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Australia’s first fossil marsupial mole
(Notoryctemorphia) resolves controversies

about their evolution and
palaeoenvironmental origins
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Fossils of a marsupial mole (Marsupialia, Notoryctemorphia, Notoryctidae) are described from early

Miocene deposits in the Riversleigh World Heritage Area, northwestern Queensland, Australia. These

represent the first unequivocal fossil record of the order Notoryctemorphia, the two living species of

which are among the world’s most specialized and bizarre mammals, but which are also convergent on

certain fossorial placental mammals (most notably chrysochlorid golden moles). The fossil remains are

genuinely ‘transitional’, documenting an intermediate stage in the acquisition of a number of speciali-

zations and showing that one of these—the dental morphology known as zalambdodonty—was

acquired via a different evolutionary pathway than in placentals. They, thus, document a clear case of

evolutionary convergence (rather than parallelism) between only distantly related and geographically

isolated mammalian lineages—marsupial moles on the island continent of Australia and placental

moles on most other, at least intermittently connected continents. In contrast to earlier presumptions

about a relationship between the highly specialized body form of the blind, earless, burrowing marsupial

moles and desert habitats, it is now clear that archaic burrowing marsupial moles were adapted to and

probably originated in wet forest palaeoenvironments, preadapting them to movement through drier

soils in the xeric environments of Australia that developed during the Neogene.

Keywords: Australian marsupial moles; Riversleigh Miocene fossil; evolutionary convergence;

zalambdodonty; fossorial adaptations; rainforest palaeohabitat
1. INTRODUCTION
Notoryctemorphia, the marsupial moles, is the least

diverse but most extraordinarily distinct of the four

orders of living Australian marsupials. It currently com-

prises one family (Notoryctidae), one genus (Notoryctes)

and two species (Notoryctes typhlops, Notoryctes caurinus).

Until the discovery of the extinct taxon described here,

no fossil notoryctemorphians were known [1]. In part

because of this lack of a fossil record, the origins and

relationships of the group have long been the subject of

speculation and debate, with some authors even question-

ing their marsupial status [2–4]. Most recent studies have

supported a close relationship between Notoryctemor-

phia and Dasyuromorphia (Australian carnivorous

marsupials [5]), Peramelemorphia (bandicoots and

bilbies [6,7]) or both [8–13].

Among living marsupials, Notoryctes is unique in

exhibiting a distinctive molar morphology termed

zalambdodonty [14,15]. Zalambdodonty is characterized

by upper molars having a single, central cusp homologous
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with either the paracone or the metacone [15,16]. Two

crests extend buccally from this cusp, resulting in a

v-shaped crown (figure 1). In addition, the protocones

(upper molars) and talonids (lower) are usually reduced

or lost. Besides Notoryctes, several living and fossil therian

groups have zalambdodont molars (figure 2); these

include extant solenodontids, chrysochlorids and tenre-

cids (all placentals) and fossil apternodontids (which

also appear to be placentals [17]), Yalkaparidon (probable

australidelphian marsupial [11,18]) and Necrolestes (pro-

bable metatherian [19,20]). Without a fossil record to

reveal intermediate conditions, there has been uncertainty

about which of the upper molar cusps Notoryctes has lost

in comparison to other zalambdodont taxa. The question

is interesting in terms of evolutionary process: do

mammals evolving zalambdodonty (or any other compar-

ably specialized dental morphology) become increasingly

‘channelled’ by an underlying morphological/genetic

developmental constraint as they move down this

pathway, or can these highly specialized patterns be

achieved in completely different ways? That is, do they

arise by parallelism (independent acquisition via the

same evolutionary pathway) or convergence (independent

acquisition via a different pathway)? While most placental

mammals have achieved zalambdodonty via hypertrophy
This journal is q 2010 The Royal Society
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Figure 1. Cusp evolution from tribosphenic to zalambdodont patterns in representative metatherians (top row) and eutherians
(bottom row), and dental terminology used in text. Naraboryctes philcreaseri n. gen. and sp. indicates that in zalambdodont
metatherians the paracone (red) is suppressed; in eutherians it is the metacone (blue) that is reduced. Upper and lower
molars redrawn from: [63] (Gypsonictops); [64] (Potamotelses, Aegialodon, Alphadon); [65] (Widanelfarasia lower); [66] (Potamogale);
[67] (Widanelfarasia upper). Abbreviations: A, anterior; B, buccal; end, entoconid; hld, hypoconulid; hyd, hypoconid; me,

metacone; med, metaconid; pa, paracone; pad, paraconid; pr, protocone; prd, protoconid; stB, stylar cusp B; stC, stylar cusp C;
stD, stylar cusp D.
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of the paracone and suppression of the metacone

[15–17], until now there has been no hard (fossil) evi-

dence for how this pattern has been achieved in

marsupials.

Modern notoryctids are confined to deserts in Australia

and exhibit numerous anatomical specializations that

appear exceptionally well suited to burrowing through

desert sands. These include a conical skull, extreme modi-

fications of the axial and appendicular skeleton

(in particular, enormous enlargement of the muscle attach-

ment sites on the fore- and hindlimbs) and soft tissue

features such as a ‘nasal shield’, a lack of eyes and external

ears, and a tubular body shape [21]. As a result, it has long

been assumed that notoryctids evolved these specializ-

ations in a desert environment. This led to speculation

(e.g. [22]) that a desert palaeoenvironment must have

existed somewhere in Australia throughout much of the

Cenozoic to allow for the evolution of the highly modified,

autapomorphic notoryctid body form, despite no direct

evidence for sandy deserts in Australia prior to the Pleisto-

cene [23,24]. Notoryctids have been used as text-book

examples of convergence between themselves and the phy-

logenetically unrelated but morphologically very similar

placental golden moles (chrysochlorids; e.g. [25,26]). As

well as zalambdodont molars, Notoryctes and chrysochlor-

ids share similar fossorial specializations of the skeleton

[19,26] and closely resemble each other in terms of

external appearance (figure 2). Like Notoryctes, some

(but not all) chrysochlorids occupy sandy desert environ-

ments [27]. This fact contributed to earlier presumptions

(e.g. [22]) that the similar overall morphology of both

groups is the result of long-term adaptation to desert
Proc. R. Soc. B (2011)
environments. Until now it has not been possible to test

this presumption on the basis of palaeoenvironmental data.

Higher level systematic nomenclature used in this paper

follows [28]. Dental terminology follows [18,29] for

crown morphology (figure 1) and [30] for molar number.

Case denotes upper (e.g. M2) and lower (e.g. m2) teeth.
2. SYSTEMATIC PALAEONTOLOGY
Mammalia Linnaeus, 1758

Marsupialia Illiger, 1811

Notoryctemorphia Aplin & Archer, 1987

Notoryctidae Ogilby, 1892

Naraboryctes philcreaseri new genus and species.

(a) Etymology

From naraba ‘to drink’ (Garrawa and Waanyi languages

of northwestern Queensland; [31]), in reference to its

rainforest palaeohabitat, and oryctes meaning ‘digger’

(Greek), in reference to its fossorial specializations and

close relationship to Notoryctes. The species name hon-

ours Phil Creaser for many contributions to Riversleigh

and other palaeontological research at the University of

New South Wales including establishment of the

Coalition for Research into Australian Terrestrial

Ecosystems (CREATE) Fund.

(b) Holotype

QM F23717 (Queensland Museum) from Upper Site,

left dentary with i1-3 (i1 root only) c1 p1-3 m1-4, missing

mandibular condyle and medially inflected portion of

angular process (figure 3a–d).
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Figure 2. Composite phylogeny of therian mammals illustrating the occurrence of dental zalambdodonty within Theria. The
topology is based on recent studies including [11–13,15,19,20,68–72]. Taxa that include at least one fully zalambdodont

member are indicated by red branches. Extinct taxa are indicated by a dagger. Images (from top to bottom) are: the tenrecoid
Tenrec ecaudatus (J. F. Eisenberg; AMS Image Library); an unidentified chrysochlorid Cryptochloris sp. (Wikimedia Commons
image; Killer18); the apternodontid Apternodus baladontus (frontispiece [17]: p. 2); the solenodontid Solenodon paradoxus
( J. Nuñez-Miño; www.thelastsurvivors.org); the necrolestid Necrolestes patagonensis (N. P. Archer); the yalkaparidontian
Yalkaparidon coheni (D. Dunphy); the notoryctid Notoryctes typhlops (M. Gillam). The phylogeny was created using the

phylogenetic drawing tool MRENT 2.0 [73].
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(c) Paratypes and referred specimens

Paratypes that are also topotypes: QM F51322, partial

left premaxilla with I1-4 (figure 3k); QM F23716, partial

right maxilla with P1-3 M1 (figure 3l ). Referred speci-

mens: from Upper Site, QM F54502 (edentulous

maxilla; figure 3j); QM F51323 (dP3; figure 3m), QM

F51324 (LM1; figure 3n), QM F51325 (RM2;

figure 3o), QM F51327 (LM3; figure 3p), QM F23718

(Lm1; figure 3g), QM F51329 (Lm3; figure 3h), QM

F51330 (Rm4; figure 3i), QM F54559 (left humerus;

figure 4b,e), QM F54560 (left ulna; figure 4h,k); from

Wayne’s Wok Site, QM F23719 (left dentary; figure 3e–f ),

QM F51328 (left dentary).
(d) Locality and horizon

The Type Locality is Upper Site, Godthelp Hill, River-

sleigh World Heritage Area, Boodjamulla National Park,

northwestern Queensland (198004200 S, 13884002400 E).
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Wayne’s Wok Site is on Hal’s Hill and 250 m from

Upper Site. Both have been interpreted as Faunal Zone

B sites [32–35] and as such early Miocene in age based

on biocorrelation and preliminary radiometric dating

(U/Pb) of encasing limestone. All Riversleigh specimens

have been recovered by acetic acid-processing of

limestone.
(e) Diagnosis and description

The only known species of Naraboryctes differs from

Notoryctes spp. in the following combination of features:

retention of small paracone; postmetacrista much longer

than premetacrista; medial cusp on postmetacrista vari-

ably present; well-developed three-cusped talonid which

is slightly smaller than trigonid on m2-4; anterior cingu-

lid present; complete adult dental formula I1-5/1-3, C1/1,

P1-3/1-3, M1-4/1-4; proportionately larger coronoid pro-

cess of dentary; medial epicondyle of humerus less

http://www.thelastsurvivors.org
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Figure 3. Naraboryctes philcreaseri new genus and species Riversleigh World Heritage Area, northwestern Queensland, Australia;
early Miocene. (a–d) QM F23717, holotype, left dentary with i2-m4; (a) buccal view; (b,c) stereopair occlusal view; (d) lingual
view of anterior dentition. (e, f ) QM F23719, left dentary with i1-p2 m1-2 m4; (e) buccal view; ( f ) lingual view. (g) QM
F23718, left m1. (h) QM F51329, left m3. (i) QM F51330, right m4 (reversed image). ( j) QM F54502, left edentulous max-

illa. (k) QM F51322, paratype, left premaxilla with I1-4. (l ) QM F23716, paratype, partial right maxilla with P1-3 M1.
(m) QM F51323, right dP3 (reversed image). (n) QM F51324, left M1. (o) QM F51325, right M2 (reversed image).
(p) QM F51327, left M3 (scale bar, 2 mm).
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enlarged; capitulum and trochlea continuous; supracondy-

loid foramen present; elongated olecranon process of ulna

less hooked; flat (rather than concave) medial anconeal

process of ulna; anconeal sides of capitular notch and tro-

chlear notch of ulna continuous (rather than separated by

a ridge).

Rediagnosis of family Notoryctidae: small-bodied

(,100 g) marsupials; complete adult dental formula

I1-5/1-3, C1/1, P1-3/1-3, M1-4/1-4; upper molars sub-

or fully zalambdodont with paracone much smaller than

metacone or missing altogether but with large protocone;

lower molars with reduced or absent talonids; postcra-

nium with fossorial adaptations. A detailed description

of the dentition, cranial and postcranial elements of this

new taxon is provided in the electronic supplementary

material, appendix S1.
3. PALAEOENVIRONMENT
Previous authors [33,36–40] have concluded, on the

basis of taxic representation, community structure,
Proc. R. Soc. B (2011)
species morphology and geology that the early Miocene

palaeocommunities of Riversleigh represent closed forest

environments. Reasons include representation in these

assemblages of taxa all living species of which exist

only in rainforests (e.g. species of Menura, Orthonyx,

Hypsiprymnodon, dactylopsiline petaurids and phalan-

gerin phalangerids; e.g. [41–43]). Among chiropterans,

the very diverse and abundant hipposiderids as well as

mystacinids present at Riversleigh during the early

Miocene are typical of modern closed forest environ-

ments [44,45]. Riversleigh frog assemblages of this age

resemble those that today occupy permanently wet

rather than dry or even seasonally dry forest environ-

ments (M. Tyler 2009, personal communication).

Marsupial and bat diversity in Riversleigh assemblages

is by modern Australian standards extraordinarily high.

Diversity of these groups in Australasia today is highest

in rainforest environments such as those in mid-montane

New Guinea, where complex guilds based on, for

example, size and feeding strategies enable many species

to coexist.
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4. DISCUSSION
We refer Naraboryctes philcreaseri to Notoryctemorphia

because of the extreme reduction of the paracone, ante-

roposterior compression of its upper molars and

reduction of the talonid on its lower molars. Collec-

tively, these apomorphies represent an incipiently

zalambdodont morphology that anticipates the fully

zalambdodont condition in species of Notoryctes. This

familial attribution is further supported by cranial and

isolated postcranial specimens referable to N. philcreaseri

in addition to the premaxilla, humerus and ulna noted

above [7,46]. These exhibit numerous adaptations for

fossoriality very similar to but less well developed

than those seen in species of Notoryctes [7,46]. The

humerus (figure 4) exhibits enlargement of many sites

for muscle attachment, in particular expansion of the

medial epicondyle for enlarged flexor muscles that

facilitate strong flexion in the wrist during digging by

fossorial mammals. As in both species of Notoryctes,

the delto-pectoral ridge is also markedly displaced dis-

tally, resulting in increased mechanical advantage of

the musculature, and the enlarged lateral supracondylar

ridge provides for increased musculature in the lower

arm. Massively expanded articular surfaces help

strengthen the joints during digging by spreading high

mechanical forces over a greater surface area [7]. The
Proc. R. Soc. B (2011)
hypertrophied olecranon process of the ulna, which

enables powerful extension of the forelimb during dig-

ging, while decidedly hypertrophied and notoryctid-

like in N. philcreaseri (figure 4) and hence a synapomor-

phy for this family, is not quite as large nor as strongly

curved medially as it is in species of Notoryctes.

Hypertrophy of the olecranon process is present in

many fossorial mammals [7,19,26] but is unique to

notoryctids within Marsupialia. Preliminary phyloge-

netic analyses by one of us (R.M.B.D.) indicate that

Naraboryctes and Notoryctes form a clade.

Naraboryctes philcreaseri is dentally more plesiomorphic

than either species of Notoryctes, notably in its apparent

retention of five upper incisors, three upper and lower

premolars, distinct paracone on the upper molars and

three-cusped talonid on the lower molars. As noted

above, the dental formula of N. philcreaseri appears to

be I1-5 (or possibly I1-4; see the electronic supplemen-

tary material)/1-3; C1/1; P1-3/1-3; M1-4/1-4. This is

the same as the plesiomorphic dental formula for

Australian marsupials and, except for the loss of one

lower incisor, the same as the most plesiomorphic

dental formula known for any marsupial. All known

Australian marsupials have lost i4 and all except some

peramelemorphians and probably N. philcreaseri have

lost I5. The dental formula for species of Notoryctes is
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controversial because of considerable polymorphism in

tooth number, both between specimens and within the

same specimen. While Archer [22] stated that the

maximum dental formula of N. typhlops is I1-4/1-3 C1/1

P1-3/1-3 M1-4/1-4, loss of an upper incisor and at least

one upper and one lower premolar is not uncommon.

Thomas [47] gave the dental formula of N. caurinus as

I1-3/1-2; C1/1; P1-2/1-2; M1-4/1-4. The tiny size of P1

in N. philcreaseri compared with P2-3 suggests that it is

P1 rather than P3 that is lost in N. caurinus and some

specimens of N. typhlops. An apparent autapomorphy of

N. philcreaseri is the presence of a cuspule near the

middle of the postmetacrista, although it is possible that

this cuspule has been secondarily lost in species of

Notoryctes.

The dental material of N. philcreaseri unequivocally

demonstrates that zalambdodonty evolved in notoryctemor-

phians from a tribosphenic precursor by loss of the

paracone (figure 1). Asher et al. [19] recently hypothesized

that zalambdodonty in the probable metatherian Necrolestes

was also acquired by suppression of the paracone. This

hypothesis was based on occlusal relations in a fully zalamb-

dodont taxon rather than discovery of an annectent taxon of

the kind we describe here. Conversely, although the molars

of the Eocene ?metatherian Kiruwamaq chisu [48] and some

living dasyurids have greatly reduced paracones [49], they

are not fully zalambdodont. The fossils of N. philcreaseri

described here are therefore, to our knowledge, the first

direct evidence that full zalambdodonty can be achieved

by loss of the paracone rather than the metacone (the

cusp lost by zalambdodont placentals). This demonstrates

that highly specialized morphological patterns, such as

zalambdodonty, can be achieved in very different ways in

different mammalian clades and can result from convergent

rather than parallel evolution (figure 1).

It is not clear exactly why notoryctemorphians evolved

zalambdodonty by suppressing the paracone, whereas

zalambdodont placentals (e.g. apternodontids, soleno-

dontids, chrysochlorids, tenrecids) have suppressed the

metacone. However, perhaps the simplest explanation is

that the metacone is typically larger than the paracone

in marsupials and other metatherians, whereas the reverse

is usually true for placentals and other eutherians [50],

and it is the smaller of the two cusps that is lost in zalamb-

dodont forms. Within placentals, bats are unusual in that

the metacone is usually larger than the paracone; it is

therefore noteworthy that the bat Harpiocephalus has

evolved an incipiently zalambdodont morphology by

reduction of the paracone rather than the metacone [15].

The functional significance of zalambdodonty and

hence the probable feeding ecology of N. philcreaseri

remain unclear. However, based on the mechanical pro-

perties of food items (see [51]), Beck [52] suggested

that zalambdodonty may represent a specialization for

feeding on soft-bodied invertebrates such as worms or

insect larvae. A tribosphenic dentition with a fully func-

tional protocone–talonid complex, by contrast, may be

better adapted for feeding on harder food items including

adult insects. The natural diet of both species of Notor-

yctes is poorly known [53], although captive specimens

appeared to prefer larvae over adult insects [54]. Within

placentals, the tenrecid Hemicentetes, which shows

extreme zalambdodonty ([55], fig. 41D), feeds almost

exclusively on earthworms [56] whereas Potamogale,
Proc. R. Soc. B (2011)
which feeds predominantly on hard-shelled crustaceans

[27], retains a small metacone as well as a large protocone

and relatively well-developed talonids ([15,55], fig. 41A).

The presence of a small paracone and a functional talonid

in N. philcreaseri may therefore indicate that its diet

included a greater proportion of harder food items

(such as hard-bodied invertebrates) than those of species

of Notoryctes. Insect larvae and worms are common below

ground; if zalambdodonty is indeed an adaptation for

feeding on soft-bodied invertebrates, this may explain

why many zalambdodont mammals are fossorial (species

of Notoryctes, Necrolestes, chrysochlorids and the tenrecid

Orizoryctes) or semi-fossorial (species of Solenodon, Hemi-

centetes and possibly apternodontids [57]). The coronoid

process of the mandible of N. philcreaseri is higher than

that of either species of Notoryctes, which suggests the

presence of more powerfully developed temporalis mus-

culature. The coronoid process is very low in the

vermivorous species of Hemicentetes compared with tenre-

cids which feed on harder-bodied invertebrates [58]. In

bats the coronoid process is smaller in those species that

feed on softer-bodied prey such as moths (e.g. [59,60]).

The morphology of the coronoid process may therefore

be further evidence that N. philcreaseri fed on a wider

range of food items including some harder prey than do

species of Notoryctes.

Collectively, the dentition and mandible of N. philcreaseri

appear to be less-specialized for feeding on soft-bodied

invertebrates and hence they may have spent relatively less

time feeding underground. However, because powerful

digging in this species, as indicated by the hypertrophied,

notoryctid-like olecranon process, is combined with incipi-

ent zalambdodonty, burrowing in notoryctids probably

preceded evolution of fully developed zalambdodonty as

well as a concomitant shift in preference for softer

subterranean foods.

Recent dated molecular phylogenies suggest that

Notoryctemorphia originated in either the Palaeocene

or Eocene (e.g. [9,11,13]) but these studies do not shed

any light on when the morphological specializations

seen in extant notoryctids evolved. The specimens

of N. philcreaseri described here demonstrate that

notoryctids were incipiently zalambdodont and at least

semi-fossorial by the early Miocene. The early Miocene

Riversleigh Faunal Zone B faunal assemblages containing

N. philcreaseri appear to represent rainforest biotas

for reasons discussed above. This led some of us

(e.g. [1,33,61]) to suggest, in contrast to our earlier

presumption (e.g. [22]), that notoryctids, despite being

confined today to Australia’s sandy deserts [53], may

actually have evolved burrowing adaptations in soft

rainforest floors. We suggest that as a consequence,

burrowing notoryctids were serendipitously preadapted

in terms of strategies for avoiding physiological stresses,

to the drier environments that developed in central

Australia from the late Miocene onwards as rainforests

gradually retreated to coastal margins and aridity gripped

Australia’s heart with the first sandy deserts developing

around 1 million years ago [23,24,62].
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thelastsurvivors.org) for the photograph of Solenodon paradoxus.
REFERENCES
1 Long, J. A., Archer, M., Flannery, T. F. & Hand, S. J.

2002 Prehistoric mammals of Australia and New Guinea:
one hundred million years of evolution. Sydney, Australia:
UNSW Press.

2 Stirling, E. C. 1888 Preliminary notes on a new
Australian mammal. Trans. R. Soc. South Aust. 11, 21–24.

3 Cope, E. D. 1892 On the habits and affinities of the new

Australian mammal, Notoryctes typhlops. Am. Nat. 26,
pp. 121–128.

4 Turnbull, W. D. 1971 The Trinity therians: their bearing
on evolution in marsupials and other therians. In Dental
morphology and evolution (ed. A. A. Dahlberg), pp. 151–

179. Chicago, IL: University of Chicago Press.
5 Asher, R. J., Horovitz, I. & Sánchez-Villagra, M. R. 2004

First combined cladistic analysis of marsupial mammal
interrelationships. Mol. Phylogenet. Evol. 33, 240–250.

(doi:10.1016/j.ympev.2004.05.004)
6 Horovitz, I. & Sánchez-Villagra, M. R. 2003 A morpho-

logical analysis of marsupial mammal higher-level
phylogenetic relationships. Cladistics 19, 181–212.
(doi:10.1111/j.1096-0031.2003.tb00363.x)

7 Warburton, N. M. 2003 Functional morphology and
evolution of marsupial moles (Marsupialia; Notorycte-
morphia). Unpublished PhD thesis. School of Animal
Biology, University of Western Australia.

8 Amrine-Madsen, H., Scally, M., Westerman, M.,

Stanhope, M. J., Krajewski, C. W. & Springer, M. S.
2003 Nuclear gene sequences provide evidence for the
monophyly of australidelphian marsupials. Mol.
Phylogenet. Evol. 28, 186–196. (doi:10.1016/S1055-7903
(03)00122-2)

9 Nilsson, M. A., Arnason, U., Spencer, P. B. S. & Janke,
A. 2004 Marsupial relationships and a timeline for
marsupial radiation in South Gondwana. Gene 340,
189–196. (doi:10.1016/j.gene.2004.07.040)

10 Phillips, M. J., McLenachan, P. A., Down, C., Gibb,

G. C. & Penny, D. 2006 Combined mitochondrial and
nuclear DNA sequences resolve the interrelations of the
major Australasian marsupial radiations. Syst. Biol. 55,
122–137. (doi:10.1080/10635150500481614)

11 Beck, R. M. D. 2008 A dated phylogeny of marsupials
using a molecular supermatrix and multiple fossil
constraints. J. Mamm. 89, 175–189. (doi:10.1644/06-
MAMM-A-437.1)

12 Beck, R. M. D., Godthelp, H., Weisbecker, V., Archer,

M. & Hand, S. J. 2008 Australia’s oldest marsupial fossils
and their biogeographical implications. PLoS ONE 3,
e1858. (doi:10.1371/journal.pone.0001858)

13 Meredith, R. W., Westerman, M., Case, J. A. & Springer,
M. S. 2008 A phylogeny and timescale for marsupial
Proc. R. Soc. B (2011)
evolution based on sequences for five nuclear genes.
J. Mamm. Evol. 15, 1–36. (doi:10.1007/s10914-007-
9062-6)

14 Gill, T. 1883 On the classification of the insectivorous
mammals. Bull. Phil. Soc. Wash. 5, 118–120.

15 Asher, R. J. & Sánchez-Villagra, M. R. 2005 Locking
yourself out: diversity among dentally zalambdodont
therian mammals. J. Mamm. Evol. 12, 265–282.

(doi:10.1007/s10914-005-5725-3)
16 Seiffert, E. R., Simons, E. L., Ryan, T. M., Bown, T. M. &

Attia, Y. 2007 New remains of Eocene and Oligocene
Afrosoricida (Afrotheria) from Egypt, with implications

for the origin(s) of afrosoricid zalambdodonty. J. Vert.
Pal. 27, 963–972. (doi:10.1671/0272-4634(2007)
27[963:NROEAO]2.0.CO;2)

17 Asher, R. J., McKenna, M. C., Emry, R. J., Tabrum,
A. R. & Kron, D. G. 2002 Morphology and relationships

of Apternodus and other extinct, zalambdodont, placental
mammals. Bull. Am. Mus. Nat. Hist. 273, 1–117. (doi:10.
1206/0003-0090(2002)273,0001:MAROAA.2.0.CO;2)

18 Archer, M., Hand, S. J. & Godthelp, H. 1988 A new
order of Tertiary zalambdodont marsupials. Science 239,

1528–1531. (doi:10.1126/science.239.4847.1528)
19 Asher, R. J., Horovitz, I., Martin, T. & Sánchez-Villagra,

M. R. 2007 Neither a rodent nor a platypus: a reexamina-
tion of Necrolestes patagonensis Ameghino. Am. Mus. Nov.
3546, 1–40. (doi:10.1206/0003-0082(2007)3546

[1:NARNAP]2.0.CO;2)
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