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A central question in community ecology is how the number of trophic links relates to community species

richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded

from above as the number of species increases; but empirical data suggest that it increases without

bounds. We found a new empirical upper bound on link density in large marine communities with

emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional

approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average

number of resources contributing more than a fraction f to a consumer’s diet, as a function of f. All

observed DPF follow a functional form closely related to a power law, with power-law exponents indepen-

dent of species richness at the measurement accuracy. Results imply universal upper bounds on link

density across the oceans. However, the inherently scale-free nature of power-law diet partitioning

suggests that the DPF itself is a better defined characterization of network structure than link density.

Keywords: community structure; stability; complexity–diversity; interaction strength;

species richness; food webs
1. INTRODUCTION
Relationships between biodiversity and the stability and

complexity of ecological communities are central to

understanding their assembly, structure, function and

persistence, and hence important for conservation.

Odum [1], MacArthur [2] and others initiated the

so-called complexity–diversity–stability debate nearly

60 years ago. By now, we learned that the answers to

the questions asked then critically depend on their precise

formulation [3]. Here we address one specific set of ques-

tions—originally posed by MacArthur [2,4] and May [5]

and still being discussed today [6–8]—concerning the

relation between the number of species S and the

number of trophic links L (i.e. consumer–resource

pairs) in large natural food webs. Because link counts L

inevitably increase with community size, they are ‘normal-

ized’ (descaled) by dividing by the potential number of

links, giving the connectance or ‘complexity’ C ¼ L/S2,

or by species richness, giving the link density Z ¼ L/S of

the community (see table 1 for a list of symbols).

Mathematical arguments and simulations by Gardner &

Ashby [4], May [5] and others (using simple models of

large random communities) showed that there are upper

limits to link density, Z ¼ CS, beyond which community
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steady states become unstable, ultimately leading to

species extinctions [9]. Communities with numerically

large Z should therefore not be observable in the field.

Early empirical studies appeared to confirm this predic-

tion (e.g. [10,11], but later work using larger food-web

datasets contradicted the theoretical expectations (e.g.

[8,12–15]). In these studies, scaling laws such as Z/ Sa

were found, with values of a ranging from 0.3 [15] to 1

[14], conforming with the long-standing empirical intui-

tion that ‘complexity begets stability’. These observations

motivated an intense search for mechanisms that could

stabilize communities with large S and Z (e.g. [16–25]).

However, there are a number of issues that, although

known and acknowledged in principle [7,26–31], have

not been fully and jointly accounted for in the analyses

of food-web data.

Three facts in particular are important: most trophic

links are weak [32,33] empirical food-web datasets vary

in their resolution of taxonomic or functional groups

[27,28], and criteria for recording or excluding particular

trophic links vary between datasets [30]. Without giving

these three issues sufficient consideration, conclusions

drawn from analyses of food-web topologies regarding

complexity–diversity and complexity–stability relations

might be premature.

To overcome these problems, we use here the diet-

partitioning function (DPF), proposed by Rossberg et al.

together with a protocol for calculating it from incomple-

tely resolved diet data [34]. We express link strengths in
This journal is q 2010 The Royal Society
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Table 1. List of important symbols.

symbol meaning

a, g exponents for scaling with S
n exponent for scaling of Zc with r
ni n measured in system i
n̄ sample mean of n
Dni residuals of regression of n against log-effort
C food-web connectance
E total number of non-empty stomachs sampled

ei standard error of ni

fij diet fraction: relative contribution of i to j ’s diet
f diet-fraction threshold
L number of trophic links in a food web

r diet-ratio threshold ¼ f/(1 2 f )
S species richness
Sc consumer species richness
Sp producer species richness
Sfish fish species richness

sn sample standard deviation of n
Z links per species
Zc links per consumer
Zc( f ) diet-partitioning function (DPF)

A
B

C

D

E

F

G

Figure 1. Approximate locations of sampling sites.
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terms of gravimetric or volumetric diet fractions, i.e. pro-

portional contributions to a consumer’s diet—a common

theoretical [35] and empirical [30,31] convention—such

that fij is the fraction of the total diet of species j that is

made up of species i. The DPF Zc( f ) is defined as the

community average of the number of prey species that con-

tribute more than a fraction f to the diet of a consumer

species, where f takes values between 0 and 1. The value

of Zc( f ) can be interpreted as the mean number of trophic

links per consumer, where only those links that are stronger

than f are counted.

If Sc is the number of consumer species and Sp is the

number of producer (autotrophic) species in a commu-

nity (so that Sc þ Sp ¼ S) then, irrespective of the

criterion for counting links, the consumer link density

Zc ¼ L/Sc must always be larger than the link density

Z ¼ L/(Sc þ Sp), because Sp . 0. Since Zc equals the

mean number of prey per consumer, it can be estimated

from a sub-sample of consumer species. It is therefore

measured more easily than Z for large communities.

In this paper, we use Zc to test whether there is an

upper bound to Z; specifically, we test if Zc increases

with species richness S because, if it does not, then

Zc . Z implies that Z must be bounded from above for

increasing S. Conversely, an unbounded increase of Z

with S implies an unbounded increase of Zc with S.

Counting only links stronger than f, but keeping f vari-

able, we report estimates of Zc ¼ Zc( f ) in relation to S,

taken from seven different marine stomach-contents data-

sets. Based on our analysis, we will argue that the DPF

Zc( f ) itself might be a more suitable characterization of

communities than any particular value Zc extracted

from it.
2. MATERIAL AND METHODS
(a) Calculation of DPF

We use the diet ratio rij ¼ fij /(1 2 fij), comparing the contri-

bution of the ith diet item to the sum of all other
Proc. R. Soc. B (2011)
contributions to the diet of j, as an alternative measure to

the diet fraction fij. Diet ratios can attain values in the

range [0;1] and, like ‘odds’ in statistics, are the natural

choice on logarithmic scales.

The basic idea underlying the correction of the DPF for

unresolved diet items is to first count only those diet items

that are resolved to species level, and then to compensate

for the proportion of diets left out. A detailed illustration of

the method and hands-on instructions for its implementation

are given in electronic supplementary material, appendix S1.

For a systematic derivation, see Rossberg et al. [34].

(b) Diet data

The DPF Zc( f ) was computed for seven stomach-contents

datasets (labelled A–G) of marine fish and squid [36–40].

As illustrated in figure 1, sample sites span a broad

latitudinal range. Key properties of the datasets are listed in

table 2. Data sources differ considerably by sampling

methods, sampling efforts and the kinds of species included.

Details are discussed in electronic supplementary material,

appendix S2.

(c) Fitting curves to observed DPF

Characterizations of the DPF in terms of theoretical or heur-

istic models should be based only on a range of diet fractions

f for which the data are reliable. For obvious practical

reasons, actual or conceivable diet items making very small

(rare) contributions to a consumer’s diet are unlikely to be

observed and recorded, leading to an underestimation of

the DPF for low threshold values. As f increases, the prob-

ability of observation gradually increases, up to a point

above which sampling is essentially complete and empirical

DPF, while still exhibiting measurement errors, are unbiased.

Based on the number of non-empty stomachs sampled

per consumer, we assume this point to be somewhere

below f ¼ 0.02, i.e. that sampling of contributions larger

than f ¼ 0.02 is essentially complete (see also electronic sup-

plementary material, supplementary discussion S6). In terms

of diet ratios, this corresponds to the range 0.02�r � 50,

which we shall call the reliable range.

Models for the DPF, such as equation (3.2) below, were

fitted to the data over this reliable range by a likelihood max-

imization technique. Details of the procedure are described

in electronic supplementary material, appendix S3.

(d) Species richness

Traditionally, diversity–complexity studies measure diversity

by the numbers of nodes distinguished in empirical food-web

datasets. Since here only sub-samples of food webs are

used, information on species richness has to be obtained

independently. Fortunately, only relative richness estimates



Table 2. Datasets included in the analysis.

dataset

Sfish

AquaMaps

Sfish

FishBase þ OBIS

consumer species

included

resource species

resolved

non-empty

stomachs

(A) N.-W. Atlantic Shelf I 247 645 146 767 29 032

(B) N.-W. Atlantic Shelf II 247 645 117 216 50 027
(C) Open North Atlantic 335 679 17 19 188
(D) Open Tropical Atlantic 340 179 18 24 357
(E) North Sea 103 192 15 91 5599
(F) South China Sea 512 3827 18 14 �1007

(G) Eastern Bering Sea 92 250 25 137 17 688
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Figure 2. Comparison of seven empirical DPF from six
marine areas. The diet ratio r is the contribution of one
prey species to a consumer’s diet relative to all other contri-

butions. Solid lines: datasets A–G. Dashed line: power-law
equation (3.2) with n ¼ 0.54. Red, A; green, B; blue, C;
violet, D; pink, E; orange, F; light blue, G.
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are required for our argument. Further, as shown in a

detailed, quantitative discussion of these questions in

electronic supplementary material, supplementary discussion

S6.2, rather coarse richness estimates are sufficient to

support our main conclusion.

We use estimates of species richness based on the

FishBase [41], OBIS [42] and AquaMaps [43]. These data-

bases have global coverage, and therefore allow us to obtain,

with a few exceptions, richness estimates specific to the study

sites considered here. All three databases are substantially

more detailed for fish than for most other taxa. To reduce

biases owing to data gaps, relative richness is therefore

measured in terms of richness of fish, Sfish, including

Actinopterygii, Chondrichthyes and Agnatha for FishBase

and OBIS, and only Actinopterygii (the dominating taxon)

for AquaMaps. Overall, marine species richness is known

to follow the same global trends as that of fish, with some

variation in details [44]. This fact and the low demands on

accuracy mentioned above justify our choice of Sfish as an

estimate of relative richness. This measure has the additional

advantage that its empirical uncertainty has been quantified

[45], allowing a quantification of the uncertainty this implies

for our main results. As shown in electronic supplementary

material, supplementary discussion S6.2, this uncertainty

is small when compared with that stemming from the

dietary analysis.

Despite this robustness to uncertainties in richness esti-

mates, we performed our analysis using two sets of values

for Sfish, one derived from AquaMaps, the other from Fish-

Base and OBIS. The reason is that both approaches have

specific strengths: FishBase þ OBIS data are based on direct

observations and therefore methodologically more transpar-

ent; AquaMaps is more robust to data gaps, and richness

estimates specific to the delineations of the study areas A–G

can be obtained (see electronic supplementary material,

appendix S4 for details). Estimated species richnesses Sfish

are listed in table 2. The much lower FishBase þ OBIS rich-

ness in the Tropical Atlantic (set D) when compared with

the North Atlantic is inconsistent with other estimates [44]

and most likely attributable to data gaps [42].

Because the FishBase richness estimate for fish in the

‘South China Sea’ (3827) is considerably larger than our esti-

mate for study area F using AquaMaps (512, the most

species-rich study area), the nominal accuracy of the esti-

mated slope of link density versus diversity turns out to be

substantially higher when using the FishBase þ OBIS data.

To caution against inflated accuracy, we therefore conserva-

tively report detailed results using the AquaMaps richness

measures below, followed by short summaries of the

corresponding results using FishBase þ OBIS.
Proc. R. Soc. B (2011)
3. RESULTS
(a) Computation and characterization of

empirical DPF

The DPF estimated from sets A–G are shown in figure 2,

with the threshold f expressed as a diet ratio, r ¼ f/(1 2 f ).

Surprisingly, all DPF except for set C (blue) match a

single curve, suggesting the possibility of a universal law

for diet partitioning within these communities. Over the

reliable range in r (see §2c), 0.02 � r�50, the curves

appear to follow power laws (straight lines in log–log

graphs), mirroring a recent similar observation of power

law [46] rather than exponentially distributed [32,33]

trophic fluxes.

This allows us to describe the DPF in the power-law

form: Zc ¼ Kr2n. The constant of proportionality K can

now be computed from the condition

ð1

0

Zcð f Þdf ¼ 1; ð3:1Þ

which follows from the fact that all diet fractions of a con-

sumer add up to one [34]. One obtains K ¼ p21n21

sin(pn) for 0 , n , 1, giving

Zc ¼
sinðpnÞ

pn
r�n ¼ sinðpnÞ

pn

f

1� f

� ��n
: ð3:2Þ



Table 3. Results of maximum-likehood fits of three functional forms to the observed DPF.

assumed functional forma: Zc / r2n Zc/max[ln(c2/r),0] Zc / exp(2c1r)

dataset n+ s.e.m. d.o.f. x2 p x2 p DAICb x2 p DAICb

(A) N.-W. Atlantic Shelf I 0.53+0.03 56 35.3 0.99 506.9 ,1029 998.2 415.3 ,1029 338.1
(B) N.-W. Atlantic Shelf II 0.56+0.04 44 33.2 0.88 224.5 ,1029 393.4 223.0 ,1029 165.4
(C) Open North Atlantic 0.30+0.09 10 13.5 0.20 79.3 ,1029 98.5 26.3 0.003 9.4
(D) Open Tropical Atlantic 0.55+0.11 19 10.7 0.93 38.3 0.005 34.5 30.8 0.04 8.1
(E) North Sea 0.50+0.10 20 10.2 0.96 47.2 0.001 47.7 26.2 0.16 6.3

(F) South Chinese Sea 0.43+0.12 13 11.3 0.58 52.6 1026 51.4 25.2 0.02 7.1
(G) Eastern Bering Sea 0.58+0.07 22 25.3 0.28 111.2 ,1029 145.3 63.9 1025 25.5

an, c1, c2 are fitting parameters; proportionality constants are given by equation (3.1).
bExcess AIC relative to power-law fits; positive values indicate that power law is the preferred model.

1620 A. G. Rossberg et al. Universal power-law diet partitioning
Beyond the reliable range, when r � 0.02, the empiri-

cal DPF in figure 2 decline in slope to near zero,

clearly deviating from power laws. This may result from

incomplete sampling of small diet fractions, but may

conceivably show a true underlying deviation from

power laws at very low diet-ratio thresholds. We consider

resolving these possibilities in electronic supplementary

material, supplementary discussion S6, and here restrict

our analysis to the reliable range (0.02 � r�50), addres-

sing the following three questions: (i) are the empirical

DPF consistent with power laws over the reliable

range in r? (ii) What values of the exponent n best fit

the empirical DPF over the reliable range? (iii) How do

the fitted values vary among study sites?

Estimates of n from maximum-likelihood fits of

the power law (3.2) to the empirical DPF over the

reliable range and related statistics are listed in table 3

(details provided in electronic supplementary material,

appendix S3). Goodness-of-fit by x2-statistics shows

that all empirical DPF are compatible with power laws

(table 3). For comparison, models with exponential and

logarithmic dependencies of Zc on r score considerably

worse by x2-statistic and by the Akaike Information

Criterion (AIC, see table 3 and also electronic

supplementary material, appendix S3).

Thus, over the reliable range, all DPF Zc( f ) statisti-

cally match power laws that are wholly characterized by

the exponent n. For power-law DPF, constancy of n

over a range of species richness Sfish implies constancy

of consumer link density Zc( f ) at varying species richness

for any value of the diet-fraction threshold f. Compari-

sons of link densities across study areas are therefore

most efficiently carried out as comparisons of the fitted

exponents n across study areas.
(b) Comparison of the power-law

exponent n across study sites

The maximum-likelihood fitting procedure for the power-

law equation (3.2) yields Cramér-Rao lower bounds as

estimates for the standard errors ei of the fitted parameter

n (table 3) for each dataset i. This information (not enter-

ing conventional regression analysis) was used to estimate

the accuracy of fitted regression models. Specifically, 106

Monte Carlo simulations of the null model

ni ¼ n* þ eiji ði ¼ 1; . . . ;7Þ ð3:3Þ

with standard-normal ji were generated. Species rich-

nesses and sampling efforts were fixed as in table 2,
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and, without loss of generality, we set n* ¼ 0. By evaluat-

ing the simulated data just as the measured data, standard

errors of regression coefficients and p-values for null

hypotheses were obtained. Confidence intervals were

computed by offsetting the corresponding distributions

of the simulated data by the estimated values obtained

from the measured data (which is admitted by the linear-

ity of the regression models and the symmetry of standard

normal distributions).
(i) Cross-site comparison of exponents

without correction for effort

Assuming that the power-law exponents for all study sys-

tems share a common value, the maximum-likelihood

estimate n̄ for this value can be computed as the weighted

average of the values listed in table 2, with the weights

chosen as the inverse variances of the estimation errors

1/ei
2. In what follows, all means and regressions are

computed with this weighting of datasets. We obtain

n̄ ¼ 0.54(2) (digits in parenthesis represent standard

errors estimated using model (3.3)).

To test the null hypothesis that all exponents are equal,

we computed the statistic SS0 ¼
P

i(ni 2 n̄)2ei
22 ¼ 8.4.

Comparison with model (3.3) shows that data are consist-

ent with this hypothesis at p ¼ 0.21, that is, SS0

computed using simulated data from model (3.3) is

larger than the empirical value in 21 per cent of all cases.

The weighted sample standard deviation of n is sn ¼

0.032, giving a coefficient of variation CV ¼ sn /n̄ ¼ 0.06.

By an argument detailed in electronic supplementary

material, supplementary discussion S6.2, this small CV

itself strongly constrains the scope for any systematic vari-

ation of n with species richness, independent of the

particular measure of species richness used.

However, specific tests for the dependence of n on

species richness have stronger statistical power than, e.g.

the simple test for equal means above. For example, a

regression of n against AquaMaps estimates of species

richness Sfish yields n ¼ 0.62(7) 2 0.00040(27) Sfish.

The 95 per cent confidence region for this regression,

together with measured n values, is shown in figure 3a.

Despite the weak negative trend, the regression coefficient

is consistent with the null hypothesis that n is independent

of Sfish at p ¼ 0.14.

Using the FishBase þ OBIS richness estimates, the

slope of the regression of n on Sfish becomes

20.000034(36), consistent with zero at p ¼ 0.35.

Inclusion or exclusion of dataset D in this analysis (for
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Figure 3. Dependencies of diet-partitioning exponent n on
species richness and sampling effort. Each point represents

one dataset. In (c) n is corrected for effort. Error bars indicate
s.e. Dotted lines are regressions of n against (a) species rich-
ness, (b) inverse effort and (c) both. Shaded areas in panels
(a) and (c) indicate 95% confidence regions of regression
lines.

Universal power-law diet partitioning A. G. Rossberg et al. 1621
its questionable richness estimate) gives numerically

identical results.

(ii) Cross-site comparison of exponents with correction for effort

Figure 3b shows empirical values of n drawn against

sampling effort E, measured in terms of the number of

non-empty stomachs analysed. The graph indicates a

weak dependence of n on effort. To check this hypothesis

we compared the AIC for model fits of the forms n ¼ a

(DAIC ¼ 0), n ¼ a þ bE (DAIC ¼ 20.98), n ¼ a þ bE21

(DAIC ¼ 23.95) and n ¼ a þ b log E (DAIC ¼ 23.01).

While not unequivocal, the negative DAIC for the last

three models suggest that values of n are somewhat

biased by sampling effort. A bias proportional to E21

(third model) is favoured by the AIC and appears plaus-

ible because asymptotic low-sample-size biases of this

form are often encountered in statistics. The dotted line

in figure 3b is the corresponding fitted curve. It is given

by n ¼ 0.54(2) 2 40(16)E21, with the second term

describing a bias at low sampling efforts. Exponents n

corrected for this bias are shown in figure 3c.

Indeed, while numerically leaving the overall estimate

n̄ ¼ 0.54(2) unchanged, the correction for effort

improves the consistency of measured diet-partitioning

exponents n across study sites. Based on the statistic

SS ¼
P

i (Dni)
2 ei

22 ¼ 2.4, where Dni are the residuals of

the regression against E21, the null hypothesis of equal n

across study sites after correction is consistent with the

data with p ¼ 0.78 (by comparison of SS with simulations

of model (3.3), including simulated corrections for effort).
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Correction for effort also removes the weak negative

dependence of diet breadth on species richness. A com-

bined regression of n against sampling effort and species

richness (AquaMaps) yields n ¼ 0.57(7) 2 36(18)E21 2

0.00014(30)Sfish. The 95 per cent confidence region of

this regression for infinite effort is indicated in figure 3c.

Since we simultaneously regressed against effort and

species richness, this confidence region accounts for

uncertainties by both the correction for effort and the

regression on Sfish. (Strong correlations between E21 and

Sfish would broaden this region rather than narrowing it.)

Comparing the regression slope with simulations of

model (3.3), the null hypothesis that corrected n do not

depend on Sfish is fully supported (p ¼ 0.65). A statistic

characterizing the strength of the dependence of one

empirical quantity on another (rather than the strength

of evidence for a dependence) is the elasticity at the

sample means ([47], see also electronic supplementary

material, appendix S6.2), obtained by normalizing the

regression slope to the sample means of the two variables.

With weighted mean species richness S̄fish ¼ 243.1, the

elasticity of the dependence of n on Sfish evaluates to

20.06(14). When assuming a power-law relation between

n and Sfish, we obtain n ¼ 0.67(Sfish)20.04 with a 95% con-

fidence interval (20.12, 0.25) for the exponent, again

after correcting for insufficient sampling (and using an

adaptation of model (3.3) to handle this case).

When using FishBase þ OBIS richness estimates, the

p-value for independence of n from Sfish becomes 0.42

when including set D and 0.55 when excluding it. The

regression slope for the dependence of corrected n on

Sfish becomes 20.000029(36) (elasticity 20.036(45)) when

including and 20.000022(37) (elasticity 20.028(47))

when excluding set D.

All results reported above are consistent with constant

n, and therefore constant consumer link density across

study systems, and the data impose tight bounds on

any conceivable dependence of link-density on species

richness.
4. DISCUSSION
(a) Diversity–complexity implications

We found that, to the accuracy of our analysis, all DPF

followed a power law over the reliable range, which

covers more than three orders of magnitude in diet

ratios, and that the power-law exponent n is independent

of species richness Sfish. We cannot exclude a weak

positive or negative dependence of n on species

richness, but a steady decline of n to zero as Sfish goes

to zero seems unlikely in view of the low upper

bound for the exponent of a conceived power-law relation

n/ Sfish
g (20.25 �g � 0.12).

If the DPF exponent n is independent of local species

richness, then so is consumer link density Zc( f ) at any

fixed threshold f within the reliable range. This, in turn,

implies an upper bound on the conventional link density

Z (with links thresholded at f ) that is independent of

community size. This means that Z could, for example,

approach some constant, or may steadily decrease as

species richness increases. Even if the DPF slightly

deviated from a perfect power law, this would lead only

to small additional uncertainties and not affect the role

of Zc( f ) as an upper bound on Z. Observations and
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theory suggest that consumers have broader diets at

higher trophic levels [23,48], so the inevitable over-

sampling of consumers from higher trophic levels will

rather over- than underestimate Zc, reinforcing the

interpretation of Zc as an upper bound for Z.

Despite these clear findings, it is not a simple matter to

draw definite conclusions in terms of link density Z or

consumer link density Zc, as that would raise questions

such as how link strength is best measured, how the

threshold f is best chosen, if it might need to be adjusted

with system size, or if simply all links have to be counted

( f ¼ 0). Such questions (addressed in depth in electronic

supplementary material, supplementary discussion S6.3)

relate much more to what, by definition, should count

as a ‘trophic link’ than to actual ecological phenomena.

The power-law nature of the DPF reinforces these

questions, because power laws are, in contrast to other

kinds of functional relationships, ‘scale free’ [49]. This

means that a characteristic scale of the independent

variable (here r) is not implied in the functional rela-

tionship itself.

To sidestep the question how trophic links are to be

counted (or weighted, see [8]), we wish to suggest refor-

mulating the basic problem addressed here as a problem

concerning relations between the distribution of trophic

link strengths and local species richness (both, by specific

measures). Specifically, we asked here if the DPF changes

as species richness changes across the oceans. The answer

we found was that, for fish and squid, stomach-contents

data showed no significant changes, so implying a

universal form: that of the power law, equation (3.2) (at

least in the range of diet ratios 0.02 � r�50). These

findings were anticipated by figure 2, and the subsequent

statistical analyses fully confirmed them.

In electronic supplementary material, supplementary

discussion S6.1, we detail a possible explanation for the

universal power law; essentially that it arises from zoom-

ing into the upper tail of a diet-ratio distribution that

is broad on a logarithmic scale (see [49] for a general

discussion of power laws and mechanisms). But this

explanation does not clarify why the exponent n attains

a universal value. Further study will be needed to under-

stand the underlying mechanisms. This may be achieved

by adapting theories that invoke the presence or absence

of trophic-link to situations with broad distributions

of link strengths on logarithmic scales. Good starting

points might be theories examining limits to link

density through limits to the stability [5], invadibility

[50] or feasibility [51] of communities, and limits on

the occurrence of—potentially destabilizing [52]—loops

in interaction networks [53]. Generalizations of such

theories will express the respective limits in terms of

the DPF or similar characterizations of link-strength

distributions.

Our characterization of the DPF is currently valid

down to diet fractions of 0.02 and it is not yet clear

whether this resolution is sufficient to distinguish between

different theories for mechanisms controlling link density,

or to judge what the implications of the observed DPF are

for ecosystem properties such as stability, invadibility or

feasibility. Only with the more general theories at hand

will we be able to answer these questions. As an illus-

tration, let us speculate that the diet fractions fij of a

consumer j enter a relevant theoretical formula, e.g.
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through

c�j ¼
P

i f 2
ijP

i fij
¼
X

i

f 2
ij ; ð4:1Þ

a quantity closely related to Lloyd’s [54] ‘mean crowding’

[55]. ‘Niche breadth’ sensu Levins [56] is simply the

inverse ðc�j Þ
�1

[55]. Invoking the probabilistic inter-

pretation of the DPF [34], the expectation value of c�j
is computed in electronic supplementary material,

appendix S5 as

Ec�j ¼ �
ð1

0

f 2Z 0cð f Þdf ð4:2Þ

(where Z 0c( f ) ¼ dZc( f )/df ). For power-law DPF follow-

ing equation (3.2) with 0 , n , 1, this integral evaluates

to Ec�j ¼ ð1� nÞ. With the exponent n ¼ 0.54 previously

found, Ec�j ¼ 0:46. How much uncertainty does our

inability to resolve the DPF for f , 0.02 add to this

result? Consider the extreme and obviously counterfac-

tual (figure 2) case that no diet fractions ,0.02 exist at

all. The corresponding DPF is constant for f � 0.02,

and requires a correction of normalization according to

equation (3.1). With this DPF, formula (4.2) evaluates

to Ec�j � 0:52. The resulting uncertainty in Ec�j is 0.06

(plus the measurement uncertainty in n of similar magni-

tude). This might be sufficiently small to distinguish

between different theoretical models and predictions for

dietary diversity in the oceans. We caution, however,

that the DPF could enter theory through expressions

very different from equation (4.2), perhaps giving more

weight to small diet fractions.
(b) Separation of contributions to empirical DPF

The DPF and the diet-partitioning exponent n are highly

integrated summary statistics. To inform and constrain

theories aimed at explaining their observed constancy, a

separation of distinct contributions to these statistics

can be helpful. This shall here be illustrated by two

contrasting examples.

Define the consumer-specific DPF for a given consu-

mer species as the number of this consumer’s diet

fractions larger than a threshold value f. The (proper)

DPF Zc( f ) is the arithmetic mean of all consumer-

specific DPF over a community. Figure 4 displays

approximations of the consumer-specific DPF of all

consumers who contribute to dataset A. Immediately

apparent is the large variability among consumers. To

characterize this variability, we fixed the threshold diet

ratio at r ¼ f/(1 2 f ) ¼ 0.02 (dashed line), and computed

the cumulative distribution of the number of diet fractions

greater than f, that is, of thresholded consumer generality

[12]. The distribution is shown in the inset of figure 4.

Following Camacho et al. [57], we normalized generality

to its mean (¼Zc( f )). This allows a direct comparison

with a heuristic generality distribution function that was

shown by Camacho et al. [57] to describe binary food-

web data well (dash-dotted line). Both distributions are

characterized by a wide spread and a strong skew towards

small generality. Apparently, the large variability of consu-

mer-specific DPF reflects a corresponding phenomenon

for binary food webs, presumably resulting from phyloge-

netic clustering [58–60]. The large variability among
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Figure 4. Consumer-specific DPF for dataset A (main panel)

and distribution of generality (inset) for diet contributions
larger than r ¼ 0.02 (dashed vertical line). The dash-dotted
line corresponds to the generality distribution proposed by
Camacho et al. [57,62].
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Figure 5. Diet-partitioning exponents n (+s.e., see electronic
supplementary material, appendix S3) for each survey year
covered by datasets A and B. Filled squares, set A; filled

circles, set B; dash-dotted line, n ¼ 0.54.
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consumer-specific DPF, not found among community

DPF, suggests that the mechanism regulating the diet-

partitioning exponent n operates rather at the community

level than at species or individual level.

As a second example, figure 5 displays a time series of

yearly diet-partitioning exponents (+s.e.) computed from

datasets A and B. Each year over 1500 non-empty

stomachs were sampled, so that, by figure 3b, biases

owing to insufficient sampling are not expected. Even

though overall deviations of the yearly slopes from the

sample mean are larger than expected from the computed

standard errors (x2-test, p ¼ 0.01), these deviations are

too small to be associated with any particular structure

in the data. At the 95 per cent confidence level, the

time series shows, despite the visual impression, no sig-

nificant linear or quadratic trend, there is no significant

year-to-year correlation and no individual data point

deviates significantly from n ¼ 0.54 or the sample mean

after Bonferroni correction. We conclude that the current

empirical accuracy is insufficient for identifying temporal

variability in the diet-partitioning exponent n.

(c) Verification

The regularities in DPF that we report should be scruti-

nized and subjected to empirical testing as widely as

possible, especially since generalizations in comparative

food-web studies have often later been shaken by compre-

hensive testing [7]. For marine communities, diet data

have been collected at many sites throughout the world

and over a considerable period from the beginning of

the twentieth century onwards [38]. We would welcome

more high-quality data of this kind becoming publicly

accessible. Here we call for measurements of the DPF

at marine biodiversity hotspots, where species richness

in terms of Sfish can become many times larger than the

largest values covered in this study [43]. We also need

to better understand if, and how, the DPF changes

when including consumers at lower trophic levels, where

the diversity of both consumers and potential resources

increases considerably. Preliminary observations indicate
Proc. R. Soc. B (2011)
that even among planktonic consumers, dietary specificity

can be substantial [61].
5. CONCLUSIONS
We propose the DPF as a valuable new tool in community

ecology. Since the DPF is defined as a community-level

average, it can be estimated by averaging over sub-

samples. This allows investigating large communities

without trade-offs in taxonomic resolution or concern

about the empirical basis of link-assignment.

With the data available to us, we were unable to detect

any significant deviations from a universal power law with

exponent n ¼ 0.54(2) in the DPF of communities of fish

and squid across the oceans, using five related but differ-

ent statistical tests. Even though biodiversity varied

fivefold over the sites considered, dietary diversity did

not change noticeably. These findings are made even

more remarkable by the fact that the datasets we used

differ considerably in sampling methods and organisms.

Universal diet partitioning seems to reflect the working

of a yet unidentified ecological mechanism structuring

marine communities, which may or may not be related

to community stability. Only future observations of

deviations from DPF universality will tell how powerful

this mechanism ultimately is. Findings by Townsend

et al. [29] that link density decreases under ecosystem

disturbance are noteworthy in this context.
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