
Proc. R. Soc. B (2011) 278, 1587–1594
* Autho

Electron
10.1098

doi:10.1098/rspb.2010.2056

Published online 10 November 2010

Received
Accepted
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Detecting regions of the human genome that are, or have been, influenced by natural selection remains an

important goal for geneticists. Many methods are used to infer selection, but there is a general reliance on

an accurate understanding of how mutation and recombination events are distributed, and the well-

known link between these processes and their evolutionary transience introduces uncertainty into

inferences. Here, we present and apply two new, independent approaches; one based on single nucleotide

polymorphisms (SNPs) that exploits geographical patterns in how humans lost variability as we colonized

the world, the other based on the relationship between microsatellite repeat number and heterozygosity.

We show that the two methods give concordant results. Of these, the SNP-based method is both widely

applicable and detects selection over a well-defined time interval, the last 50 000 years. Analysis of all

human genes by their Gene Ontology codes reveals how accelerated and decelerated loss of variability

are both preferentially associated with immune genes. Applied to 168 immune genes used as the focus

of a previous study, we show that members of the same gene family tend to yield similar indices of selec-

tion, even when located on different chromosomes. We hope our approach will provide a useful tool with

which to infer where selection has acted to shape the human genome.

Keywords: natural selection; genetic diversity; humans; microsatellite;

balancing selection; immune genes
1. INTRODUCTION
One hundred and fifty years after Darwin published ‘The

Origin’, literally millions of single nucleotide polymorph-

isms (SNPs) [1–3] finally provide the tools that should

allow us to analyse in detail how natural selection has

acted on, and continues to shape the human genome.

Various approaches have been explored [4], including

the study of linkage disequilibrium blocks [5], detection

of SNP clusters, testing for an excess of SNPs with one

very common allele [6], discovery of unusually large or

small genetic distances between populations [7] and,

within genes, inferences about the ratio of synonymous

to non-synonymous substitutions [5]. Although these

studies have told us much, they tend to focus on direc-

tional rather than balancing selection and to rely on

poorly tested assumptions about where and at what rate

recombination events and mutations occur, assumptions

that are increasingly being challenged [8–11]. Where bal-

ancing selection has been tested for, it seems elusive [12],

possibly because ‘the requirements for detection by

means of SNP data alone will rarely be met’ [12], a

notable exception being Andrés et al. [13]. This is poten-

tially of concern because there is increasing evidence that

heterozygote advantage may be common, particularly at
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immune loci, in both humans [14,15] and many other

species [15–17].

An alternative, and we believe novel, approach to the

detection of natural selection is suggested by humankind’s

unusual demographic history. Somewhat over 50 000

years ago, anatomically modern humans moved out of

Africa to colonize the world [18–20]. As they did so,

one or a series of population bottlenecks caused a dra-

matic loss of neutral genetic variability [18,21–23],

manifest everywhere people have looked, from microsatel-

lites [22] and SNPs [24] to morphological traits [25] and

even commensal bacterial diversity [26]. The signature of

this loss is a monotonic decline in neutral genetic variabil-

ity with land-only distance from Africa [19,23]. Previous

methods for inferring selection have tended either to

ignore this trend completely or to treat it as a nuisance

variable that has to be controlled [15]. However, the uni-

formity and ubiquity of the decline in variability itself

provides a useful new null hypothesis. Deviations from

the overall trend should be informative about the action

of natural selection. For example, balancing selection

maintains two or more lineages within a population,

thereby creating regions of enhanced diversity [27].

During a population bottleneck, such regions should

show reduced diversity loss, manifest as genomic regions

in which the gradient of diversity against distance from

Africa is close to zero. Similarly, positive selection acting

on variants that helped early modern humans adapt to

new environments will have accelerated the reduction of

diversity and created steeper slopes. Finally, positive
This journal is q 2010 The Royal Society
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slopes might be generated wherever the non-African

environment presented new challenges that were best

met by multiallelic solutions, for example when humans

encountered new classes of pathogens or parasites

[15,28].

A pervasive problem with many tests for selection is

the lack of independent verification. Most tests rely on

assumptions about local recombination or mutation

rates, if only neither have changed appreciably in the

recent past. In practice, these assumptions are open to

question. Point mutations appear to occur non-randomly,

falling in clusters [9,10], and these clusters themselves

correlate with local recombination rate [29], though this

may reflect correlation of both with features such as

local GC base composition [30]. Nonetheless, recombi-

nation hotspots can be both intense and highly localized

[31] and appear to be evolutionarily transient [11,32].

Equally, the clustering of SNPs may reflect gene conver-

sion events focused on existing polymorphisms [10,33],

potentially creating a dynamic and constantly changing

mutation landscape. The main method for detecting selec-

tion that directly bypasses these issues involves dn/dS ratios

[34], the proportion of all nucleotide substitutions that

cause changes at the level of the protein. However, being

based on several/many mutations in coding regions, this

method cannot be used meaningfully to infer current selec-

tion acting on a single variant allele, or selection acting on

variants in non-coding regions.

Given the above uncertainties, it is desirable to com-

pare two independent methods of inference. For a

second test, we therefore turned to microsatellites. It is

well-established that microsatellite heterozygosity is

positively correlated with repeat number [35–37]. Conse-

quently, the average relationship between heterozygosity

and repeat number provides an expectation for how vari-

able an ‘average’ microsatellite of a given repeat number

should be [36]. Wherever a microsatellite lies near to a

gene experiencing selection, this expectation will

change. In regions affected by balancing selection, a

microsatellite should carry greater heterozygosity than

expected from the number of repeats it carries. Similarly,

microsatellites in regions affected by strong directional

selection will have lost variability through selective

sweep effects, and should show less variability than

expected for their length.

The two methods for detecting selection described

above are essentially independent: the first looks at how

heterozygosity varies across the world regardless of absol-

ute levels, while the latter looks at patterns within a single

population and focuses on absolute variability relative to

an extrinsic relationship, the way microsatellite heterozyg-

osity scales with repeat number. Here we cross-test these

two methods using large, published human datasets and

show that they yield concordant patterns. We then apply

the more general SNP-based approach to show how

immune genes in particular exhibit patterns consistent

with both balancing and directional selection.
2. METHODS
SNP data were downloaded from http://hapmap.ncbi.nlm.

nih.gov/, specifically HapMap phase II and III (5 February

2009 release) genotyped in the following population samples:

Yoruba from Nigeria (YRI), Europeans from Utah (CEU),
Proc. R. Soc. B (2011)
Lahuya from Kenya (LWK), Maasai from Kenya (MKK),

Toscans from Italy (TSI), Han from China (CHB) and

Japanese from Japan ( JPT) [38]. Four other populations

were excluded owing to their greater risk of mixed ancestry.

Heterozygosity was estimated assuming two alleles in

Hardy–Weinberg equilibrium. Distance from Africa was

measured as the land-only route from Addis Ababa to the

town of sampling/centre of sampling region [22]. CEU was

taken as Paris, an intermediate western European location.

To determine the local slope of SNP heterozygosity

against distance from Africa for any given point in the

genome, a custom macro was written in Visual Basic. SNP

data for the relevant chromosome were read into an array

and stored as heterozygosities for each of the seven popu-

lations. Local slope was then calculated as the Pearson

correlation coefficient of average heterozygosity against dis-

tance from Africa across the seven populations, average

heterozygosity being based on all SNPs within a given dis-

tance of the focal location. A correlation coefficient was

preferred to the actual slope because, with so few data

points, steep but poorly supported slope values often arise

by chance, while large correlation coefficients more often

imply a well-defined relationship, regardless of whether the

slope itself is steep (for a given set of SNPs, heterozygosity

varies little among populations, so large outliers are unlikely).

In all cases, we compared the results obtained using four

different window sizes: +10, +25, +50 and +100 kb.

Microsatellite data were downloaded from the Centre

d’Etude du Polymorphisme Humain (CEPH) website

(http://www.cephb.fr/en/cephdb/) and are based on the data

published by Dib et al. [39]. The location of each microsatel-

lite on the human genome, build 36.6 (chosen for maximum

compatibility across all datasets used), was determined

through the sequence-tagged sites database, and expected het-

erozygosity calculated using the frequencies of alleles listed,

assuming Hardy–Weinberg equilibrium. Wherever possible,

we extracted the clone sequence and the primer sequences,

with which we calculated the mean allele length converted

to numbers of repeat units (¼ ‘length’), on the assumption

of no insertions or deletions in the regions between the

primer sites and the microsatellite. Finally, we calculated

residual heterozygosity at each locus. Plotting heterozygosity

against length yields the expected positive relationship.

However, the variance in heterozygosity declines strongly

with increasing repeat number, owing to the fact that while

essentially all long microsatellites have high heterozygosity,

short microsatellites can have almost any value. To reduce

this bias, we therefore expressed the heterozygosity of each

microsatellite as the standardized residual heterozygosity of

all loci within 0.5 repeat units in length. Loci with extreme

residuals (greater than 2.5 s.d.) were excluded, since these

may include strongly aberrant loci with unusual features

such as insertions or deletions in their flanking DNA.

A full list of all annotated human genes was downloaded

from the Gene Ontology (GO) website (http://www.geneon-

tology.org) on 10 March 2009 [40]. Locations on the

human genome build 36.6 were verified and each locus

stored as its unweighted mid-point location (i.e. we used

the middle base rather than the middle exonic base), along

with all associated GO codes. In addition, we also down-

loaded a list of 168 genes from a previous paper examining

selection on immune genes [28], along with their locations.

This list was used as a supplementary test of the association

between selection and immune genes.

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
http://www.cephb.fr/en/cephdb/
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Figure 1. Relationship between residual expected micro-
satellite heterozygosity and the extent to which local
heterozygosity was lost as humans colonized the world. Stan-
dardized residual heterozygosity is the standardized residual

of the relationship between average repeat number and het-
erozygosity in Europeans, placed in 20 equal-width bins
(bin 1 ¼ 22.5 to –2.25 s.d. etc.). Bin 20 is omitted because
it contained only one observation. Mean local correlation is
the average correlation between local SNP heterozygosity

(all SNPs within 25 kb of the microsatellite) and distance
from Africa across seven worldwide populations. Error bars
are +1 standard error.
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3. RESULTS
(a) Microsatellite heterozygosity and single

nucleotide polymorphism variability

After excluding loci with extreme residual heterozygosity

and where lack of sequence/primer information precluded

inference of repeat number, data from a total of 4524

microsatellites were retained. Data were combined into

20 equal-width bins spanning the range of residual

heterozygosity, standardized by subtracting the

mean and dividing by the standard deviation, of 22.5

to 2.5. Within each bin, each microsatellite was placed

at the centre of a symmetrical window (four sizes

examined ¼+10, +25, +50 and +100 kb) and in

each case the correlation coefficient of the relationship

between SNP heterozygosity and distance from Africa

was calculated based on the seven study populations.

Figure 1 shows how the mean correlation coefficient

varies across the 20 microsatellite bins for a window

size of +25 kb. A regression based on the data as

shown is significant (r2¼ 0.488, n ¼ 19, p ¼ 0.0009),

but becomes appreciably stronger if the first data

point, a major outlier, is removed (r2 ¼ 0.812, n ¼ 19,

p ¼ 3.3 � 1027). The lowest bin is likely to be an outlier

because very low heterozygosity can result from several

processes other than selection, most obviously stabili-

zation of the locus through internal point mutations

[41]. The data point for the highest bin contained only

a single locus and was omitted in both cases. Other

window sizes yield substantially weaker associations, the

narrowest window being non-significant and the two

larger windows approaching significance (p � 0.07 in

both cases). In all cases, excluding the extreme bins

yields stronger, more positive slopes. We believe our opti-

mum window size lies at 25 kb because while smaller

windows reflect well local conditions, they carry more

statistical noise owing to the small number of SNPs

included, and for larger windows the converse is true;

with more reliable numbers of SNPs reducing stochastic

noise but the larger regions tending to embrace more

than one functional block.

mean local correlation

Figure 2. Distribution of genes with immune function GO

codes with respect to the extent to which local heterozygosity
was lost as humans colonized the world. A total of 94 GO
codes out of 1308 with six or more representative genes
were considered immune-related. After calculating the
mean correlation between local SNP heterozygosity (all

SNPs within 25 kb of the centre of the gene) and distance
from Africa across seven worldwide populations for all
genes and averaging within each GO code, the codes were
ordered according to their mean slope and the number of
immune genes in each block of 100 codes counted. Thus,

the 100 codes that gave the most positive correlations had
an average correlation of 0.17 and included 13 codes that
were deemed immune-related.
(b) Single nucleotide polymorphism

variability and GO codes

Using the ‘best’ bin size determined from the microsatel-

lite analysis, 25 kb, we next analysed a list of 65508 genes

and gene functions downloaded from the GO website.

Multiple GO codes for the same gene (defined as

having the same start and stop location) were treated as

separate entries and gene location was taken as the mid-

point of the gene. Having determined the local SNP

slope at each locus, mean slopes were calculated for

each GO code found, with qualifying codes having

more than five different genes. To assess whether

immune-related genes tend to have extreme slopes,

suggesting selection, all retained GO codes (n ¼ 1308)

were classified blind by one of us (C.B. presented with

an alphabetically ordered list of gene classes without any

inferred selection coefficients) as to whether they were

or were not directly linked to immune function. Examples

include ‘defence against bacteria’, ‘positive regulation of

chemokine biosynthetic process’ and ‘natural killer cell

activation’ (for full list, see the electronic supplementary

material, table S1). Attempts to use the GO coding
Proc. R. Soc. B (2011)
system directly failed because key descriptors such as

‘immune response’, while capturing many relevant

genes, also exclude many legitimate and important classes

(e.g. ‘I-kB kinase/NF-kB cascade’) which would have to

be added manually. After sorting by mean slope, the fre-

quencies of immune genes were determined for each

consecutive block of 100 codes (figure 2). The two high-

est bin counts are found in the highest and lowest mean



Table 1. Summary of immune-related gene classes lying in genomic regions where unusually high or low levels of genetic

variability were lost as modern humans colonized the world from Africa. (GO code is the Gene Ontology code with its
associated description of the gene class function. Slope is the average correlation coefficient between local SNP
heterozygosity and distance from Africa across seven worldwide populations with standard error in parentheses. n is the
number of occurrences of genes of that code. Codes above the line are in the 100 most negative slopes, indicative of purifying
selections, while codes below the line are in the top 100 positive values, indicative of diversifying or balancing selection.)

GO code description of function corr n

16032 viral reproduction 20.71 (0.13) 6
19047 provirus integration 20.7 (0.08) 8

30889 negative regulation of B cell proliferation 20.68 (0.12) 7
33077 T cell differentiation in the thymus 20.65 (0.09) 11
50830 defence response to Gram-positive bacterium 20.6 (0.11) 14
43280 positive regulation of caspase activity 20.6 (0.15) 6

50718 positive regulation of interleukin-1 beta secretion 20.6 (0.13) 11
19059 initiation of viral infection 20.6 (0.11) 11
42116 macrophage activation 20.53 (0.22) 6
42098 T cell proliferation 20.52 (0.13) 15
6956 complement activation 20.5 (0.16) 7

16064 immunoglobulin mediated immune response 0.04 (0.27) 11

45060 negative thymic T cell selection 0.04 (0.2) 9
32755 positive regulation of interleukin-6 production 0.05 (0.29) 8
6911 phagocytosis, engulfment 0.08 (0.29) 8
1782 B cell homeostasis 0.09 (0.3) 7
45089 positive regulation of innate immune response 0.11 (0.28) 6

50778 positive regulation of immune response 0.11 (0.28) 7
19885 antigen processing and presentation via MHC class I 0.12 (0.22) 8
48535 lymph node development 0.13 (0.2) 10
45410 positive regulation of interleukin-6 biosynthetic process 0.15 (0.27) 6
2504 antigen processing via MHC class II 0.28 (0.15) 15

46718 entry of virus into host cell 0.34 (0.25) 6
45059 positive thymic T cell selection 0.44 (0.24) 6
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slope classes, significantly more often than expected by

chance (x2
1 ¼ 7.43, p ¼ 0.006). The 24 GO codes associ-

ated with the strongest positive and negative slopes are

listed in table 1. Note that the standard errors of GO

codes with negative slopes tend to be appreciably lower

than those of the top positive slopes, despite being

based on similar numbers of genes, suggesting that the

selective forces acting on genes in code classes that yield

positive slopes are more heterogeneous. Finally, to get

an idea of the level of non-independence, we also

estimated the correlation between the slopes of adjacent

genes, classified according to genomic separation

(end of gene1, start of gene2) in 10 kb bins, finding a

decline from r ¼ 0.62 (genes less than 10 kb apart)

down to r ¼ 0.32 (genes separated by 190–200 kb),

suggesting that only extremely close genes will have

similar slopes owing to proximity alone.
(c) Single nucleotide polymorphism variability

around 168 immune-related genes

Slopes were determined for each of the 168 genes studied

by Walsh et al. [28], plus the gene APCS, which does not

appear in the main list, but is discussed in the text. We

also included Walsh et al.’s positive control, beta haemo-

globin (HBB). Results are summarised in table 2.

Several trends are apparent. First, the six genes identified

as putatively under selection (IL9, CAV2, FUT2, ABCC1,

VAV3 and APCS) and the positive control, HBB, tend to

yield strongly negative slopes (20.947, 20.908, 20.98,

0.67, 20.31, 20.912, 20.94, respectively). Indeed, IL9

and FUT2, and other members of the CAV and VAV
Proc. R. Soc. B (2011)
gene families, CAV1 and VAV2, yield four of the 12

most negative values found. ABCC1 and VAV3 are very

big genes (approx. 0.2 and 0.4 Mb, respectively), and

both contain regions outside the window used that give

strongly negative slopes, though other ATP-binding

cassette (ABC) genes are also positive (see below).

The second trend is for genes with similar names to

yield similar slopes. A rigorous analysis is hampered

both by non-independence owing to gene clustering and

the fact that our understanding of function is insuffi-

ciently complete to group genes accurately by function.

Some genes with similar names may have very different

functions in terms of the precise role they play. Nonethe-

less, several groupings stand out. All three CAV and all

three VAV genes have strongly negative values, despite

lying on multiple chromosomes. Similarly, all four ABC

genes, all five alpha defensin (DEFA) genes and 11 of 13

interferon alpha (IFNA) genes have positive/strongly posi-

tive slopes. Interestingly, although the DEFA genes all

form a single cluster, DEFT1 lies within this cluster and

has a negative slope, indicating that the generally positive

slopes are not owing entirely to linkage disequilibrium.

IFNA genes also form a cluster on chromosome 9, but

the cluster is big enough (275 kb) to contain contrasting

slopes and the two group members with negative slopes

lie at either end.
4. DISCUSSION
We show that microsatellites which are more heterozygous

than expected for their repeat number tend to lie in



Table 2. Summary of inferred recent selection acting on 168 immune genes listed in Walsh et al. (Genes are listed by their

official abbreviations and are listed in alphabetical order along with their location specified as chromosome (‘C’) and location in
Megabases (‘Loc’). For each gene we calculated the Pearson’s correlation coefficient, r, between local SNP heterozygosity (all
SNPs within 25 kb of the centre of the gene) and distance from Africa across seven worldwide populations (‘corr’). CCL3L1
did not yield enough neighbouring SNPs for a meaningful correlation to be calculated. We also calculated correlations for
APCS (correlation ¼ 20.912) and the positive control, HBB (correlation ¼ 20.94). Taking microsatellite locations (figure 1) as

representative of random locations across the genome, the mean correlation coefficient is 20.236 (n ¼ 4524). n.a., not
applicable.)

gene Loc C corr gene Loc C corr gene Loc C corr

ABCB1 87.1 7 0.39 F11R 159.3 1 0.63 IL1F9 113.5 2 20.95
ABCC1 16.0 16 0.68 FACL6 131.3 5 0.52 IL1R1 102.2 2 0.66
ABCD3 94.7 1 0.69 FCER1A 157.5 1 20.28 IL1R2 102.0 2 20.23
ABCG2 89.3 4 0.83 FCER1G 159.5 1 0.92 IL1RL1 102.3 2 20.76

AGT 228.9 1 0.91 FCGR2A 159.7 1 0.40 IL1RL1LG 10.8 19 0.74
AIM2 157.3 1 20.33 FCGR2B 159.9 1 20.69 IL1RL2 102.2 2 0.89
APOBEC3G 37.8 22 20.43 FCGR3A 159.8 1 20.28 IL1RN 113.6 2 20.23
CAV1 116.0 7 20.98 FCGR3B 159.9 1 20.58 IL21R 27.3 16 20.67
CAV2 115.9 7 20.85 FLOT2 24.2 17 0.47 IL3 131.4 5 0.39

CAV3 8.8 3 20.76 FUT2 53.9 19 20.97 IL4 132.0 5 20.52
CCL1 29.7 17 20.79 FY 157.4 1 20.79 IL4R 27.3 16 20.99
CCL2 29.6 17 20.37 FYN 112.2 6 20.30 IL5 131.9 5 20.04
CCL3 29.7 17 0.61 GC 72.8 4 20.19 IL6 22.7 7 20.59
CCL3L1 31.3 17 n.a. HP 70.7 16 0.54 IL8 74.8 4 0.24

CCL5 31.3 17 20.09 HSPA4 132.4 5 20.48 IL9 135.3 5 20.88
CCL7 56.0 17 0.02 HSPA9B 137.9 5 20.61 ILF3 10.6 19 0.86
CCL8 31.4 17 0.77 ICAM1 10.3 19 20.32 IRF1 131.9 5 20.67
CCL11 29.6 17 0.50 ICAM2 59.4 17 20.88 ITK 156.6 5 0.14
CCL13 56.0 17 20.73 ICAM3 10.3 19 0.23 ITLN1 159.1 1 20.55

CCL14 31.4 17 20.55 ICAM4 10.3 19 0.64 ITLN2 195.2 1 20.88
CCL16 31.4 17 20.72 ICAM5 10.3 19 0.65 LCK 32.6 1 20.88
CCL17 31.6 16 0.83 IFI16 157.3 1 20.18 LCP2 169.6 5 20.68
CCL18 31.2 17 0.69 IFIX 157.2 1 20.90 LMAN1 55.2 18 20.07
CCL22 29.6 16 20.47 IFNA1 21.4 9 0.43 LY9 159.0 1 0.83

CCL23 29.7 17 20.72 IFNA10 21.2 9 0.95 LYN 57.0 8 20.83
CCNT1 47.4 12 0.50 IFNA13 21.4 9 0.31 MAL 95.1 2 0.78
CCR1 46.2 3 20.91 IFNA14 21.2 9 0.88 MBL2 54.2 10 20.68
CCR3 46.3 3 0.58 IFNA16 21.2 9 0.88 MMP28 31.1 17 20.71

CCR9 45.9 3 20.47 IFNA17 21.2 9 0.78 MNDA 157.1 1 0.22
CD14 140.0 5 20.54 IFNA2 21.4 9 0.81 NCL 232.0 2 0.81
CD244 159.1 1 0.77 IFNA21 21.2 9 20.39 NFATC1 75.3 18 20.32
CD28 204.3 2 20.35 IFNA4 21.2 9 0.73 NOS2A 23.1 17 20.67
CD4 6.8 12 0.75 IFNA5 21.3 9 0.09 PF4 75.1 4 20.95

CD48 158.9 1 20.72 IFNA6 21.3 9 0.35 PF4V1 74.9 4 0.10
CD58 116.9 1 0.40 IFNA7 21.2 9 0.72 PHB 44.8 17 0.76
CD84 158.8 1 20.85 IFNA8 21.4 9 20.83 PPBP 75.1 4 20.96
CRP 157.9 1 20.92 IFNAR1 33.6 21 20.84 PPIA 44.8 7 20.86
CSF2 131.4 5 20.52 IFNAR2 33.5 21 0.26 PTPRC 196.9 1 20.38

CX3CL1 56.0 16 20.17 IFNB1 21.1 9 20.52 PVRL4 159.3 1 0.91
CXCL1 75.0 4 0.90 IFNG 66.8 12 20.52 RNPC2 33.8 20 20.84
CXCL2 77.2 4 0.64 IFNGR2 33.7 21 0.34 SLAMF1 158.9 1 20.68
CXCL3 77.2 4 20.50 IFNW1 21.1 9 0.75 SLAMF6 158.7 1 0.72
CXCL5 78.7 4 20.97 IGSF4B 157.4 1 20.95 SLAMF7 159.0 1 20.61

CXCL6 75.2 4 20.81 IGSF8 158.3 1 0.19 SLAMF8 158.1 1 20.91
CXCL9 75.1 4 0.42 IGSF9 158.2 1 0.26 SLAMF9 158.2 1 20.92
CXCL10 75.1 4 20.47 IL10RB 33.6 21 20.76 SLC11A1 219.0 2 20.87
CXCL11 74.9 4 20.67 IL13 132.0 5 20.55 SLPI 43.3 20 20.85

CXCL13 77.1 4 20.48 IL18R1 102.4 2 0.16 SPBPBP 75.1 4 20.72
DEFA1 6.8 8 0.32 IL18RAP 102.4 2 0.20 STOM 123.2 9 20.67
DEFA3 6.9 8 0.83 IL1A 113.3 2 20.60 STOML1 72.1 15 0.81
DEFA4 6.8 8 0.85 IL1B 113.3 2 0.60 SYK 92.7 9 20.40
DEFA5 6.9 8 0.81 IL1F10 113.5 2 20.95 TGFB1 46.5 19 20.67

DEFA6 6.8 8 0.91 IL1F5 113.5 2 20.92 THY1 118.8 11 20.90
DEFB1 6.7 8 20.52 IL1F6 113.5 2 20.76 VAV1 6.8 19 20.91
DEFT1 6.8 8 0.32 IL1F7 113.4 2 20.86 VAV2 135.7 9 20.97
ETF1 137.9 5 20.82 IL1F8 113.5 2 20.34 VAV3 108.1 1 20.95

Detecting selection in human genes W. Amos & C. Bryant 1591

Proc. R. Soc. B (2011)



1592 W. Amos & C. Bryant Detecting selection in human genes
genomic regions where SNP variability either fails to

decline or actually increases with distance from Africa.

Assays of regions around human genes reveal how key

immune gene classes tend to show extreme SNP slopes,

with antigen presentation genes having the most positive

slopes and genes associated with defence against bacterial

infection showing the most negative. Focusing on 168

immune genes studied previously [28], we find good

agreement with the original conclusions in terms of

genes experiencing directional selection, but also identify

several candidate gene families that appear to be under

balancing selection.

Previous methods for detecting the action of natural

selection on the human genome have met with mixed

success [4]. Apart from the obvious problem of false

positives that applies to all genome-wide analyses,

many of the other methods rely on identifying regions

of the genome with unusual characteristics, such as

high levels of linkage disequilibrium or SNP density.

Such approaches could be powerful with a complete

understanding of how recombination and mutation

events occur, but as yet we do not have this. Instead,

it seems that recombination and mutation events tend

to cluster with each other [42], and that rates can vary

over periods of evolutionary time as short as that

which separates humans and chimpanzees [11,32,43].

Also, mutations may be more common near to microde-

letions [44] or simply to each other [33]. Such

uncertainties make the interpretation of the distribution

of SNPs within any given population difficult. Methods

based on finding SNPs with unusually high differences

in allele frequency among populations potentially over-

come these issues, but are in turn hampered by

ascertainment bias, the phenomenon in which the

discovery process may favour SNPs with unusually

large allele frequency differences among populations

[45,46], which would exacerbate the (already

non-trivial) issue of false positives.

Our new method offers two potentially important

advantages over other methods. First, by comparing

levels of variability among global populations relative to

a well-defined expectation, the strong linear decline with

distance from Africa, many of the problems associated

with not knowing how patterns of linkage disequilibrium

and mutations came to be distributed are avoided.

Second, although ascertainment bias has the clear poten-

tial to enrich for SNPs that give large Fst values, our

method averages heterozygosity over many SNPs, redu-

cing greatly the impact of one or a few unusual markers.

A further aspect of our approach is that it detects selec-

tion over a well-defined time scale, specifically the

period in which humans colonized the world from

Africa, somewhat over 50 000 years. On the one hand,

this means our method is inappropriate, for example, in

detecting selection acting on humans before they left

Africa. On the other hand, having a known period may

allow substantial future refinement, for example by

modelling the impact of recombination.

A further benefit of our method is that it detects sev-

eral different forms of selection, including balancing

selection. Balancing selection has previously proved dif-

ficult to detect [12], despite evidence that it affects a

number of genomic regions [14,47]. The key issue is

that the primary prediction of balancing selection, that
Proc. R. Soc. B (2011)
of maintaining locally higher levels of heterozygosity

[27], is difficult to distinguish within a population from

other factors such as the presence of mutation hotspots

[48–50]. However, when a population goes through a

bottleneck and as a result suffers genome-wide loss of

neutral diversity, those regions experiencing balancing

selection should stand out as islands where diversity has

been unusually retained. Our approach appears to show

this, both through the fact that microsatellites with

higher than expected variability for their repeat number

lie in genomic regions where variability has not declined

across the world, and through the fact that genes most

known for balancing selection, those associated with

antigen presentation, also lie in these areas.

Our approach remains somewhat crude. The analysis

presented is based only on seven populations, three of

which are in Africa, and using a point of origin for the

decline of variability, Addis Ababa, which was chosen

somewhat arbitrarily and which should probably be

replaced by a location lying more in central southern

Africa [19,23,25]. Use of more populations could help

immensely, particularly the inclusion of populations

from South America, the part of the world most distant

from Africa. Another improvement involves ascertain-

ment bias during the discovery process [46]. Although

we believe that ascertainment bias impacts rather little

on our analysis overall, there remains a concern that

locally one or a few unusual SNPs could impact our

analysis. Use of larger SNP datasets based on markers

developed so as to minimize bias would help reduce this

potential problem further. Arguably the biggest improve-

ment is likely to be achieved through a more sophisticated

statistical analysis. We currently treat all SNPs as equal

and independent (in the sense that we do not recover

phase), even though it is clear that recombination rates

vary widely across the genome. Algorithms that recon-

struct phase and estimate local recombination rates [32]

have the potential to yield appreciably improved estimates

of heterozygosity, based more on haplotype blocks than

on individual SNPs. A further issue relates to gene classi-

fication. When analysing all genes together we were forced

to use a pragmatic rule of counting many genes several

times, one for each GO code attracted. While this

should not bias our results in terms of creating consist-

ently high or low slopes for immune genes, it is clearly

sub optimal. More focused studies should, by their

nature, be able to avoid this problem. For example, one

might compare members of a gene family, some involved

in immune function and some not.

Finally, it is worth considering how our method works

in practice. Applied to a list of known, immune-related

genes, we find that our method tends to yield strong nega-

tive slopes when applied to ‘hits’ generated by other tests.

Strong negative slopes should indicate purifying selection,

selection that has acted to accelerate the loss of diversity

relative to neutral sites. This makes biological sense, in

that the other tests are generally aimed at detecting pat-

terns generated by this form of selection, and we can

imagine that humans encountered many new pathogens

as they moved into new areas and encountered new

foods and new climates. However, we also find several

gene clusters that yield strongly positive values, suggestive

of balancing or diversifying selection. These include:

ABC proteins, a group only recently recognized as being
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important in the immune system, but whose functions

include regulation of antigen presentation [51]; defensins,

specifically the DEFA group, involved with defence

against bacteria and antitoxin activity [52]; and IFNA, a

group of proteins with direct antiviral, antiproliferative

and immunomodulatory properties [53]. Across all quali-

fying GO codes, we find that immune-related genes are

over-represented both in genes yielding extremely high

and extremely low slopes, suggesting that immune genes

in general are more likely than average to be under

selection.

In conclusion, we present a new method for detecting

the action of natural selection on the human genome that

exploits our unusual demographic history. By using as our

null hypothesis the changes in diversity that are known to

have occurred when humans moved out of Africa to colo-

nize the world, we bypass many of the uncertainties that

attach to other approaches. Our method appears effective

in pinpointing immune-related genes as foci for natural

selection, supporting the findings of other studies [13].

Future expansion of SNP datasets to embrace further

populations and rigorous modelling to determine null

distributions for our measure should increase its power.
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