criteria (e.g., ℓ1-based
regularization) have gained popularity in MRI [10]. The basic assumption underlying CS-
MRI is that many MR images are inherently sparse in some transform domain and can be
reconstructed with high accuracy from significantly undersampled k-space data by
minimizing transform-domain sparsity-promoting regularization criteria subject to data-
consistency. The CS framework is apt for pMRI [11] with undersampled data. This paper
investigates the problem of regularized reconstruction from sensitivity encoded data—
SENSE-reconstruction—using sparsity-promoting regularizers. We formulate regularized
SENSE-reconstruction as an unconstrained optimization problem where we obtain the
reconstructed image, , by minimizing a cost function, J(x), composed of a regularization
term, Ψ(x), and a (negative) log-likelihood term corresponding to the noise model. For Ψ,
we consider a general class of functionals that includes popular edge-preserving (e.g., total-
variation) and sparsity-promoting (e.g., ℓ1-norm of wavelet coefficients) criteria and
combinations thereof. Such regularization criteria are “non-smooth” (i.e., they may not be
differentiable everywhere) and they require solving a nonlinear optimization problem using
iterative algorithms.

This paper presents accelerated algorithms for regularized SENSE-reconstruction using the
augmented Lagrangian (AL) formalism. The AL framework was originally developed for
solving constrained optimization problems [12]; one combines the function to be minimized
with a Lagrange multiplier term and a penalty term for the constraints, and minimizes it
iteratively (while taking care to update the Lagrange parameters) to solve the original
constrained problem. This combination overcomes the shortcomings of the Lagrange
multiplier method and penalty-based methods for solving constrained problems [12]. To use
the AL formalism for regularized SENSE-reconstruction, we first convert the unconstrained
problem in to an equivalent constrained optimization problem using a technique called
variable splitting where auxiliary variables take the place of linear transformations of x in
the cost function J. Then, we construct a corresponding AL function and minimize it
alternatively with respect to one auxiliary variable at a time—this step forms the key
ingredient as it decouples the minimization process and simplifies optimization. We
investigate different variable-splitting approaches and correspondingly design different AL
algorithms for solving the original unconstrained SENSE-reconstruction problem. We also
propose to use a diagonal weighting term in the AL formalism to induce suitable balance
between various constraints because the matrix-elements associated with Fourier encoding
and the sensitivity maps can be of different orders of magnitude in SENSE. The proposed
AL algorithms are applicable for regularized SENSE-reconstruction from data acquired on
arbitrary non-Cartesian k-space trajectories. Based on numerical experiments with synthetic
and real data, we demonstrate that the proposed AL algorithms converge faster (to an actual
solution of the original unconstrained regularized SENSE-reconstruction problem)
compared to general-purpose optimization algorithms such as NCG (that has been applied
for CS-(p)MRI in [10], [11]), and the recently proposed state-of-the-art Monotone Fast
Iterative Shrinkage-Thresholding Algorithm (MFISTA) [13].

The paper is organized as follows. Section II formulates the regularized SENSE-
reconstruction problem (with sparsity-based regularization) as an unconstrained
optimization task. Next, we concentrate on the development of AL-based algorithms. First,
Section III presents a quick overview of AL framework. Then, Section IV applies the AL
formalism to regularized SENSE-reconstruction in detail. Here, we discuss various
strategies for applying variable splitting and develop different AL algorithms for regularized
SENSE-reconstruction. Section V is dedicated to numerical experiments and results. Section
VI discusses possible extensions of the proposed AL methods to handle some variations of
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SENSE-reconstruction such as that proposed in [14]. Finally, we draw our conclusions in
Section VII.

II. Problem Formulation
We consider the discretized SENSE MR imaging model given by

(1)

where x is a N×1 column vector containing the samples of the unknown image to be
reconstructed (e.g., a 2-D slice of a 3-D MRI volume), d and ε are ML×1 column vectors
corresponding to the data-samples from L coils and noise, respectively, S is a NL × N matrix

given by , Sl is a N × N (possibly complex) diagonal matrix corresponding to
the sensitivity map of the lth coil, 1 ≤ lL, (·)H represents the Hermitian-transpose, F is a ML
× NL matrix given by F = IL ⊗ Fu, Fu is a M × N Fourier encoding matrix, IL is the identity
matrix of size L and ⊗ denotes the Kronecker product. The subscript `u' in Fu signifies the
fact that the k-space may be undersampled to reduce scan time, i.e., M ≤ N.

Given an estimate of the sensitivity maps S, the SENSE-reconstruction problem is to find x
from data d. Since regularization is an attractive means of reducing aliasing artifacts and the
effect of noise in the reconstruction (by incorporating prior knowledge), we formulate the
problem in a penalized-likelihood setting where the reconstruction is obtained by
minimizing a cost criterion:

(2)

where KML is the inverse of the ML × ML noise covariance matrix, , and
Ψ represents a suitable regularizer. We have included KML in the data-fidelity term to
account for the fact that noise from different coils may be correlated [1], [2]. Assuming that
noise is wide-sense stationary and is correlated only over space (i.e., coils) and not over k-
space, KML can be written as KML = Ks ⊗ IM, where Ks is a L × L matrix that corresponds
to the inverse of the covariance matrix of the spatial component of noise (from L coils).

The weighting matrix KML can be eliminated from J in (2) by applying a noise-decorrelation

procedure [2]: Since Ks is generally positive definite, we write , and

, where  Then, because of the structures of  and F, we have
that [2]

where . Letting

(3)
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(4)

we therefore get that

(5)

which is an equivalent unweighted data-fidelity term1 with a new set of sensitivity maps 

obtained obtained by weighting the original sensitivity maps S with . In the sequel, we
use the r.h.s. of (5) for data-fidelity and drop the ~ for ease of notation. In the numerical
experiments, we used (3) and (4).

We consider sparsity-promoting regularization for Ψ based on the field of compressed
sensing for MRI—CS-MRI [10], [11]. We focus on the “analysis form” of the reconstruction
problem where the regularization is a function of the unknown image x. Specifically, we
consider a general class of regularizers that use a sum of Q terms given by

(6)

where q indexes the regularization terms, the parameter λq > 0 controls the strength of the
qth regularization term, and [x]n or xn represents the nth element of the vector x. The Nq × N
matrices Rpq, p = 1,…, Pq ∀ q, represent sparsifying operators. We focus on shift-invariant
operators for Rpq (e.g., tight frames, finite-differencing matrices), but the methods can be
applied to shift-variant ones such as orthonormal wavelets with only minor modifications.
Typically, Pq ⪡ M, N ∀ q (as seen in the examples below).We consider that the values of
mq and the choice of potential functions Φqn ∀ q and n are such that Ψ is composed of non-
quadratic convex regularization terms.

The general class of regularizers (6) includes popular sparsity-promoting regularization
criteria such as

(a) ℓ1-norm of wavelet coefficients: Q = 1, P1 = 1, m1 = 1, R11 = W is a wavelet
transform (orthonormal or a tight frame), and Φ1n(x) = x where n indexes the
rows of R11,

(b) discrete isotropic total-variation (TV) regularization [15]: Q = 1, P1 = 2, m1 = 2,
R11 and R21 represent horizontal and vertical finite-differencing matrices,
respectively, and , where n indexes the rows of R.1,

(c) discrete anisotropic total-variation (TV) regularization [15]: Q = 1, P1 = 2, m1 =
1, R11 and R21 represent horizontal and vertical finite-differencing matrices,
respectively, and Φ1n(x) = x, where n indexes rows of R.1.

The general form (6) also allows the use of a variety of potential functions for ∀. We
consider such a generalization because combinations of wavelet-and TV-regularization have
been reported to be preferable [10]. The proposed methods can be easily generalized for
synthesis-based formulations [16].

The minimization in (2) is a non-trivial optimization task, even for only one regularization
term. Although general purpose optimization techniques such as the nonlinear conjugate

1The r.h.s. of (5) automatically includes the special case of KML = IML with  and .
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gradient (NCG) method or iteratively reweighted least squares can be applied to
differentiable approximations of P0, they may either be computation-intensive or exhibit
slow convergence. This paper describes new techniques based on the augmented Lagrangian
(AL) formalism that yield faster convergence per unit computation time.

The basic idea is to break down P0 in to smaller tasks by introducing “artificial” constraints
that are designed so that the sub-problems become decoupled and can be solved relatively
rapidly [15], [17]–[20]. We first briefly review the AL method and then discuss some
strategies for applying it to P0.

III. Constrained Optimization and Augmented Lagrangian (AL) Formalism
Consider the following optimization problem with linear equality constraints:

(7)

where Ω is  or , f is a real convex function, C is a M × N (real or complex) matrix that
specifies the constraint equations, and b ε ΩM. In the augmented Lagrangian (AL)
framework (also known as the multiplier method [12]), an AL function is first constructed
for problem (7) as

(8)

where γ ε ΩM represents the vector of Lagrange multipliers, and the quadratic term on the
r.h.s. of above equation is called the “penalty” term2 with penalty parameter3 μ > 0. The AL
scheme [12] for solving (7) alternates between minimizing  with respect to u for a
fixed γ and updating γ, i.e.,

(9)

(10)

until some stopping criterion is satisfied.

So-called “penalty methods” [12] correspond to the case where γ = 0 and (9) is solved
repeatedly while increasing μ → ∞. The AL scheme (9)–(10) also permits the use of
increasing sequences of μ-values, but an important aspect of the AL scheme is that
convergence may be guaranteed without the need for changing μ [12].

The AL scheme is also closely related to the Bregman iterations [15, Equations (2.6)–(2.8)]
applied to problem (7):

(11)

2A more general version of AL allows for the minimization of non-convex functions subject to nonlinear equality and/or inequality
constraints with non-quadratic “penalty” terms [12].
3For non-convex problems, there may exist a lower bound on the possible values of μ for establishing convergence [12, Proposition
1], [21, page 519].
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(12)

where Df (u, v, ρ) = f(u) − f(v) − ρH(u − v) is called the “Bregman distance” [15] and ρ is a
N × 1 vector in the subgradient of f at u. The connection between AL method and Bregman

iterations is readily established if ρ = −CHγ [22]. Then,  is

identical to  (up to constants irrelevant for optimization) and (9)–(10) become
equivalent to (11)–(12) as noted in [22], [23].

The AL function  in (8) can be rewritten by grouping together the terms involving Cu − b
as

(13)

where , and Cγ is a constant independent of u that we ignore henceforth. The
parameter γ can then be replaced by η in (10) which results in the following version of AL
algorithm for solving (7).

Algorithm AL

1. Select u(0), η(0), and μ > 0; set j = 0 Repeat

2.
.

3. η(j+1) = η(j) − (Cu(j+1) − b)

4. Set j = j + 1 Until stop-criterion is met

It has been shown in [15, Theorem 2.2] that the Bregman iterations (11)–(12)—equivalently,
the AL algorithm under above mentioned conditions—converge to a solution of (7)
whenever the minimization in (11)—in turn, Step 2 of the AL algorithm—is performed
exactly. However, this step may be computationally expensive and is often replaced in
practice by an inexact minimization [12], [15], [17]. Numerical evidence in [15] suggests
that inexact minimizations can still be effective in the Bregman/AL scheme.

IV. Proposed AL Algorithms for Regularized SENSE-Reconstruction
Our strategy is to first transform the unconstrained problem P0 into a constrained
optimization task as follows. We replace linear transformations of x (FSx, and Rpqx) in J
with a set of auxiliary variables {ul}. Then, we frame P0 as a constrained problem where J
is minimized as a function of {ul} subject to the constraint that each auxiliary variable, ul,
equals the respective linear transformations of x. We handle the resulting constrained
optimization task (that is equivalent to P0) in the AL framework described in Section III.

The technique of introducing auxiliary variables {ul} is also known as variable splitting; it
has been employed, for instance, in [15], [18]–[20] for image deconvolution, inpainting and
CS-MRI with wavelets- and TV-based regularization in a Bregman/AL framework and in
[17] for developing a fast penalty-based algorithm for TV image restoration. The purpose of
variable splitting is to make the associated AL function  amenable to alternating
minimization methods [15], [17], [24]–[26] which may decouple the minimization of 
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with respect to the auxiliary variables. This makes (9) easier to accomplish compared to
directly solving the original unconstrained problem P0.

The splitting procedures used in [15], [17], [19] introduce auxiliary variables only for
decoupling the effect of regularization. In this work, in addition to splitting the
regularization, we also propose to use one or more auxiliary variables to separate the terms
involving F and S (see Section IV-B). The AL-based techniques in [18], [20] also use
auxiliary variables for the data-fidelity term, but they pertain to problems of the form

where C is a “tall”, i.e., block-column matrix and are not directly applicable to (7) with
some instances of C investigated in this paper (see Sections IV-B and VI-C). Furthermore,
in general, different splitting mechanisms yield different algorithms as they attempt to solve
constrained optimization problems (that are equivalent to P0) with different constraints. In
this paper, we investigate two splitting schemes for P0, described below.

A. Splitting the Regularization Term

In the first form, we split the regularization term by introducing , where

 and R is the number of rows in R. This form is similar to the split-
Bregman scheme proposed in [15, Section 4.2]. The resulting constrained formulation of P0
is given by

where

and u1pq = Rpqx, p = 1, …, Pq ∀ q. Problem P1 can be written in the general form of (7)
with

The associated AL function (8) is therefore

The AL function  can be written in the form of (13) (ignoring irrelevant constants) as

(14)
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where . Applying the AL algorithm to P1 requires the joint minimization of 
with respect to u1 and x at Step 2. Since this can be computationally challenging, we apply
an (inexact) alternating minimization method [15], [17], [19]: We alternatively minimize 
with respect to one variable at a time while holding others constant. This decouples the
individual updates of u1 and x and simplifies the optimization task. Specifically, at the jth
iteration, we perform the following individual minimizations, taking care to use updated
variables for subsequent minimizations [15], [17]:

(15)

(16)

1) Minimization with respect to x—The minimization in (16) is straightforward since
the associated cost function is quadratic. Ignoring irrelevant constants, we get that

(17)

where4

(18)

Although (17) is an analytical solution, computing  is impractical for large N. Therefore,
we apply a few iterations of the conjugate-gradient (CG) algorithm with warm starting, i.e.,
the CG algorithm is initialized with the estimated x from the previous AL iteration.

2) Minimization with respect to u1—Writing out (15) explicitly (ignoring constants
independent of u1), we have that

(19)

While (19) is a large-scale problem by itself, the splitting variable u1 decouples the different
regularization terms so that (19) can be decomposed into smaller minimization tasks as

follows. Let r(j) = Rx(j); for each q and n, we collect ,  and

, so that vqn, , , . Then, (19) separates for each q and n as

(20)

4We design the regularization ω such that the non-trivial null-spaces of RHR and SHFHFS are disjoint. Then, Gμ is non-singular for
μ > 0.
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This is basically a Pq-dimensional denoising problem with  playing the role of the
data and where ∥·∥p denotes the ℓp-norm. Often (20) has a closed-form solution as discussed
below. Otherwise, a gradient-descent-based algorithm such as NCG with warm starting can

be applied for obtaining a partial update for . Before proceeding, it is useful to compute
the gradient of the cost function in (20). Ignoring the indices q and n and setting the gradient
of the cost function in (20) to zero, we get for v ≠ 0 that

(21)

where

(22)

and Φ′ is the first derivative of Φ, and vk is the kth component of v. The main obstacles to
obtaining a direct solution of (20) are the coupling introduced between different components

of v, i.e., , and the presence of the |vk|m−2 in ϴ(v). Below we analyze some special
cases of practical interest where this problem can be circumvented to obtain simple
solutions.

Case of ℓ1-regularization: For ℓ1-type regularization in (6) we set m = 1, Φ(x) = x.
Consequently, (21) further decouples in terms of the components of v as

where vk ≠ 0, k = 1, 2, … P. The minimizer of (20) in this case is given by the shrinkage rule
[27]

where shrink .

Case of P = 1: In this case, (20) reduces to 1-D minimization that can be easily achieved
numerically for a general Φor analytically for m = 1 and some specific instances of Φ listed
in [28, Section 4].

Case of m = 2 and a general Φ: For m = 2, the solution of (20) is in general determined by
a vector-shrinkage rule as explained below. Setting m = 2 in (21), we get that

(23)

The bracketed term on the l.h.s. is a non-negative scalar (cf. Φ is non-decreasing), so that
(23) corresponds to shrinking ϱ(j) + β(j) by an amount prescribed by χ(∥v∥2) for v ≠ 0. The
exact value of χ(∥v∥2) depends on v and in general, there is no closed form solution to (23).
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Nevertheless, for given λ and μ values, (23) can be solved numerically5 by using a look-up
table for Φ′ to find the value for the shrinkage factor χ(∥v∥2) such that (23) is satisfied.

Case of TV-type regularization: To obtain a TV-type regularization in (6) we set m = 2
and . Correspondingly, (21) becomes

(24)

where  for v ≠ 0. In this case, an exact value for χ can be found as
shown below. Taking ℓ2-norm of the vector on both sides of (24) and manipulatig, we get

that , and

which leads to the following vector-shrinkage rule [15], [17], [22]

where shrinkvec . It is also possible to derive closed-form
solutions of (20) for m = 2 for some instances of Φ listed in [28, Section 4]. In summary, the
minimization problem (20) is fairly simple and fast typically.

3) AL Algorithm for Problem P1—Combining the results from Sections IV-A1 and IV-
A2, we now present the first AL algorithm (that is similar to the split-Bregman scheme [15])
for solving the constrained optimization problem P1, formulated as a tractable alternative to
the original unconstrained problem P0.

AL-P1: AL Algorithm for solving problem P1

1. Select x(0) and μ > 0

2. Precompute SHFHd; set  and j = 0 Repeat:

3. Obtain an update  using an appropriate technique as described in Section
IV-A2

4. Obtain an update x(j+1) by running few CG iterations on (17)

5.

6. Set j = j + 1 Until stop-criterion is met

5Taking the ℓ2-norm of the vectors on both sides of (23), we see that (23) entails solving a 1-D problem of the form (λ Φ′(x2) + 1)x =
d, for x.
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The most complex step of this algorithm is using CG to solve (17). We now present an
alternative algorithm that simplifies computation further.

B. Splitting the Fourier Encoding and Spatial Components in the Data-Fidelity Term
Since the data-fidelity term is composed of components (S and F) that act on the unknown
image in different domains (spatial and k-space, respectively) it is natural to introduce
auxiliary variables to split these two components. Specifically, we now consider the
constrained problem

where , , , and

Clearly, P2 is equivalent to P0. The new variable u2 simplifies the implementation by
decoupling u0 and u1. In terms of the general AL formulation (7), P2 is written as

where

We have introduced a diagonal weighting matrix Λ in the constraint equation whose purpose
will be explained below. Using Λ does not alter problem P2 as long as v1,2 > 0. The
associated AL function (8) is given by

where , one component for each row of B. Then, we write  in the form
of (13) (without irrelevant constants) as

(25)

where . From (25), we see that Λ specifies the relative
influence of the constraints individually while μ determines the overall influence of the
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constraints on . Note again that the final solution of P2 does not depend on any of μ, v1
or v2.

We again apply alternating minimization to (25) (ignoring irrelevant constants) to obtain the
following sub-problems:

(26)

(27)

(28)

(29)

The minimization in (27) is exactly same as the one in (19) except that we now have Ru2
instead of Rx in the quadratic part of the cost. Therefore, we apply the techniques described
in Section IV-A2 to solve (27).

1) Minimization with respect to u0,2 and x—The cost functions in (26) and (28)–(29)
are all quadratic and thus have closed-form solutions as follows:

(30)

(31)

(32)

where

(33)

(34)

(35)

We show below that these matrices can be inverted efficiently thereby avoiding the more

difficult inverse  in (17). We have proposed using Λ to ensure suitable balance between
the various constraints (equivalently, the block-rows of B) since the block-rows of B may be
of different orders of magnitude. We can adjust v1,2 to regulate the condition numbers of
Hv1v2, and Hv2 to ensure stability of the inverses in (31)–(32). Using general positive
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definite diagonal matrices in place of weighted identity matrices inside Λ is possible but
would complicate the structure of the matrices Hv1v2, and Hv2 in (34)–(35), respectively.

2) Implementing the Matrix Inverses—When the k-space samples lie on a Cartesian
grid, Fu corresponds to a sub-sampled DFT matrix in which case we solve (30) exactly using

FFTs. For non-Cartesian k-space trajectories, computing  requires an iterative method.
For example, a CG-solver (with warm starting) that implements products with FHF using
gridding-based techniques [29] can be used for (30). Alternatively, we can exploit the
special structure of FHF (of size N L × N L) to implement (30) using the technique proposed
in [30]. We have that

(36)

where Z is a 2N L × N L zero-padding matrix and Q is a 2N L × 2N L circulant matrix [31].
Then, we write Hμ as

where . We have split the factor μINL in Hμ because Q may have a non-trivial
null-space and therefore may not be invertible. Letting w denote the quantity within the
brackets on the r.h.s. of (30), we apply the Sherman-Morrison-Woodbury matrix inversion

lemma (MIL) to  in (30) and obtain

(37)

where τ must be obtained by solving

(38)

Since Q1 is circulant and ZZH is a diagonal matrix containing either ones or zeros (due to

the structure of Z) [30], we use a circulant preconditioner of the form  (with α
≈ 0) to quickly solve (38) using the CG algorithm. The advantage here is that the matrices in
the l.h.s. of (38) and the preconditioner are either circulant or diagonal, which simplifies
CG-implementation.

When the regularization matrices, Rpq, p = 1, …, Pq ∀ q, are shift-invariant (or circulant),

RHR is also shift-invariant. Then, we compute  efficiently using FFTs. In the case
where a Rpq is not shift-invariant (e.g., an orthonormal wavelet transform), we apply a few
CG iterations with warm-starting to solve (31). Finally, since SHS is diagonal, we see that
Hv2 is also diagonal and is therefore easily inverted.

Splitting the k-space and spatial (i.e., F and S, respectively) components in the data-fidelity

term has led to separate matrix inverses—  and  involving the components FHF and
SHS, respectively. Without u0, one would have ended up with a term SHFHFS (as in Gμ)
that is more difficult to handle using MIL compared to FHF. Using u2 decouples the terms
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RHR and SHS, thereby replacing a numerically intractable matrix inverse of the form (SHS +

αRHR)−1 with tractable ones such as  and .

3) AL Algorithm for Problem P2—Combining the results from Sections IV-B1 and IV-
B2, we present our second AL algorithm that solves problem P2, and thus P0.

AL-P2: AL Algorithm for solving problem P2

1. Select x(0), , v1,2 > 0, and μ > 0

2.
Precompute FHd; set  and j = 0 Repeat:

3. Compute  from (30) using FFTs on (37)

4. Compute  using an appropriate technique as described in Section IV-A2 for
problem (27)

5. Compute  using (31)

6. Compute x(j+1) using (32)

7.

8.

9.

10. Set j = j + 1 Until stop-criterion is met

With the possible exception of Steps 3 and 4, all updates in AL-P2 are exact (for circulant
{Rpq} unlike AL-P1 because of the way we split the variables in P2.

Although Steps 2–4 of AL-P1 and Steps 2–6 of AL-P2 do not exactly accomplish Step 2 of
AL, we found in our experiments that both AL-P1 and AL-P2 work well, corroborating the
numerical evidence from [15].

C. Choosing μ- and v-values for the AL algorithms
Although μ- and v-values do not affect the final solution to P0, they can affect the
convergence rate of AL-P1 and AL-P2. For AL-P2, we set the parameters μ, v1, and v2 so
as to achieve condition numbers—κ(Hμ), κ(Hv1v2), and κ(Hv2) of Hμ, Hv1v2, and Hv2,
respectively—that result in fast convergence of the algorithm. Because of the presence of
identity matrices in (33)–(35), κ(Hμ), κ(Hv1v2), and κ(Hv2) are decreasing functions of μ,

, and v2, respectively. Choosing such that κ(Hμ) → 1 would require a large μ and
accordingly, the influence of self-adjoint component FHF in Hμ diminishes—Hμ becomes
“over-regularized”; we observed in our experiments that this phenomenon would result in
slow convergence of AL-P2. On the other hand, taking μ → 0 would increase κ(Hμ)

making  numerically unstable (because FHF may have a non-trivial null-space). The

same trend also applies to κ(Hv1v2) and κ(Hμv2) as functions of  and v2, respectively. We
found empirically that choosing μ, v1 and v2 such that κ(Hμ), κ(Hv1v2), κ(Hv2) ∈ generally
provided good convergence speeds for AL-P2 in all our experiments.
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In the case of AL-P1, the components SHFHFS and RHR balance each other in preventing
Gμ (18) from having a non-trivial null-space—the condition number κ(Gμ) of Gμ therefore
exhibits a minimum for some μmin > 0: μmin = arg minμ κ(Gμ). It was suggested in [15] that
μmin can be used for split-Bregman-like schemes such as AL-P1 for ensuring quick
convergence of the CG algorithm applied to (17) (Step 4 of AL-P1). However, we observed
that selecting μ = μmin did not consistently yield6 fast convergence of the AL-P1 algorithm
in our experiments (see Section VI-B). So, we resorted to a manual selection of μ for AL-P1
for reconstructing one slice of a 3-D MRI volume, but applied the same μ-value for
reconstructing other slices.

V. Experiments
A. Experimental Setup

In all our experiments, we considered k-space samples on a Cartesian7 grid, so Fu
corresponds to an undersampled version of the DFT matrix. We used Poisson-disk-based
sub-sampling [32] which provides random, but nearly uniform sampling that is
advantageous for CS-MRI [33].

We compared the proposed AL methods to NCG (which has been used for CS-(p)MRI [10],
[11]) and to the recently proposed MFISTA [13]—a monotone version of the state-of-theart
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [34]. For the minimization step
[13, Equation 5.3] in MFISTA, we applied the Chambolle-type algorithm developed in [35]
that accommodates general regularizers of the form (6). We used the line-search described
in [36] for NCG that guarantees monotonic decrease of J(x). NCG also requires a positive
“smoothing” parameter, ε (as indicated in [10, Appendix A]) to round-off “corners” of non-
smooth regularization criteria; we set ε = 10−8 which seemed to yield good convergence
speed for NCG without compromising the resulting solution too much (see Section VI-A).
We implemented the following algorithms in MATLAB:

• MFISTA-N with N iterations of [35, Equation 6],

• NCG-N with N line-search iterations,

• AL-P1-N with N CG iterations at Step 4, and

• AL-P2.

We conducted the experiments on a dual quad-core Mac Pro with 2.67 GHz Intel processors.
Table I shows the per-iteration computation time of the above algorithms for each
experiment.

Since our goal is to minimize the cost function J (which determines the image quality), we
focused on the speed of convergence to a solution of P0. For all algorithms, we quantified
convergence rate by computing the normalized ℓ2-distance between x(j) and the limit x(∞)

(that represents a solution of P0) given by

(39)

We obtained x(∞) in each experiment by running thousands of iterations of MFISTA-20
because our implementation of MFISTA (with Chambolle-type inner iterations [35]) does

6A possible explanation for this phenomenon is presented in a supplementary downloadable material available, along with the paper,
at http://ieeexplore.ieee.org.
7The proposed algorithms also apply to non-Cartesian k-space trajectories.
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not require rounding the corners of non-smooth regularization unlike NCG, and therefore
converges to a solution of P0. Since the algorithms have different computational loads per
outer-iteration, we evaluated ξ(j) as a function of algorithm run-time8tj (time elapsed from
start until iteration j). We used the square-root of sum of squares (SRSoS) of coil images
(obtained by taking inverse Fourier transform of the undersampled data after filling the
missing k-space samples with zeros) as our initial guess x(0) for all algorithms. For the
purpose of illustration, we selected the regularization parameters {λq} such that minimizing
the corresponding J in (2) resultedin a visually appealing solution x(∞). In practice,
quantitative methods such as the discrepancy principle or cross-validation-based schemes
may be used for automatic tuning [37] of regularization parameters. We adjusted μ for AL-
P1 and (v1 and v2) for AL-P2 as described in Section IV-C: In particular, we universally set

(40)

(41)

for AL-P2 in all our experiments, which provided good results for different undersampling
rates and regularization settings (such as ℓ1-norm of wavelet coefficients, TV and their
combination) as demonstrated next.

B. Experiments with Synthetic Data
We considered a noise-free 256 × 256 T2-weighted MR image obtained from the Brainweb
database [38]. We used a Poisson-disk-based sampling scheme where we fully sampled the
central 8 × 8 portion of the k-space; the resulting sampling pattern (shown in Figure 1b)
corresponded to 80% undersampling of the k-space. We simulated data from L = 4 coils
whose sensitivities were generated using the technique developed in [39] (SoS of coil
sensitivities is shown in Figure 1c). We added complex zero-mean white Gaussian noise
(with a 1/r-type correlation between coils) to simulate noisy correlated coil data of 30 dB
SNR. This setup simulates data acquisition corresponding to one 2-D slice of a 3-D MRI
volume where the k-space sampling pattern in Figure 1b is in the phase-encode plane.

We utilized the true sensitivities and inverse noise covariance matrix (i.e., those employed
for simulating data generation) to compute  in (4). We chose ψ (x) = ∥W x∥ ℓ1, where W
represents 2 levels of the undecimated Haar-wavelet transform (with periodic boundary
conditions) excluding the `scaling' coefficients. Using ℓ1-regularization has reduced aliasing
artifacts and restored most of the fine structures in the regularized reconstruction x(∞)

(Figure 1e) compared to the SRSoS image (Figure 1d). Figure 2 compares NCG, MFISTA
and the proposed AL-P1 and AL-P2 schemes in terms of speed of convergence to x(∞),
showing ξ(q) as a function of tj for the above algorithms. Both AL methods converge
significantly faster than NCG and MFISTA.

C. Experiments with In-Vivo Human Brain Data
In our next experiment, we used a 3-D in-vivo human brain data-set acquired from a GE 3T
scanner (TR = 25 ms, TE = 5.172 ms, and voxel-size = 1 × 1.35 × 1 mm3), with a 8-channel
head-coil. The k-space data corresponded to 256 × 144 × 128 uniformly-spaced samples in
the kx and ky (phase-encode plane), and kz (read-out) directions, respectively. We used the
iFFT-reconstruction of fully-sampled data collected simultaneously from a body-coil as a

8In timing MFISTA, we ignored the computation time spent on estimating the maximum eigenvalue of  necessary for its
implementation.
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reference for quality. Two slices−Slice 38 and 90−(along x-y direction) of the reference
body-coil image-volume are shown in Figures 3a and 4a, respectively. To estimate the
sensitivity maps S corresponding to a slice, we separately optimized a quadratic-regularized
least-squares criterion (similar to [40]) that encouraged smooth maps which “closely” fit the
body-coil image to the head-coil images. We estimated the inverse of noise covariance
matrix Ks from data collected during a dummy scan where only the static magnetic-field
(and no RF excitations) was applied and computed  using (4).

We then performed regularized SENSE-reconstruction of 2-D slices (x-y plane)−Slice 38
and 90−from undersampled phase-encodes: For experiments with both slices, we applied the
Poisson-disk-sampling pattern in Figure 3b (corresponding to 16% of the original 256×144
k-space samples) in the phase-encode plane and used a regularizer that combined ℓ1-norm of
2-level undecimated Haar-wavelet coefficients (excluding the `scaling' coefficients) and TV-
regularization. The reconstructions, x(∞), corresponding to Slice 38 and 90 were obtained by
running several thousands of iterations of MFISTA-20 and are shown in Figures 3d and 4c,
respectively. Aliasing artifacts and noise have been suppressed considerably in the
regularized reconstructions compared to corresponding SRSoS images (Figures 3c and 4b,
respectively). We manually adjusted μ for AL-P1 for reconstructing Slice 38 and used the
same μ-value for reconstructing Slice 90 using AL-P1. For AL-P2, we used the “universal”
setting (40)–(41) for reconstructing both slices. We also ran NCG and MFISTA in both
cases and computed ξ. Figures 5a and 5b plot ξ(j) for the all algorithms as a function of tj.
The AL algorithms converge faster than NCG and MFISTA in both cases. These figures also
illustrate that choosing μ, v1 and v2 using the proposed condition-number-setting (40)–(41)
provides agreeably fast convergence of AL-P2 for reconstructing multiple slices of a 3-D
volume. We also obtained results (not shown) in favor of AL-P2 similar to those in Figures
3–5 when we repeated the above experiment (with Slices 38 and 90) with the same sampling
and regularization setup but using sensitivity maps estimated from low-resolution body-coil
and head-coil images obtained from iFFT-reconstruction of corresponding central 32 × 32
phase-encodes.

VI. Discussion
A. Influence of Corner-Smoothing Parameter on NCG

Section V-A mentioned that implementing NCG requires a parameter ε > 0 to round-off the
“corners” of non-smooth regularizers. While ε is usually set to a “small” value in practice,
we observed in our experiments that varying ε over several orders of magnitude yielded a
trade-off (results not shown) between the convergence speed of NCG and the limit to which
it converged. Smaller ε yielded slow convergence speeds, probably because ||ΔJ||2 (norm of
the gradient of the cost function in (2)) is large for non-smooth regularization criteria with
sparsifying operators and correspondingly, many NCG-iterations may have to be executed
before a satisfactory decrease of ||ΔJ||2 can be achieved. For sufficiently small ε, running
numerous NCG-iterations would approach a solution of P0. On the other hand, increasing ε
accordingly decreases the gradient-norm thereby accelerating convergence. However, for
larger ε-values, the gradient no longer corresponds to the actual ΔJ and NCG converges to
something that is not a solution of P0 (e.g., Figure 5). In our experiments, we found that ε ∈
[10−8, 10−4] provided reasonable balance in the above trade-off. No such ε is needed in
MFISTA and AL methods.

B. AL-P1 versus AL-P2
Increasing the number of CG iterations, N in AL-P1-N, leads to a more accurate update
x(j+1) at Step 4 of AL-P1 thereby decreasing AL-P1's run-time to convergence (e.g., Figures
2 and 5a). However, at some point the computation load dominates the accuracy gained
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resulting in longer runtime to achieve convergence—this is illustrated in Figure 5b where
AL-P1-6 is slightly faster than AL-P1-10.

Selecting μ = μmin did not consistently provide fast convergence of the split-Bregman-like
AL-P1 algorithm in our experiments as remarked in Section IV-C. Our understanding of this

phenomenon is that μmin can be extremely large or small whenever the elements of 
and RHR in Gμ (18) are of different orders of magnitude (because  can vary arbitrarily

depending on the scanner or noise level). Correspondingly,  in (20) becomes very small
or large, which does not favor the convergence speed of AL-P1.

In devising AL-P2, we circumvented the above problem by introducing additional splitting
variables that lead to simpler matrices Hμ, Hv1v2, and Hv2 whose condition numbers κ(Hμ),
κ(Hv1v2), and κ(Hv2), can be adjusted individually to account for differing orders of
magnitude of F, R, and  respectively. Choosing (μ, v1, v2) based on condition numbers
(40)–(41) provided good convergence speeds for AL-P2 in our experiments (including those
in Sections V-B and V-C) with different synthetic data-sets and a real breast-phantom data-
set acquired with a Philips 3T scanner (results not shown). Furthermore, almost all the steps
of AL-P2 are exact which makes it more appealing for implementation. With proper code-
optimization, we believe the computation-time of AL-P2 can be reduced more than that of
AL-P1.

C. Constraint Involving the Data
Recently, Liu et al [14] applied a Bregman iterative scheme to TV-regularized SENSE-
reconstruction, which converges to a solution of the constrained optimization problem

(42)

for some regularization Ψ. Although this paper has focused on faster algorithms for solving
the unconstrained problem (P0), we can extend the proposed approaches to solve (42) by
including a constraint involving the data. For instance, (42) can be reformulated as

(43)

where we have introduced auxiliary variables to decouple the data-domain components F
and S, and the regularization component R. The AL technique (Section III) can then be
applied to (43) noting that it can be written in the general form of (7) as

f(u) = Ψ(u2), where Λ1 is a suitable weighting matrix similar to Λ administered in P2,
respectively. The AL algorithm (Section III) applied to (43) will converge to a solution that
satisfies the constraint in (42).

VII. Summary and Conclusions
The augmented Lagrangian (AL) framework constitutes an attractive class of methods for
solving constrained optimization problems. In this paper, we investigated the use of AL-
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based methods for MR image reconstruction from undersampled data using sensitivity
encoding (SENSE) with a general class of regularization functional. Specifically, we
formulated regularized SENSE-reconstruction as an unconstrained optimization problem in
a penalized-likelihood framework and investigated two constrained versions—equivalent to
the original unconstrained problem—using variable splitting. The first version, P1, is similar
to the split-Bregman approach [15] where we split only the regularization term. In the
second version, P2, we proposed to split the components of the data-fidelity term as well.
These constrained problems were then tackled in the AL framework. We applied alternating
schemes to decouple the minimization of the associated AL functions and developed AL
algorithms AL-P1 and AL-P2, respectively, thereof.

The convergence speeds of the above AL algorithms is chiefly determined by the AL
penalty parameter μ. Automatically selecting for fast convergence of AL-P1 still remains to
be addressed for regularized SENSE-reconstruction. This is a significant practical drawback
of AL-P1. However, for AL-P2 we provided an empirical condition-number-rule to select μ
for fast convergence. In our experiments with synthetic and real data, the proposed AL
algorithms—AL-P1 and AL-P2 (with μ determined as above)—converged faster than
conventional (NCG) and state-of-the-art (MFISTA) methods. The algebraic developments
and numerical results in this paper indicate the potential of using variable splitting and
alternating minimization in the AL formalism for solving other large-scale constrained/
unconstrained optimization problems.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Experiment with synthetic data: (a) Noise-free T2-weighted MR image used for the
experiment; (b) Poisson-disk-based sampling pattern (on a Cartesian grid) in the phase-
encode plane with 80% undersampling (black spots represent sample locations); (c) SoS of
sensitivity maps (SHS) of coils; (d) Square-root of SoS of coil images (SNR = 9.52 dB)
obtained by taking inverse Fourier transform of the undersampled data after filling the
missing k-space samples with zeros (also the initial guess x(0)); (e) the solution x(∞) to PO
in (2) obtained by running MFISTA-20; (f) Absolute difference between (a) and (e). The
goal of this work is to converge to the image x(∞) in (e) quickly.
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Fig. 2.
Experiment with synthetic data: Plot of ξ(j) as a function time tj for NCG, MFISTA, and
AL-P1 and AL-P2. Both AL algorithms converge much faster than NCG and MFISTA.
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Fig. 3.
Experiment with in-vivo human brain data (Slice 38): (a) Body-coil image corresponding to
fully-sampled phase-encode; (b) Poisson-disk-based k-space sampling pattern (on a
Cartesian grid) with 84% undersampling (black spots represent sample locations); (c)
Square-root of SoS of coil images obtained by taking inverse Fourier transform of the
undersampled data after filling the missing k-space samples with zeros (also the initial guess
x(0)); (d) the solution x(∞) to P0 in (2) obtained by running MFISTA-20; (e) Absolute
difference between (a) and (d) indicates that aliasing artifacts and noise have been
suppressed considerably in the reconstruction (d).
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Fig. 4.
Experiment with in-vivo human brain data (Slice 90): (a) Body-coil image corresponding to
fully-sampled phase-encodes; (b) Square-root of SoS of coil images obtained by taking
inverse Fourier transform of the undersampled data after filling the missing k-space samples
with zeros (also the initial guess x(0)); (c) the solution x(∞) to P0 in (2) obtained by running
MFISTA-20; (d) Absolute difference between (a) and (c) indicates that aliasing artifacts and
noise have been suppressed considerably in the reconstruction (c).
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Fig. 5.
Experiment with in-vivo human brain data: Plot of ξ(j) as a function time tj for NCG,
MFISTA, AL-P1, and AL-P2 for the reconstruction of (a) Slice 38, and (b) Slice 90. The
AL penalty parameter μ was manually tuned for fast convergence of AL-P1 for
reconstructing Slice 38, while the same μ-value was used in AL-P1 for reconstructing Slice
90. For AL-P2, the “universal” setting (40)–(41) was used for reconstructing both slices. It
is seen that the AL algorithms converge much faster than NCG and MFISTA in both cases.
These results also indicate that the proposed condition-number-setting (40)–(41) provides
agreeably fast convergence of AL-P2 for reconstructing multiple slices of a 3-D volume.
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TABLE I

Computation Time per Outer Iteration of Various Algorithms for the Experiments in Section V

Algorithm
Time Taken (in seconds)

(Section V-B) (Section V-C)

AL-P1–4 0.21 0.17

AL-P1–6 0.27 0.22

AL-P1–10 0.35 0.30

AL-P2 0.15 0.12

NCG-1 0.21 0.17

NCG-5 0.30 0.26

MFISTA-1 0.22 0.18

MFISTA-5 0.53 0.43

MFISTA-20 1.51 1.18
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