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Abstract Leishmaniasis is a major public health problem

and till date there are no effective vaccines available. The

control strategy relies solely on chemotherapy of the infec-

ted people. However, the present repertoire of drugs is

limited and increasing resistance towards them has posed a

major concern. The first step in drug discovery is to identify

a suitable drug target. The genome sequences of Leishmania

major and Leishmania infantum has revealed immense

amount of information and has given the opportunity to

identify novel drug targets that are unique to these parasites.

Utilization of this information in order to come up with a

candidate drug molecule requires combining all the tech-

nology and using a multi-disciplinary approach, right from

characterizing the target protein to high throughput screen-

ing of compounds. Leishmania belonging to the order ki-

netoplastidae emerges from the ancient eukaryotic lineages.

They are quite diverse from their mammalian hosts and there

are several cellular processes that we are getting to know of,

which exist distinctly in these parasites. In this review, we

discuss some of the metabolic pathways that are essential

and could be used as potential drug targets in Leishmania.

Keywords Leishmaniasis � Leishmania �
Metabolic pathways � Drug targets

Introduction

Leishmaniasis is a group of parasitic diseases caused by at

least 20 different species of the protozoan parasite

Leishmania. It constitutes of a wide spectrum of diseases

ranging in severity from simple cutaneous lesions to the

usually fatal visceral form. The parasite is transmitted

through the bite of sandfly to the mammalian hosts. The

disease is endemic in 88 countries and affects as many as

12 million people around the globe with an incidence of

0.5 million cases of the visceral form of the disease and

1.5–2.0 million cases of the cutaneous form of the disease,

causing extensive mortality and morbidity.

Since, effective vaccines against leishmaniasis are still

under development, the current control measures rely

solely on chemotherapy. Pentavalent antimonials are the

standard first line of treatment but emergence of resistance

towards them, has limited their usefulness. Alternative

chemotherapeutic treatments with amphotericin B and its

lipid formulation, miltefosine and paromomycin are

available but their use is limited either due to toxicity or

high cost of treatment. The current challenges in the che-

motherapy include availability of very few drugs, emer-

gence of resistance to the existing drugs, their toxicity and

lack of cost-effectiveness. Therefore, it is of utmost

importance to look for effective drugs and new drug targets

for the treatment of leishmaniasis.

There seems to be a welcome change in terms of flow of

funds for antiparasitic drug discovery. Some of the or-

ganisations like Institute of One World Health (IOWH),

Drugs for Neglected Diseases Initiative (DNDi), Bill and

Melinda Gates foundation have had a significant impact on

working towards the drug development for tropical dis-

eases. This has enabled technological advances in the field,

which includes publicly funded sequencing of the gen-

omes, thus fastening up the course towards drug develop-

ment. A major breakthrough in the field is the availability

of the complete genome sequence of various species of

Leishmania like, L. major (Ivens et al. 2005), L. infantum
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and L. braziliensis. It has provided us with enormous

information about the parasite genome for our better

understanding of these organisms. With the availability and

easily accessible genome sequences, the conventional

method of drug target identification, which was done on the

basis of the biochemical and physiological differences

between the pathogen and host, is now changing. Micro-

arrays and proteome analysis make use of the genome

sequences and has allowed us to find genes unique to the

parasite, some species-specific genes that can help us

understand the pathogen better. Several bioinformatic

approaches have also been proposed which will fasten the

pace to come up with anti-leishmanial drugs (Myler 2008).

The analysis of the complete genome sequence may sig-

nificantly contribute in drug development by revealing the

presence of novel enzymes and receptors. Furthermore, the

comparison of the parasite genome with the human genome

sequence will make the identification of genes, unique to

the parasite, easier.

Identification of drug targets

One of the characteristic features in the process of drug

development is target identification in a biological path-

way. In theory, during identification of a target in a path-

ogen, it is important that the putative target should be either

absent in the host or substantially different from the host

homolog so that it can be exploited as a drug target. Try-

panosomatids, phylogenetically, branch out quite early

from the higher eukaryotes. In fact, their cell organization

is significantly different from the mammalian cells and

thus, it is possible to find targets that are unique to these

pathogens. Secondly, the target selected should be abso-

lutely necessary for the survival of the pathogen. It is also

important to consider the stage of the life-cycle of the

pathogen in which the target gene is expressed. It is crucial

to look at the biochemical properties of the protein; it

should have a small molecule binding pocket, so that

specific inhibitors can be designed and if the target protein

is an enzyme, its inhibition should lead to loss in cell

viability. It is of high importance that the target selected

should be assayable. Inexpensive and specific assay system

should be available for high-throughput screening of mol-

ecules (Pink et al. 2005; Barrett et al. 1999).

Potential drug targets in Leishmania

Sterol biosynthetic pathway

Sterols are important components of the cell membrane

that are vital to cellular function and maintenance of cell

structure. Unlike mammalian cells, which have cholesterol

as the major membrane sterol, trypanosomatids synthesize

ergosterol and other 24-methyl sterols that are required for

their growth and viability. These sterols are absent from the

mammalian cells. Therefore, the sterol biosynthetic path-

way from Leishmania is considered to be an important drug

target (Fig. 1).

One of the enzymes that is being studied deeply is

squalene synthase (SQS) (EC 2.5.1.21) that catalyzes the

first committed step of sterol synthesis by coupling two

farnesyl molecules to form squalene. Zaragozic acids and

quinuclidines are known to inhibit SQS. Two quinuclidine

derivatives, ER-119884 and E5700 have been shown to be

potent anti-Leishmania (Fernandes Rodrigues et al. 2008)

and Trypanosoma (Urbina et al. 2004) agents. The inhibi-

tion of SQS by these compounds decreased the parasite’s

endogenous sterol levels which had an antiproliferative

effect on the parasite. In L. amazonensis, IC50 value of

ER-119884 and E5700 for promastigotes was found to be

10 and 30 nM respectively (Fernandes Rodrigues et al.

2008). Squalene is converted to 2,3-oxidosqualene by the

enzyme squalene epoxidase (EC 1.14.99.7). It converts
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Fig. 1 Sterol biosynthetic pathway in Leishmania. The pathway

shows the important steps and the enzymes involved in sterol

biosynthesis. The final product in trypanosomatids is ergosterol as

opposed to cholesterol in mammalian cells
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squalene chain to tetracyclic sterol skeleton. Terbinafine,

an allylamine, is known to inhibit squalene epoxidase. It

has been shown that terbinafine inhibits the growth of

promastigotes and intracellular amastigotes and leads to

changes in structural organization in mitochondrion (Van-

nier-Santos et al. 1995). When it is used in combination

with ketoconazole, another inhibitor of ergosterol biosyn-

thesis, the effect is synergistic. Another class of inhibitors,

bisphosphonates, inhibits the isoprenoid pathway that is

catalyzed by the enzyme farnesyl diphosphate synthase

(FPPS). They have been tested in vivo and in vitro against

the protozoan parasites (Martin et al. 2001; Docampo

and Moreno 2008). A potent inhibition of the cell growth

and suppression of the activity of isolated enzymes (from

L. major) was observed thus validating the isoprenoid

pathway as a drug target.

Another important putative target in ergosterol biosyn-

thesis is the enzyme D24,25-sterol methyltransferase (SMT)

(EC 2.1.1.41). This enzyme is only present in trypanoso-

matids and absent from the human host. Therefore, this

enzyme could be exploited as a potential drug target.

Azasterols are known to inhibit SMT in case of Candida

spp. (Ishida et al. 2009). The effect of azasterols has been

studied on Leishmania and Trypanosoma species among

the protozoan parasites. Several azasterols have been

shown to have anti-proliferative effect with their IC50s in

submicromolar to nanomolar range against L. amazonensis

(Magaraci et al. 2003; Lorente et al. 2004), signifying that

this step could be a potential chemotherapeutic target. In,

L. amazonensis, they also led to disorganization of the

mitochondrial membrane followed by intense swelling and

loss of matrix contents (Vivas et al. 1996; Rodrigues et al.

2002). Interestingly, azasterols when used in combination

with azoles act synergistically and are even more effective

suggesting that inhibiting multiple steps of this pathway,

that is, combination therapy may be used against the par-

asitic protozoa.

Glycolytic pathway

The energy metabolism of trypanosomatids solely depends

on the carbon sources available in the host. Since the

African trypanosomes lack a functional Krebs cycle, they

use glycolysis as the only source of ATP generation

(Opperdoes 1987). Seven of the glycolytic enzymes are

compartmentalized in peroxisome-like organelles, glyco-

somes, which is a unique feature of trypanosomatids

(Fig. 2). The unique compartmentalization of glycolytic

enzymes in glycosomes in Leishmania and their large

phylogenetic distance with the mammalian hosts provides

them with unique features. These features can be exploited

by designing specific inhibitors on the basis of the structure

of the parasitic enzymes. Structure based drug designing is

being employed to obtain compounds that bind to the

enzymes with high affinity. The 3-D structures are available

for some of the trypanosomatid enzymes: glyceraldehydes-

3-phosphate dehydrogenase (EC 1.2.7.6) (Vellieux et al.

1993; Kim et al. 1995), triosephosphate isomerase (5.3.1.1)

(Wierenga et al. 1991; Williams et al. 1999), phosphoglyc-

erate kinase (EC 2.7.2.10) (Bernstein et al. 1997), pyruvate

kinase (2.7.1.40) (Rigden et al. 1999), fructose-1,6-bis-

phosphate aldolase (EC 4.1.2.13) (Chudzik et al. 2000) and

glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) (Suresh

et al. 2000). The differences in the 3-D structures of the

parasite and host enzymes can be used to design specific

inhibitors (Verlinde and Hol 1994).

Specific inhibitors have been designed for the glycolytic

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

based on its crystal structure. Adenosine analogs were syn-

thesized as tight binding inhibitors that occupy the pocket on

the enzyme that accommodates adenosyl moiety of NAD?
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Fig. 2 Glycolytic pathway in trypanosomatids. The figure shows the

glycolytic pathway as occurs in trypanosomatids. Seven of the

glycolytic enzymes are compartmentalized in glycosomes. The

enzymes involved in the pathway are (1) hexokinase (2) glucose-6-

phosphate isomerase (3) phosphofructokinase (4) aldolase (5) triose-

phosphate isomerase (6) glyceraldehyde-3-phosphate dehydrogenase

(7) phosphoglycerate kinase (8) glycerol-3-phosphate dehydrogenase

(9) glycerol kinase (10) phosphoglycerate mutase (11) enolase (12)

pyruvate kinase
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co-substrate. Adenosine was shown to be a poor inhibitor of

the enzyme but its analog, with substitutions at the 20 posi-

tion of ribose and N6-position of adenosine (disubstituted

analogs) resulted in enhanced inhibition of the enzyme. One

of the analogs, N6-(1-naphthalenemethyl)-20-(3-methoxy-

benzamido) adenosine inhibited growth of L. mexicana with

IC50 of 0.28 lM (Aronov et al. 1999). This indicates that it is

possible to block the energy production by synthesis of

specific inhibitors of glycolytic pathway enzymes. Since

glycolysis is the only source of energy for these parasites, it

could serve as an excellent drug target.

Purine salvage pathway

The parasitic protozoa, including Leishmania lack the

enzymes to synthesize purine nucleotides de novo, there-

fore, they have to depend upon the purine salvage system

to utilize purine bases from their mammalian hosts (Fig. 3).

Purine bases are translocated through the parasite cell

surface by nucleoside transporters.

Nucleoside transporters

They are involved in transport of nucleosides across the

membrane. Two specific transporters which have been well

documented from Leishmania are LdNT1 (present in both

promastigote and amastigotes) and LdNT2 (present in

amastigotes) (Vasudevan et al. 1998; Carter et al. 2000).

LdNT1 is responsible for transportation of adenosine and

pyrimidine nucleosides and LdNT2 transports purine

nucleosides (inosine and guanosine). LdNT1 and LdNT2

were first cloned from L. donovani by functional comple-

mentation of adenosine-pyrimidine transport deficient

mutant, TUBA5 (tubercidin resistant) and inosine-purine

transport deficient mutant FBD5 (Formycin resistant),

respectively. Two very closely related genes encoding for

pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2

have been identified which show very high affinity towards

pyrimidines. It has been seen that point mutations in

LdNT1.1 and LdNT2 alter the substrate specificity and

confer resistance towards drug (Vasudevan et al. 2001;

Galazka et al. 2006). Two purine nucleobase transporters

have also been identified from L. major, LmaNT3 and

LmaNT4. LmaNT3 transports only bases hypoxanthine,

xanthine, adenosine and guanine but not nucleosides

whereas, LmaNT4 takes up only adenine at neutral pH but

at acidic pH, it can take up hypoxanthine, guanine and

xanthine as well (Ortiz et al. 2009). Its function is required

for the optimal viability of the parasite inside the acidic

phagolysosome of human macrophages. The parasitic

transporters are different from the mammalian transporters

in terms of their higher specificity towards the substrate.

The fact that there are so many pathways for the uptake of

purines; it is very difficult to target them with selective

inhibitors. But, they will remain pharmacologically

important as these transporters also uptake toxic nucleoside

analogs which are inhibitory to the cell growth.

Purine Salvage enzymes

In Leishmania, the enzyme phosphoribosyltransferase

(PRT), that converts dephosphorylated purines to nucleo-

sides monophosphates, plays an important role in salvage of

purines. Three PRTs have been identified and characterized

from Leishmania (Glew et al. 1988) namely, adenine

phosphoribosyl transferase (APRT) (EC 2.4.2.7), hypoxan-

thine-guanine phosphoribosyl transferase (HGPRT) (EC

2.4.2.8) and xanthine phosphoribosyl transferase (XPRT)

(2.4.2.22). HGPRT converts hypoxanthine to inosine

monophosphate and guanine to guanine monophosphate.

Various inhibitors have been designed to target HGPRT due

to its difference in substrate specificity with the host enzyme.

The most common inhibitor used is allopurinol that is

phosphorylated by HGPRT and incorporated into nucleic

acid thus leading to selective death of the parasite (Marr

1983; Fish et al. 1985). Allopurinol has been shown to be

effective against cutaneous (Martinez and Marr 1992) and

visceral Leishmaniasis (Kager et al. 1981). Allopurinol

when used with other anti-leishmanial drugs was found to be

even more effective. Phthalic anhydride derivative (struc-

tural analogs of purine bases), TF1 and phthalimide deriv-

ative, TF2, have also been shown to be effective against

Leishmania (Somoza et al. 1998). However, it has been

found that PRTs are not essential for parasite’s survival. This

is possible since there are various alternative purine salvage

pathways present in Leishmania. Therefore, it is necessary to
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Fig. 3 Purine salvage pathway of Leishmania species. The enzymes

involved in salvage of purines are (1) phosphoribosyltransferase (2)

adenine deaminase (3) guanine deaminase (4) adenosine deaminase

(5) nucleoside kinase (6) nucleotidase (7) AMP deaminase (8) AMP

kinase (9) GMP kinase (10) IMP dehydrogenase (11) GMP synthetase

(12) GMP reductase. AMP adenosine monophosphate; ADP adeno-

sine diphosphate; IMP inosine monophosphate; XMP xanthine

monophosphate; GMP guanosine monophosphate; GDP guanosine

diphosphate
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target more than one enzyme at a time to come up with an

anti-leishmanial chemotherapy.

GPI biosynthetic pathway as drug target

Glycosylphosphatidylinositol (GPI) glycolipids are major

cell surface constituents in the Leishmania parasites that

act as anchor to various cell surface glycoproteins. The cell

surface of the promastigotes is coated by glycocalyx which

consists of GPI anchored glycoproteins, GPI-anchored

lipophosphoglycan (LPG) and a family of free GPIs, called

as glycoinositolphospholipids (GIPLs), in high densities

(Fig. 4). They protect the parasite from the alternate

complement pathway and external hydrolases. LPG is

essential for the infectivity of L. major promastigotes in

both the mammalian and insect hosts (Spath et al. 2000;

Sacks et al. 2000). The core glycan unit of all protein

linked GPIs is conserved and has the structure (Ethanol-

amine-P-Mana1-2Mana1-6Mana1-4GlcNH2), which is

linked to the 6-position of D-myo-inositol ring of phos-

phatidylinositol (PI) (Ferguson et al. 1999). GPI anchors

are synthesized in a step-wise manner in endoplasmic

reticulum membrane and then attached to the nascent

proteins. These GPI anchored proteins are then transferred

to the plasma membrane via the secretory pathway. GPI

biosynthesis is essential for bloodstream form T. brucei

parasites and has been validated as a chemotherapeutic

target (Ferguson 2000).

The first step in GPI biosynthesis is the formation of

GlcNAc-PI, by the transfer of N-acetylglucosamine

(GlcNAc) from UDP-GlcNAc to PI. The reaction is cata-

lyzed by the protein complex, GPI-N-acetylglucosaminyl-

transferase (GPI-GnT). Then, GlcNAc-PI is de-N-acetylated

to form GlcN-PI, catalyzed by GlcNAc-PI-de-N-acetylase.

This is an essential step for all GPI biosynthetic pathways.

Trypanosomal enzyme has been shown to be zinc metallo-

enzyme (Urbaniak et al. 2005). The enzymes from T. brucei

(Sharma et al. 1997) and L. major (Smith et al. 1997) showed

narrow substrate specificity than the human homolog in

vitro. Substrate specificity was determined using substrate

analogs of GlcNAc-PI. The substrate analog GlcNR-PI

where R is an acyl group larger than propionyl group were

not de-N-acetylated by the enzyme but when this group was

substituted with benzoyl group, the analog was shown to

inhibit the parasitic enzyme and not the human counterpart.

The difference in the substrate specificities of the two

enzymes has been exploited and two synthetic GlcNAc-PI

analogs, GlcNCONH2-b-PI and GlcNCONH2-(2-O-octyl)-

PI were shown to be T. brucei specific suicide inhibitors

(Smith et al. 2001).

Differences between the parasitic and mammalian GPI

biosynthetic pathways occur from GlcN-PI onwards,

including the timing of inositol acylation and deacylation.

The next step in GPI biosynthesis in case of parasites is

mannosylation of GlcN-PI which is followed by inositol

acylation, whereas, in yeast and human, inositol acylation

is a pre-requisite for mannosylation. The trimannosyl core

of GPI anchors is added stepwise and involves three dis-

tinct mannosyl transferases (MT). Mannosyltransferase III

(MTIII) has been found to be substrate specific. There is a

difference in the structure of the substrates for the mam-

malian and the trypanosomal MTIII which suggests that

species-specific inhibition can be achieved by synthesizing

small molecule inhibitors (Urbaniak et al. 2008). The

mannose donor for all GPI-mannosyl transferases is doli-

chol-P-mannose (Dol-P-Man). Dol-P-Man is synthesized

by the enzyme Dol-P-Man synthase which can be inhibited

by the addition of lipopeptide antibiotic amphomycin

which forms a complex with Dol-P, and thereby inhibiting

GPI biosynthesis. The enzymes MT require divalent cat-

ions for their function and can be inhibited in vitro by

metal chelators like EDTA. GlcN-PI analog, GlcN-

(2-O-hexadecyl)PI inhibits specifically the first mannosyl-

transferase in T. brucei in a competitive manner.

The next step is the acylation of inositol. In T. brucei, it

can be inhibited in vivo as well as in vitro using a serine

esterase inhibitor phenylmethylsulphonyl fluoride (PMSF)

leading to accumulation of the Man3-GlcN-PI intermediate

in T. brucei. This inhibition of trypanosomal inositol

acylation was also observed in vitro with either GlcN-

(2-O-methyl)-PI or GlcN-(2-O-octyl)-PI (Smith et al.

1999). The final step of synthesis of GPI core glycan

structure, involves transfer of ethanolamine phosphate to
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6th position of the third mannose. Since, PMSF inhibits the

inositol acylation of the intermediate Man3-GlcN-PI to

form Man3-GlcN-(acyl)-PI in T. brucei, the addition of

ethanolamine phosphate is prevented (Guther et al. 1994).

The mammalian enzyme is not inhibited by PMSF. This

selective inhibition implies significant differences in the

structure of the enzymes which can be exploited for

designing specific inhibitors.

After the completion of GPI anchor synthesis, lipid

remodeling takes place which involves exchange of fatty

acid components with other fatty acid of the lipid moiety or

the whole lipid component. T. brucei contains myristate as

the major lipid component in its GPI-anchored variable

surface glycoproteins. The major product of fatty acid

biosynthesis in T. brucei is myristate which is required to

be incorporated into GPI anchors and therefore, this path-

way can be targeted in T. brucei. Thiolactomycin, an

inhibitor of fatty acid synthesis leads to death of parasites.

Myristate specific remodeling has been reported for

Leishmania GPIs also. Incorporation of myristate analogs

into the GPI anchor is toxic to trypanosomes. Therefore,

the enzymes of fatty acid remodeling are possible targets

for anti-trypanosome chemotherapy. The mature GPI pre-

cursor is transferred to the protein by transamidation

reaction by a multimeric protein complex, where, COOH

terminal signal peptide is replaced by the formation of

amide linkage to amino group of ethanolamine phosphate

linked to the third mannose of GPI anchor. The protein

components differ in different species, suggesting that

these differences between the parasite and mammalian

enzymes can be exploited for drug designing.

Protein kinases as drug targets

Cyclin dependent kinases (CDKs) are known to play a cru-

cial role in cell division. They have been found to be

abnormally regulated in cancer cells and have therefore

drawn attention as drug targets. In Leishmania, the cdc-2

related kinase (CRK) family has attracted attention as

potential drug targets. They are homologs of CDKs and are

thought to be essential for cell cycle progression. Two

putative CDKs in L. mexicana, LmexCRK1 and LmexCRK3

(Hassan et al. 2001) have been found to be essential to the

promastigotes form of the parasite. Attempts to generate null

mutants of CRK3 resulted in change in ploidy of the parasite

(Hassan et al. 2001). CRK3 is found to be active throughout

the life cycle in L. mexicana (Grant et al. 1998). CRK3 from

L. major was able to complement a temperature sensitive

cdc-2 mutant in S. pombe. Inhibitors of CRK3, inhibited the

growth and replication of L. donovani amastigotes in peri-

toneal macrophages. These compounds also led to aberrant

DNA content and abnormal morphology of the cells as

determined by the flow cytometry (Grant et al. 2004).

MAP kinases

Mitogen-activated Protein (MAP) kinases are mediators of

signal transduction and important regulators of cell differ-

entiation and cell proliferation in eukaryotic cells. So far, ten

MAP kinases have been identified in L. mexicana, of which

LmxMKK, LmxMPK and LmxMPK9 (Wiese 1998; Wiese

et al. 2003; Bengs et al. 2005) have been studied intensely.

Null mutants of both LmxMKK and LmxMPK9 are viable

both in amastigote and promastigote stages of the life cycle

and therefore, neither of them can be exploited as drug tar-

gets. However, null mutants of LmxMPK, has the ability to

infect peritoneal macrophages and differentiate into am-

astigotes, but are unable to proliferate within the parasi-

tophorous vacuole. This phenotype was reverted back by the

reintroduction of LmxMPK to the mutant (Wiese 1998).

Therefore, LmxMPK is found to be essential for the growth

of the more relevant amastigote form and can be used as a

drug target.

Proteinases as drug targets

Proteinases are of four main types- cysteine, serine,

aspartate and metallo-enzymes. The name is given on the

basis of the residue present in the active site. In case of

parasitic protozoa, the most identified and characterized are

the cysteine proteinases (CPs), which are homologous to

mammalian cathepsins. CPs have attracted attention as

potential drug targets because of their role in host cell–

parasite interaction, as putative virulence factor, and being

structurally different from the mammalian homolog.

Analysis of L. major genome database revealed that there

are genes encoding for as many as 65 CPs. CPs are further

divided into different types. CPA and CPB are both

cathepsin L-like proteinases in terms of amino acid

sequence. CPC is cathepsin B-like proteinases. CPA, CPB

and CPC are involved in host-parasite interaction as deter-

mined by gene replacement studies in L. mexicana.

L. mexicana deficient in the multicopy CPB gene array

(Dcpb) have reduced virulence with poor lesion growth in

BALB/c mice (Alexander et al. 1998). A natural inhibitor of

CP (ICP) from L. mexicana has been characterized and has

been shown to be a potent inhibitor of CPB. BALB/c mice

infected with mutants overexpressing ICP were able to

resolve the infection faster (Bryson et al. 2009). In another

study, T. brucei infected mice were treated with cysteine

proteinase inhibitor, carbobenzoxy-phenylalanyl-alanine-

diazomethyl ketone (Z-Phe-Ala-CHN2). It led to alteration

in cell morphology and was lethal to the cultured parasites

(Scory et al. 2007). These studies provide evidence of the

therapeutic potential of the inhibitor of cysteine proteinases.

In T. brucei, RNAi studies have shown a cathepsin B like

protease tbcatB, as a key target (Mackey et al. 2004).
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Parasites containing single copy of tbcatb show enlargement

of lysosome and decreased degradation of endocytosed host

proteins (O’Brien et al. 2008). The CPs are also of interest

because of their structural differences with the mammalian

CPs. The protein tbcatB has been crystallized and its struc-

ture confirms an occluding loop which is important for

substrate binding (Kerr et al. 2010). This loop creates a

larger prime side pocket in active site cleft than is found in

mammalian cathepsin B. The difference in the structure of

the proteins may be utilized for design of inhibitors.

Folate biosynthesis

Folate pathway has been of interest as a drug target and has

been used in anti-cancer and anti-malarial chemotherapy.

Folates are important cofactors used in a variety of meta-

bolic pathways like DNA and RNA synthesis and amino acid

metabolism. Since they are essential for growth, the

enzymes involved in their synthesis have been of interest as

drug targets, particularly, thymidylate synthase (TS) (EC

2.1.1.45) and dihydrofolate reductase (DHFR) (EC 1.5.1.3)

which is responsible for converting dihydrofolate to tetra-

hydrofolate, an important cofactor in the synthesis of thy-

mine. TS and DHFR catalyze sequential reactions to

synthesize dTMP (Fig. 5a). Both the enzymes have been

studied intensively and used as targets for chemotherapy.

Interestingly, TS and DHFR exist on a single polypeptide in

case of trypanosomatids, with DHFR domain on amino

terminus and TS domain on carboxy terminus. TS-DHFR

has been characterized from L. major. The classic inhibitors

of DHFR were found to be ineffective against Leishmania

(Neal and Croft 1984). An answer to that came from the

genetic analysis which showed amplification of the gene

pteridine reductase (PTR1) (1.5.1.33) in some of the mutants

in Leishmania which were resistant to methotrexate (an

inhibitor of DHFR-TS) (Nare et al. 1997). PTR1 can reduce

both pterins and folates (Fig. 5b) and is much less suscep-

tible to inhibition by anti-folates, as revealed by structural

studies, targeted against DHFR. Therefore, it can act as a

bypass system for DHFR-TS. A number of compounds have

been screened against PTR1 in L. major (Hardy et al. 1997).

Several compounds were found to be inhibiting both DHFR-

TS and PTR1. However, only four such compounds were

identified that inhibited both the enzymes and the growth of

the parasite potently. This indicates that an inhibitor is

required that targets both the enzymes simultaneously or two

compounds that can be used in combination specifically

inhibiting both the enzymes.

Glyoxalase system

The Glyoxalase system functions to detoxify the cell

by removal of toxic and mutagenic intermediate,

methylglyoxal, which is mainly formed as a by-product of

glycolysis. It is also formed during threonine catabolism

and acetone oxidation (Cooper 1984; Vickers et al. 2004).

The glyoxalase system comprises of two enzymes viz.

glyoxalase I (lactoyl glutathione lyase) (EC 4.4.1.5)

and Glyoxalase II (hydroxyacyl glutathione hydroxylase)

(EC 3.1.2.6) and uses glutathione as a cofactor. However,

trypanosomatids rely on a trypanothione dependent

glyoxalase system (Fig. 6) which is unique to these

parasites, where glyoxalase I catalyzes the formation of

S-D-lactoyltrypanothione from hemithioacetal. Hemi-

thioacetal is formed non-enzymatically from methylgly-

oxal and reduced trypanothione. S-D-lactoyltrypanothione

is further hydrolysed to D-lactate regenerating trypano-

thione by glyoxalase II (Vickers et al. 2004).

Glyoxalase I has been characterized from L. donovani

(Padmanabhan et al. 2005) and L. major (Vickers et al.

2004). The enzyme is highly substrate specific as it

depends entirely on trypanothione as substrate, instead of

glutathione as in their mammalian hosts. Superposition of

L. donovani glyoxalase I with crystal structure of E. coli

glyoxalase I showed that its substrate binding loop is

smaller in comparison to glutathione utilizing enzymes and

is devoid of positively charged residues, as observed for

human and E. coli homolog (Padmanabhan et al. 2005).

L. donovani glyoxalase I has been found to be an essential

gene in the parasite (Chauhan and Madhubala 2009).

Glyoxalase II was first identified from T. brucei. It is

expressed in both procyclic and bloodstream forms of

T. brucei (Irsch and Krauth-Siegel 2004). Glyoxalase II has

Tetrahydrofolate

Dihydrofolate reductase 
(TS-DHFR)/
Pteridine Reductase

DihydrofolateBiopterin

Dihydrobiopterin

Tetrahydrobiopterin

Pteridine reductase

Pteridine reductase

(B)

dUMP dTMP
Thymidylate Synthase (TS-DHFR)

Methylene Tetrahydrofolate Dihydrofolate

Tetrahydrofolate

Dihydrofolate reductase 
(TS-DHFR)Serine

Glycine

NADPH

NADP

(A)

dTMP cycle

Fig. 5 Folate synthesis pathway. a The figure shows the synthesis of

dTMP by the enzyme TS which uses methylene tetrahydrofolate and

converts it into dihydrofolate. It is then converted back to tetrahy-

drofolate by the enzyme DHFR. b The schematic diagram shows that

the enzyme pteridine reductase (PTR1) can reduce both pterins and

folates
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also been characterized from L. donovani (Padmanabhan

et al. 2006). Sequence comparison shows that it lacks the

basic residues in its active site which are conserved in

human homolog. These residues are important for binding

to glutathione. The substrate for L. donovani Glyoxalase II

is thioester of trypanothione, which is positively charged.

Therefore, it cannot be accommodated in the active site of

the human enzyme. This observation strongly suggests that

the parasitic enzymes are highly substrate specific. There-

fore, trypanothione-dependent glyoxalase pathway has

drawn attention for additional biochemical and genetic

investigation as a possible target for rational drug design.

Trypanothione pathway

As discussed above, trypanothione (bis-(glutathionyl)

spermidine) is a key molecule against oxidative stress in

Trypanosoma and Leishmania. It is not only unique to the

parasite but is also crucial in maintaining the cellular redox

potential and thus is essential for parasite survival. Try-

panothione synthesis is catalyzed by two enzymes, namely,

trypanothione synthetase (TS) (EC 6.3.1.9) and trypano-

thione reductase (TR) (EC 1.8.1.12). TS catalyzes trypa-

nothione synthesis from two molecules of glutathione and

spermidine (Fig. 7a). Trypanothione is then maintained in

its reduced form by the enzyme TR in the presence of

NADPH (Fairlamb et al. 1985). Reduced trypanothione in

turn reduces tryparedoxin (TX) followed by reduction of

tryparedoxin recycling enzyme tryparedoxin peroxidase

(TP) (EC 1.11.1.15) (Fig. 7b). Since, this is the only

pathway that is crucially involved in regulating oxidative

stress in these parasites; therefore, trypanothione pathway

has become the focus of anti-trypanosomatid drug discovery.

Both TR and TP have been shown to be important drug tar-

gets. Null mutants of TR show attenuated infectivity and

decreased capacity to survive within intracellular macro-

phages (Dumas et al. 1997). TR is similar in sequence and

structure to its human counterpart, glutathione reductase.

However, the active site of TR shows five non conservative

changes in its active site, giving it overall negative charge

which can accommodate trypanothione disulfide and gives

the enzyme its specificity towards its substrate (Zhang et al.

1996). This difference in substrate specificities has allowed

synthesis of specific inhibitors against the parasite. Many lead

compounds that inhibit TR have been identified including,

polyamine derivatives, tricyclics and aminodiphenyl sulp-

hides (Werbovetz 2000). Trypanothione pathway thus, pro-

vides a promising drug target in trypanosomatids.

Topoisomerases as drug targets

DNA topoisomerases are ubiquitous enzymes that play an

important role in many essential processes like DNA rep-

lication, transcription, recombination and repair. They are

broadly classified as type I and type II topoisomerases that

cleave single stranded and double stranded DNA, respec-

tively. DNA topoisomerases have been used as chemo-

therapeutic targets for anti-bacterial and anti-parasitic

diseases. Type I topoisomerase (EC 5.99.1.2) have been

characterized from L. donovani and T. cruzi. The enzyme

was found to be independent of ATP (Das et al. 2004a).

L. donovani topoisomerase I was found to be present in

both kinetoplast and nucleus (Das et al. 2004b). Inhibitors
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Fig. 6 Glyoxalase system in trypanosomatids. The glyoxalase system

detoxifies the cell by removal of methylglyoxal which is formed as an

intermediate during glycolysis, threonine oxidation and acetone

oxidation. Methylglyoxal reacts non-enzymatically with trypanothi-

one to form hemithioacetal. This hemithioacetal is used as the

substrate by glyoxalase I forming S-D-lactoyltrypanothione. Glyoxa-

lase II further hydrolyses S-D-lactoyltrypanothione to form D-lactate,

regenerating trypanothione
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of type I topoisomerase include anti-leishmanial com-

pounds such as sodium stibogluconate and urea stibamine.

Camptothecin, a plant alkaloid and a known inhibitor of

eukaryotic topoisomerase I, was found to be inhibitory to

T. brucei, T. cruzi and L. donovani. Analogs of campto-

thecin have also been screened against trypanosomes and

the structural motifs have been identified which specifically

inhibit the parasitic topoisomerase I with more potency

(Bodley et al. 1995). Topoisomerase II (EC 5.99.1.3) has

been identified from T. brucei (Strauss and Wang 1990),

T. cruzi (Fragoso and Goldenberg 1992) and L. donovani

(Das et al. 2001). Interestingly, the topoisomerase II from

T. brucei and L. donovani were found to contain both ATP

dependent and independent activities. Topoisomerase II

inhibitor, 9-anilinoacridine (used as anti-tumor agent) and

other acridine derivatives inhibited Leishmania and

Trypanosoma strongly (Figgitt et al. 1992). Dihydrobetu-

linic acid (DHBA), a derivative of betulinic acid (which is

a pentacyclic triterpenoid) has been reported to be active

against both Topoisomerase I and topoisomerase II from

L. donovani (Chowdhury et al. 2003). Three isoflavanoids,

8-prenylmucronulatol, lyasperin H and smiranicin have

been found to be anti-leishmanial and this activity has been

correlated to kDNA linearization and inhibition of topoi-

somerase II (Salem and Werbovetz 2005). However, their

use is limited due to their low cell toxicity. The structure of

L. donovani topoisomerase I bound to nicked DNA cap-

tured as a vanadate complex has been elucidated (Davies

et al. 2006). The structural analysis of these enzymes will

give us an insight into their catalytic mechanisms and will

also enable us to design specific inhibitors against

Leishmania.

Hypusine pathway

Hypusine (Ne-(4-amino-2-hydroxybutyl) lysine), an unu-

sual amino acid derived from the polyamine spermidine, is

present in all the eukaryotes. Its name is derived from its

two structural components, hydroxyputrescine and lysine

(Shiba et al. 1971). It is synthesized as a result of post-

translational modification occurring exclusively on one

cellular protein, eukaryotic initiation factor 5A (eIF5A). It

is formed in two enzymatic steps (Park et al. 1982) (Fig. 8).

The first step is catalyzed by the enzyme deoxyhypusine

synthase (DHS) (EC 2.5.1.46) which catalyses the NAD?

dependent transfer of the 4-aminobutyl moiety of spermi-

dine to a specific lysine residue of the eIF5A precursor

protein to form an intermediate, deoxyhypusine (Chen and

Dou 1988; Murphey and Gerner 1987). This intermediate is

subsequently hydroxylated by the enzyme deoxyhypusine

hydroxylase (DOHH) (EC 1.14.99.29) (Abbruzzese et al.

1986) which completes the synthesis of hypusine and

maturation of eIF5A.

Hypusination of eIF5A is necessary for its function and

cell viability. Disruption of two eIF5A genes (TIF51A and

TIF51B) (Schnier et al. 1991) and DHS gene (Park et al.

1998) from Saccharomyces cerevisiae produces a lethal

phenotype. Inhibitors of hypusine biosynthetic enzymes,

DHS (spermidine analogs) and DOHH (metal chelators)

have been shown to exert anti-proliferative effects in

mammalian cells including cancer cell lines (Park et al.

1994; Nishimura et al. 2005). Recently, we have shown

that hypusine biosynthesis occurs in Leishmania donovani.

Interestingly, Leishmania has two genes containing DHS

domains viz., DHS-like gene (DHSL20) and DHS34 gene,

N

NH

O
NH3

+
+

eIF5A precursor

+H3N
NH3

+

N
+

H H

Spermidine

Lysyl Residue

Protein

N

NH

O

NH
Lysyl Residue

Protein

eIF5A intermediate
Deoxyhypusine Synthase

NH

O

NH
Lysyl Residue

Protein

N

Deoxyhypusine HydroxylaseMature eIF5A

Hypusine

NH3
+

NH3
+

OH

Fig. 8 Hypusine biosynthetic

pathway. Hypusine is formed on

the protein eIF5A by the

subsequent action of enzymes

DHS and DOHH

J Parasit Dis (Jan-June 2010) 34(1):1–13 9

123



of which only DHS34 protein was found to contain func-

tional activity in vitro. Null mutants of DHS34 gene could

not be generated implying that the gene is essential to the

parasite’s survival (Chawla et al. 2010). Structural mod-

eling of DHS34 protein showed that one of the NAD?

binding domains lies in a 225-amino acid long insertion

present in DHS34 protein as compared to the human

homolog. The recombinant DHS34 remained uninhibited

by most potent inhibitors of the human enzyme like GC7

and other spermidine analogs, indicating that there is a

difference between the spermidine binding sites of both the

enzymes which could be exploited to design inhibitors.

Concluding remarks

Over the last decade, there has been a burst of activity

towards the development of efficient drugs against the

parasitic diseases including leishmaniasis. Target based

drug discovery is being employed rather than the random

screening of compounds, as the former approach produces

more specific results. Many technological advances have

been made, which has led to an extensive search for

identification of novel drug targets. In the post-genomic

era, a lot of proteins, enzymes, metabolites and pathways

have been identified in trypanosomatids which are unique

to these pathogens and could be exploited as drug targets.

However, as outlined in the review, it is very critical to

identify the suitable proteins or other metabolites to be

used as drug targets. Several biochemical pathways have

been discussed here which have been identified as targets

for anti-leishmanial drug discovery. Glycolytic pathway,

sterol biosynthesis and trypanothione pathway are quite

distinct in Leishmania as compared to its mammalian host

and therefore have been of interest for drug discovery. We

have also identified a novel hypusine biosynthetic pathway

in L. donovani. The enzyme DHS was found to be essential

to the parasite and structurally different from the human

homolog. The identified drug targets can then be used for

high throughput screening with chemical libraries for

which development of cheap and efficient assay system is

required. Furthermore, refinement in the structure of the

available compounds is required to synthesise more spe-

cific and effective inhibitors for these metabolic pathways.

We have to combine all the technology and the information

available with us to come up with more drug targets and

eventually, with much needed new drugs to combat this

deadly disease.

Acknowledgments Rentala Madhubala is supported by a grant from

Council of Scientific and Industrial Research (CSIR), India for the

ongoing project related to hypusine biosynthesis. Bhavna Chawla is

also supported by CSIR, India.

References

Abbruzzese A, Park MH, Folk JE (1986) Deoxyhypusine hydroxylase

from rat testis. Partial purification and characterization. J Biol

Chem 261:3085–3089

Alexander J, Coombs GH, Mottram JC (1998) Leishmania mexicana
cysteine proteinase-deficient mutants have attenuated virulence

for mice and potentiate a Th1 response. J Immunol 161:

6794–6801

Aronov AM, Suresh S, Buckner FS, Van Voorhis WC, Verlinde CL,

Opperdoes FR, Hol WG, Gelb MH (1999) Structure-based

design of submicromolar, biologically active inhibitors of

trypanosomatid glyceraldehyde-3-phosphate dehydrogenase.

Proc Natl Acad Sci USA 96:4273–4278

Barrett MP, Mottram JC, Coombs GH (1999) Recent advances in

identifying and validating drug targets in trypanosomes and

leishmanias. Trends Microbiol 7:82–88

Bengs F, Scholz A, Kuhn D, Wiese M (2005) LmxMPK9, a mitogen-

activated protein kinase homologue affects flagellar length in

Leishmania mexicana. Mol Microbiol 55:1606–1615

Bernstein BE, Michels PA, Hol WG (1997) Synergistic effects of

substrate-induced conformational changes in phosphoglycerate

kinase activation. Nature 385:275–278

Bodley AL, Wani MC, Wall ME, Shapiro TA (1995) Antitrypanos-

omal activity of camptothecin analogs. Structure–activity corre-

lations. Biochem Pharmacol 50:937–942

Bryson K, Besteiro S, McGachy HA, Coombs GH, Mottram JC,

Alexander J (2009) Overexpression of the natural inhibitor

of cysteine peptidases in Leishmania mexicana leads to reduced

virulence and a Th1 response. Infect Immun 77:2971–2978

Carter NS, Drew ME, Sanchez M, Vasudevan G, Landfear SM,

Ullman B (2000) Cloning of a novel inosine-guanosine

transporter gene from Leishmania donovani by functional

rescue of a transport-deficient mutant. J Biol Chem 275:

20935–20941

Chauhan SC, Madhubala R (2009) Glyoxalase I gene deletion

mutants of Leishmania donovani exhibit reduced methylglyoxal

detoxification. PLoS.One. 4:e6805

Chawla B, Jhingran A, Singh S, Tyagi N, Park MH, Srinivasan N,

Roberts SC, Madhubala R (2010) Identification and character-

ization of a novel deoxyhypusine synthase in Leishmania
donovani. J Biol Chem 285:453–463

Chen KY, Dou QP (1988) NAD? stimulated the spermidine-

dependent hypusine formation on the 18 kDa protein in cytosolic

lysates derived from NB-15 mouse neuroblastoma cells. FEBS

Lett 229:325–328

Chowdhury AR, Mandal S, Goswami A, Ghosh M, Mandal L,

Chakraborty D, Ganguly A, Tripathi G, Mukhopadhyay S,

Bandyopadhyay S, Majumder HK (2003) Dihydrobetulinic acid

induces apoptosis in Leishmania donovani by targeting DNA

topoisomerase I and II: implications in antileishmanial therapy.

Mol Med 9:26–36

Chudzik DM, Michels PA, de WS, Hol WG (2000) Structures of type

2 peroxisomal targeting signals in two trypanosomatid aldolases.

J Mol Biol 300:697–707

Cooper RA (1984) Metabolism of methylglyoxal in microorganisms.

Annu Rev Microbiol 38:49–68

Das A, Dasgupta A, Sharma S, Ghosh M, Sengupta T, Bandopadhyay

S, Majumder HK (2001) Characterisation of the gene encoding

type II DNA topoisomerase from Leishmania donovani: a key

molecular target in antileishmanial therapy. Nucleic Acids Res

29:1844–1851

Das A, Dasgupta A, Sengupta T, Majumder HK (2004a) Topoisome-

rases of kinetoplastid parasites as potential chemotherapeutic

targets. Trends Parasitol 20:381–387

10 J Parasit Dis (Jan-June 2010) 34(1):1–13

123



Das BB, Sen N, Ganguly A, Majumder HK (2004b) Reconstitution

and functional characterization of the unusual bi-subunit type I

DNA topoisomerase from Leishmania donovani. FEBS Lett

565:81–88

Davies DR, Mushtaq A, Interthal H, Champoux JJ, Hol WG (2006)

The structure of the transition state of the heterodimeric

topoisomerase I of Leishmania donovani as a vanadate complex

with nicked DNA. J Mol Biol 357:1202–1210

Docampo R, Moreno SN (2008) The acidocalcisome as a target for

chemotherapeutic agents in protozoan parasites. Curr Pharm Des

14:882–888

Dumas C, Ouellette M, Tovar J, Cunningham ML, Fairlamb AH,

Tamar S, Olivier M, Papadopoulou B (1997) Disruption of

the trypanothione reductase gene of Leishmania decreases its

ability to survive oxidative stress in macrophages. EMBO J

16:2590–2598

Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985)

Trypanothione: a novel bis(glutathionyl)spermidine cofactor for

glutathione reductase in trypanosomatids. Science 227:1485–1487

Ferguson MA (2000) Glycosylphosphatidylinositol biosynthesis val-

idated as a drug target for African sleeping sickness. Proc Natl

Acad Sci USA 97:10673–10675

Ferguson MA, Brimacombe JS, Brown JR, Crossman A, Dix A, Field

RA, Guther ML, Milne KG, Sharma DK, Smith TK (1999) The

GPI biosynthetic pathway as a therapeutic target for African

sleeping sickness. Biochim Biophys Acta 1455:327–340

Fernandes Rodrigues JC, Concepcion JL, Rodrigues C, Caldera A,

Urbina JA, de Souza W (2008) In vitro activities of ER-119884

and E5700, two potent squalene synthase inhibitors, against

Leishmania amazonensis: antiproliferative, biochemical, and

ultrastructural effects. Antimicrob Agents Chemother 52:4098–

4114

Figgitt D, Denny W, Chavalitshewinkoon P, Wilairat P, Ralph R

(1992) In vitro study of anticancer acridines as potential

antitrypanosomal and antimalarial agents. Antimicrob Agents

Chemother 36:1644–1647

Fish WR, Marr JJ, Berens RL, Looker DL, Nelson DJ, LaFon SW,

Balber AE (1985) Inosine analogs as chemotherapeutic agents for

African trypanosomes: metabolism in trypanosomes and efficacy

in tissue culture. Antimicrob Agents Chemother 27:33–36

Fragoso SP, Goldenberg S (1992) Cloning and characterization of the

gene encoding Trypanosoma cruzi DNA topoisomerase II. Mol

Biochem Parasitol 55:127–134

Galazka J, Carter NS, Bekhouche S, Arastu-Kapur S, Ullman B

(2006) Point mutations within the LdNT2 nucleoside transporter

gene from Leishmania donovani confer drug resistance and

transport deficiency. Int J Biochem Cell Biol 38:1221–1229

Glew RH, Saha AK, Das S, Remaley AT (1988) Biochemistry of the

Leishmania species. Microbiol Rev 52:412–432

Grant KM, Hassan P, Anderson JS, Mottram JC (1998) The crk3 gene

of Leishmania mexicana encodes a stage-regulated cdc2-related

histone H1 kinase that associates with p12. J Biol Chem

273:10153–10159

Grant KM, Dunion MH, Yardley V, Skaltsounis AL, Marko D,

Eisenbrand G, Croft SL, Meijer L, Mottram JC (2004) Inhibitors

of Leishmania mexicana CRK3 cyclin-dependent kinase: chem-

ical library screen and antileishmanial activity. Antimicrob

Agents Chemother 48:3033–3042

Guther ML, Masterson WJ, Ferguson MA (1994) The effects of

phenylmethylsulfonyl fluoride on inositol-acylation and fatty

acid remodeling in African trypanosomes. J Biol Chem 269:

18694–18701

Hardy LW, Matthews W, Nare B, Beverley SM (1997) Biochemical

and genetic tests for inhibitors of Leishmania pteridine path-

ways. Exp Parasitol 87:157–169

Hassan P, Fergusson D, Grant KM, Mottram JC (2001) The CRK3

protein kinase is essential for cell cycle progression of Leish-
mania mexicana. Mol Biochem Parasitol 113:189–198

Irsch T, Krauth-Siegel RL (2004) Glyoxalase II of African

trypanosomes is trypanothione-dependent. J Biol Chem 279:

22209–22217

Ishida K, Rodrigues JC, Ribeiro MD, Vila TV, de SW, Urbina JA,

Nakamura CV, Rozental S (2009) Growth inhibition and

ultrastructural alterations induced by Delta24(25)-sterol methyl-

transferase inhibitors in Candida spp. isolates, including non-

albicans organisms. BMC Microbiol 9:74

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G,

Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R,

Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck

A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi

CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM,

Cronin A, Cruz AK, Davies RM, De GJ, Dobson DE,

Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A,

Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler

C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M,

Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D,

Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden

H, Nelson S, Norbertczak H, Oliver K, O’neil S, Pentony M,

Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E,

Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC,

Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger

K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S,

Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler

H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell

JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the

kinetoplastid parasite, Leishmania major. Science 309:436–442

Kager PA, Rees PH, Wellde BT, Hockmeyer WT, Lyerly WH (1981)

Allopurinol in the treatment of visceral leishmaniasis. Trans R

Soc Trop Med Hyg 75:556–559

Kerr ID, Wu P, Marion-Tsukamaki R, Mackey ZB, Brinen LS (2010)

Crystal Structures of TbCatB and rhodesain, potential chemo-

therapeutic targets and major cysteine proteases of Trypanosoma
brucei. PLoS Negl Trop Dis 4:e701

Kim H, Feil IK, Verlinde CL, Petra PH, Hol WG (1995) Crystal

structure of glycosomal glyceraldehyde-3-phosphate dehydroge-

nase from Leishmania mexicana: implications for structure-

based drug design and a new position for the inorganic phosphate

binding site. Biochemistry 34:14975–14986

Lorente SO, Rodrigues JC, Jimenez JC, Joyce-Menekse M, Rodrigues

C, Croft SL, Yardley V, de Luca-Fradley K, Ruiz-Perez LM,

Urbina J, de Souza W, Gonzalez PD, Gilbert IH (2004) Novel

azasterols as potential agents for treatment of leishmaniasis and

trypanosomiasis. Antimicrob Agents Chemother 48:2937–2950

Mackey ZB, O’Brien TC, Greenbaum DC, Blank RB, McKerrow JH

(2004) A cathepsin B-like protease is required for host protein

degradation in Trypanosoma brucei. J Biol Chem 279:

48426–48433

Magaraci F, Jimenez CJ, Rodrigues C, Rodrigues JC, Braga MV,

Yardley V, de Luca-Fradley K, Croft SL, de Souza W, Ruiz-

Perez LM, Urbina J, Gonzalez PD, Gilbert IH (2003) Azasterols

as inhibitors of sterol 24-methyltransferase in Leishmania
species and Trypanosoma cruzi. J.Med.Chem. 46:4714–4727

Marr JJ (1983) Pyrazolopyrimidine metabolism in Leishmania and

trypanosomes: significant differences between host and parasite.

J Cell Biochem 22:187–196

Martin MB, Grimley JS, Lewis JC, Heath HT III, Bailey BN,

Kendrick H, Yardley V, Caldera A, Lira R, Urbina JA, Moreno

SN, Docampo R, Croft SL, Oldfield E (2001) Bisphosphonates

inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi,
Leishmania donovani, Toxoplasma gondii, and Plasmodium

J Parasit Dis (Jan-June 2010) 34(1):1–13 11

123



falciparum: a potential route to chemotherapy. J Med Chem

44:909–916

Martinez S, Marr JJ (1992) Allopurinol in the treatment of American

cutaneous leishmaniasis. N Engl J Med 326:741–744

Murphey RJ, Gerner EW (1987) Hypusine formation in protein by a

two-step process in cell lysates. J Biol Chem 262:15033–15036

Myler PJ (2008) Searching the Tritryp genomes for drug targets. Adv

Exp Med Biol 625:133–140

Nare B, Luba J, Hardy LW, Beverley S (1997) New approaches to

Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target

and modulator of antifolate sensitivity. Parasitology 114(Suppl):

S101–S110

Neal RA, Croft SL (1984) An in vitro system for determining the

activity of compounds against the intracellular amastigote form

of Leishmania donovani. J Antimicrob Chemother 14:463–475

Nishimura K, Murozumi K, Shirahata A, Park MH, Kashiwagi K,

Igarashi K (2005) Independent roles of eIF5A and polyamines in

cell proliferation. Biochem J 385:779–785

O’Brien TC, Mackey ZB, Fetter RD, Choe Y, O’Donoghue AJ, Zhou

M, Craik CS, Caffrey CR, McKerrow JH (2008) A parasite

cysteine protease is key to host protein degradation and iron

acquisition. J Biol Chem 283:28934–28943

Opperdoes FR (1987) Compartmentation of carbohydrate metabolism

in trypanosomes. Annu Rev Microbiol 41:127–151

Ortiz D, Sanchez MA, Koch HP, Larsson HP, Landfear SM (2009)

An acid-activated nucleobase transporter from Leishmania
major. J Biol Chem 284:16164–16169

Padmanabhan PK, Mukherjee A, Singh S, Chattopadhyaya S, Gowri

VS, Myler PJ, Srinivasan N, Madhubala R (2005) Glyoxalase I

from Leishmania donovani: a potential target for anti-parasite

drug. Biochem Biophys Res Commun 337:1237–1248

Padmanabhan PK, Mukherjee A, Madhubala R (2006) Characteriza-

tion of the gene encoding glyoxalase II from Leishmania
donovani: a potential target for anti-parasite drugs. Biochem J

393:227–234

Park MH, Cooper HL, Folk JE (1982) The biosynthesis of protein-

bound hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine).

Lysine as the amino acid precursor and the intermediate role of

deoxyhypusine (N epsilon-(4-aminobutyl)lysine). J Biol Chem

257:7217–7222

Park MH, Wolff EC, Lee YB, Folk JE (1994) Antiproliferative effects

of inhibitors of deoxyhypusine synthase. Inhibition of growth of

Chinese hamster ovary cells by guanyl diamines. J Biol Chem

269:27827–27832

Park MH, Joe YA, Kang KR (1998) Deoxyhypusine synthase activity

is essential for cell viability in the yeast Saccharomyces
cerevisiae. J Biol Chem 273:1677–1683

Pink R, Hudson A, Mouries MA, Bendig M (2005) Opportunities and

challenges in antiparasitic drug discovery. Nat Rev Drug Discov

4:727–740

Rigden DJ, Phillips SE, Michels PA, Fothergill-Gilmore LA (1999)

The structure of pyruvate kinase from Leishmania mexicana
reveals details of the allosteric transition and unusual effector

specificity. J Mol Biol 291:615–635

Rodrigues JC, Attias M, Rodriguez C, Urbina JA, Souza W (2002)

Ultrastructural and biochemical alterations induced by 22,26-

azasterol, a delta(24(25))-sterol methyltransferase inhibitor, on

promastigote and amastigote forms of Leishmania amazonensis.

Antimicrob Agents Chemother 46:487–499

Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ,

Beverley SM (2000) The role of phosphoglycans in Leishmania–

sand fly interactions. Proc Natl Acad Sci USA 97:406–411

Salem MM, Werbovetz KA (2005) Antiprotozoal compounds from

Psorothamnus polydenius. J Nat Prod 68:108–111

Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey

JW (1991) Translation initiation factor 5A and its hypusine

modification are essential for cell viability in the yeast Saccha-
romyces cerevisiae. Mol Cell Biol 11:3105–3114

Scory S, Stierhof YD, Caffrey CR, Steverding D (2007) The cysteine

proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology

and cell division activity of Trypanosoma brucei bloodstream

forms in vivo. Kinetoplastid Biol Dis 6:2

Sharma DK, Smith TK, Crossman A, Brimacombe JS, Ferguson MA

(1997) Substrate specificity of the N-acetylglucosaminyl-phos-

phatidylinositol de-N-acetylase of glycosylphosphatidylinositol

membrane anchor biosynthesis in African trypanosomes and

human cells. Biochem J 328(Pt 1):171–177

Shiba T, Mizote H, Kaneko T, Nakajima T, Kakimoto Y (1971)

Hypusine, a new amino acid occurring in bovine brain. Isolation

and structural determination. Biochim Biophys Acta 244:523–531

Smith TK, Sharma DK, Crossman A, Dix A, Brimacombe JS,

Ferguson MA (1997) Parasite and mammalian GPI biosynthetic

pathways can be distinguished using synthetic substrate ana-

logues. EMBO J 16:6667–6675

Smith TK, Sharma DK, Crossman A, Brimacombe JS, Ferguson MA

(1999) Selective inhibitors of the glycosylphosphatidylinositol

biosynthetic pathway of Trypanosoma brucei. EMBO J 18:

5922–5930

Smith TK, Crossman A, Borissow CN, Paterson MJ, Dix A, Brimacombe

JS, Ferguson MA (2001) Specificity of GlcNAc-PI de-N-acetylase

of GPI biosynthesis and synthesis of parasite-specific suicide

substrate inhibitors. EMBO J 20:3322–3332

Somoza JR, Skillman AG Jr, Munagala NR, Oshiro CM, Knegtel RM,

Mpoke S, Fletterick RJ, Kuntz ID, Wang CC (1998) Rational

design of novel antimicrobials: blocking purine salvage in a

parasitic protozoan. Biochemistry 37:5344–5348

Spath GF, Epstein L, Leader B, Singer SM, Avila HA, Turco SJ,

Beverley SM (2000) Lipophosphoglycan is a virulence factor

distinct from related glycoconjugates in the protozoan parasite

Leishmania major. Proc Natl Acad Sci USA 97:9258–9263

Strauss PR, Wang JC (1990) The TOP2 gene of Trypanosoma brucei:
a single-copy gene that shares extensive homology with other

TOP2 genes encoding eukaryotic DNA topoisomerase II. Mol

Biochem Parasitol 38:141–150

Suresh S, Turley S, Opperdoes FR, Michels PA, Hol WG (2000) A

potential target enzyme for trypanocidal drugs revealed by the

crystal structure of NAD-dependent glycerol-3-phosphate dehy-

drogenase from Leishmania mexicana. Structure 8:541–552

Urbaniak MD, Crossman A, Chang T, Smith TK, van Aalten DM,

Ferguson MA (2005) The N-acetyl-D-glucosaminylphosphatidy-

linositol De-N-acetylase of glycosylphosphatidylinositol biosyn-

thesis is a zinc metalloenzyme. J Biol Chem 280:22831–22838

Urbaniak MD, Yashunsky DV, Crossman A, Nikolaev AV, Ferguson

MA (2008) Probing enzymes late in the trypanosomal glycosyl-

phosphatidylinositol biosynthetic pathway with synthetic glyco-

sylphosphatidylinositol analogues. ACS Chem Biol 3:625–634

Urbina JA, Concepcion JL, Caldera A, Payares G, Sanoja C, Otomo

T, Hiyoshi H (2004) In vitro and in vivo activities of E5700 and

ER-119884, two novel orally active squalene synthase inhibitors,

against Trypanosoma cruzi. Antimicrob Agents Chemother 48:

2379–2387

Vannier-Santos MA, Urbina JA, Martiny A, Neves A, de SW (1995)

Alterations induced by the antifungal compounds ketoconazole

and terbinafine in Leishmania. J Eukaryot Microbiol 42:337–346

Vasudevan G, Carter NS, Drew ME, Beverley SM, Sanchez MA,

Seyfang A, Ullman B, Landfear SM (1998) Cloning of

Leishmania nucleoside transporter genes by rescue of a trans-

port-deficient mutant. Proc Natl Acad Sci USA 95:9873–9878

Vasudevan G, Ullman B, Landfear SM (2001) Point mutations in a

nucleoside transporter gene from Leishmania donovani confer

drug resistance and alter substrate selectivity. Proc Natl Acad Sci

USA 98:6092–6097

12 J Parasit Dis (Jan-June 2010) 34(1):1–13

123



Vellieux FM, Hajdu J, Verlinde CL, Groendijk H, Read RJ,

Greenhough TJ, Campbell JW, Kalk KH, Littlechild JA, Watson

HC et al (1993) Structure of glycosomal glyceraldehyde-3-

phosphate dehydrogenase from Trypanosoma brucei determined

from Laue data. Proc Natl Acad Sci USA 90:2355–2359

Verlinde CL, Hol WG (1994) Structure-based drug design: progress,

results and challenges. Structure 2:577–587

Vickers TJ, Greig N, Fairlamb AH (2004) A trypanothione-dependent

glyoxalase I with a prokaryotic ancestry in Leishmania major.

Proc Natl Acad Sci USA 101:13186–13191

Vivas J, Urbina JA, de SW (1996) Ultrastructural alterations in

Trypanosoma (Schizotrypanum) cruzi induced by Delta(24(25))

sterol methyl transferase inhibitors and their combinations with

ketoconazole. Int J Antimicrob Agents 7:235–240

Werbovetz KA (2000) Target-based drug discovery for malaria,

leishmaniasis, and trypanosomiasis. Curr Med Chem 7:835–860

Wierenga RK, Noble ME, Vriend G, Nauche S, Hol WG (1991)
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