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The provenance of white sharks (Carcharodon carcharias) in the Mediterranean is both a conundrum and

an important conservation issue. Considering this species’s propensity for natal philopatry, any evidence

that the Mediterranean stock has little or no contemporary immigration from the Atlantic would suggest

that it is extraordinarily vulnerable. To address this issue we sequenced the mitochondrial control region

of four rare Mediterranean white sharks. Unexpectedly, the juvenile sequences were identical although

collected at different locations and times, showing little genetic differentiation from Indo-Pacific lineages,

but strong separation from geographically closer Atlantic/western Indian Ocean haplotypes. Historical

long-distance dispersal (probably a consequence of navigational error during past climatic oscillations)

and potential founder effects are invoked to explain the anomalous relationships of this isolated ‘sink’

population, highlighting the present vulnerability of its nursery grounds.
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1. INTRODUCTION
The movement of marine megafauna around the

globe has significant and lasting consequences for ecosys-

tems, especially where those species are top predators

[1,2]. Some are known to undertake long transoceanic

migrations [3–6], with an attendant risk of navigational

error. Observations that water temperature appears to

influence the movements of many marine species, includ-

ing sharks [7,8], has led to the suggestion that thermal

fronts may act as navigational cues during migration

[9]. Such cues are easily disrupted during periods of

climate change, producing anomalous distributions of

some species [10]. Most of these instances probably

go unnoticed, or remain little more than a historical anec-

dote, having no significant or lasting effect on the species’

global distribution or on the ecosystem in which they

become resident [2]. However, for species exhibiting
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natal female philopatry, such navigational errors may

result in a founding population becoming closely associ-

ated with a new location, often outside the normal

home range of the source population or well beyond the

species’ usual distribution. Once established as a top

predator in a new location such founders may become

effectively isolated, making them a vulnerable yet highly

significant component of the ecosystem.

A wide-ranging species inhabiting sub-polar to tropical

seas of both hemispheres, the great white shark,

Carcharodon carcharias (Linneaus, 1758) has been docu-

mented in the Mediterranean [11,12]. The oldest white

shark material preserved in Europe dates from 1640 to

1660; however, the capture date and locality are unknown

[13]. Records of Mediterranean white sharks date back to

the 1820–1850s, mainly from Italy [14] or Sicily [11].

However, the first legitimate scientific record of Mediter-

ranean white sharks probably dates to 1901, when a 4.5 m

female caught off the coast of Capo San Croce, Augusta,

eastern Sicily was dissected, revealing three human

corpses [15]. White sharks are recorded from all coasts

of the Mediterranean western basin, most frequently the

eastern side, with the most consistent reports in the
This journal is q 2010 The Royal Society
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Sicilian Channel and nearby waters. In the eastern basin,

most observations are from the north, particularly the

Adriatic, while the warmer, more saline south-eastern

region returns infrequent records. Instances of large

mature individuals, neonates and pregnant females in

these waters [11,16,17] imply the existence of pupping

and nursery grounds. However, there are no accounts of

the origin and genetic profile of Mediterranean white

sharks owing to rarity of samples.

The global phylogeography of C. carcharias is yet to be

studied comprehensively. Nuclear gene flow throughout

the Indian Ocean, and highly distinct mitochondrial

haplotypes from populations either side of both the

Indian and Pacific Oceans, suggest female philopatry

and long-term isolation [18]. However, the evolutionary

history of remaining disjunct populations is poorly known.

Concordant with the hypothesis of natal philopatry, tagging

studies reveal that although this species makes rapid and

long transoceanic movements in both the Indian Ocean (a

round trip of 11 100 km [3]) and northeast Pacific (traver-

sing 2000–5000 km [19]), individuals adhere to a highly

predictable cycle, persistently returning to natal coastal

locations following migration [3,19,20], a behaviour which

places populations at risk from local threats.

Evidence of dramatic population declines in large

predatory sharks in the Mediterranean [21] and the

potential consequences of trophic cascade [1] make it

imperative to determine the utilization and connectivity

of natural populations in vulnerable areas such as nur-

sery/pupping grounds, especially in species exhibiting

natal philopatry. Here, we report the first genetic analysis

of Mediterranean white sharks, using the mtDNA control

region. To elucidate the origins and relationships of rare

Mediterranean white sharks to other stocks their haplo-

types were compared with those from the north-eastern

Pacific (NEP; California) [19], south-western Pacific

(Australia, AU; and New Zealand, NZ), western Indian

Ocean (South Africa, SA) [18] and the north-west

Atlantic (NWA).
2. MATERIAL AND METHODS
(a) Specimens

Mediterranean samples consisted of ethanol-preserved heart

tissue from two neonate sharks caught off the coast of

Altinoluk in the Bay of Edremit in the north-eastern

Aegean Sea (eastern Mediterranean basin, Turkey) on 1

and 4 July 2008 (from separate parents [17]), a fin clip

from a juvenile caught in Aras Dizra, Tunisia (also eastern

Mediterranean basin) on 20 April 2006 [22], together with

dried tissue from a shark caught in a tuna net off

Favignana, Sicily (western Mediterranean basin) in the late

1980s. Additionally, two NWA fin clip samples (immature

males, caught 1994) were collected off the west Florida

coast, USA.
(b) Molecular methods and analysis

Genomic DNA was extracted by phenol–chloroform pro-

cedures, and the mtDNA control region amplified using

primers and conditions from Pardini et al. [18]. Amplified

products were purified using QIAquick (QIAGEN) columns

and commercially sequenced. Work on the historical sample

was undertaken in a shark-DNA-free laboratory, under
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sterile conditions, with tools and surfaces cleaned frequently.

Blank samples were used to verify lack of contamination.

The six new sequences were aligned using CLUSTALX

[23] against 49 previously published sequences [18,19]

including animals sampled in the south-eastern Pacific

(AU and NZ; AY026196–AY026209, AY026211), NEP

(GU002321–GU002302) and western Indian Ocean (SA;

AY026210, AY026212–AY026224). Additionally, two

sequences from the porbeagle (Lamna nasus) were used as

an outgroup. Measures of haplotype (h) and nucleotide (p)

diversity were calculated with ARLEQUIN v. 3.1.1 [24].

A median-joining network was constructed to depict haplo-

type relationships using NETWORK [25]. Based on

likelihood-ratio tests (MODELTEST 3.7 [26]), the most

appropriate model of evolution was the HKY þ G model,

with a gamma distribution parameter of 0.5332. Phyloge-

netic relationships were examined using MRBAYES v. 3.1.2

[27]. Markov chain Monte Carlo (MCMC) simulations

were run for 2 000 000 generations, and the first

10 per cent less-optimal tree generations were discarded

as ‘burn-in’. PHYML v. 3.0 [28] was also used to calculate

the maximum-likelihood tree. An alternative tree topology

(NWA/SA as sister clade to the Mediterranean) was compared

with the ML inferred tree using the Shimodaira–Hasegawa

(SH) test, as executed in PAUP* v. 4.0b10 [29] with RELL

approximations and 1000 bootstrap replicates to produce a

null distribution of differences in log-likelihoods. The SH

test compares the difference in log-likelihoods of competing

tree topologies. Finally, evolutionary rates for the control

region were calculated in two steps: initially, the nucleotide

substitutions per site (Da) were calculated between sequences

from the Pacific (AU, NZ, NEP) versus either the Atlantic

(NWA) or eastern Indian ocean (SA) using DNASP v. 5.10

[30], and calibrated with either the rise of the Panama

Isthmus (3.5 Ma [31]) or Sunda-Sahul shelves (5 Ma [32];

the most protracted and, for an epipelagic species, the most

significant lineage-splitting period of sea level drop early in

white shark evolution).
3. RESULTS
A 1083 bp sequence of the mtDNA control region was

obtained for five of the new samples (three Mediterranean

and two NWA; accession nos HQ540294–HQ540298).

Overall, 95 polymorphic sites revealed 45 haplotypes

(figure 1) from 54 sequences examined, showing that

C. carcharias exhibits the highest haplotype (0.9888+
0.0075) and nucleotide (0.0223+0.0110) diversities of

any shark studied to date [33–36]. Summary statistics

for each population are given in electronic supplementary

material, table S1. Yet remarkably, three of the four

Mediterranean (MED) samples shared the same

haplotype (GW34), whereas each NWA sample was

unique (GW43, GW44). The median-joining network

indicates that the MED haplotypes show little genetic

differentiation from Indo-Pacific sharks, with only five

mutational steps separating them from either NEP

(GW18 and GW17) or NZ (GW31; figure 1), and

six steps from AU (GW30 and GW32) haplotypes.

Partial sequences (297 bp; accession nos HQ540299–

HQ540300) from the Sicilian skin sample also gave a

unique haplotype, but was separated by only three

hypothetical mutational steps from an NEP haplotype

(electronic supplementary material, figure S1).
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Figure 1. A median-joining network of 45 mtDNA control region haplotypes from white shark sampling areas, illustrating the
close affinity of Mediterranean samples with the Indo-Pacific clade. Circle size is proportional to the frequency of the haplo-
type. Unless specified, single mutational steps are assumed between haplotypes; line breaks with a number indicate the
mutational steps.
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Mediterranean white sharks from European museum col-

lections [14] are presently inaccessible for destructive

analysis. However, it is unlikely that full sequences

would be obtained from this material. The South African

haplotypes form a distinct group separated from the NWA

by only seven mutational steps. However, the SA/NWA

group differs from the Indo-Pacific/MED group by

43 mutations. Both Bayesian and ML analyses corrobo-

rate the close genetic similarity of the Mediterranean

and western Indo-Pacific Ocean haplotypes (figure 2).

Further, SH tests of an alternative topology to the ML

inferred tree (difference in ln L ¼ 32.36, p , 0.003)

firmly rejected the NWA/SA as sister clade to the

Mediterranean. Evolutionary rates for the white shark

control region were calculated as either 1.19 or 0.74 per

cent divergence between lineages per million years,

calibrated with the rise of the Panama Isthmus or the

Sunda-Sahul shelves, respectively. This corresponds to a

Mediterranean–Indo-Pacific population divergence of

348–565 Ka. Significantly, this dates divergence of the

Mediterranean stock to the Late Pleistocene, a period of

extreme dynamic climatic and eustatic events, suggested

to have dramatic impacts on the distribution and size of

fish populations.
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4. DISCUSSION
Analysis of the mitochondrial control region of several

rare Mediterranean white sharks suggests that they have

little genetic variability and a close affinity with the

Indo-Pacific clade. Current understanding of white

shark biology suggests recent Lessepsian migrations

[37], characteristic of other Indo-Pacific taxa inhabiting

the eastern Mediterranean, are an unlikely explanation.

Here, we argue that this highly vulnerable stock may

owe its origins to a historical anomalous migratory

event, rather than persistent historical or contemporary

dispersal via the Atlantic.

The close affinity of the MED and Indo-Pacific

(figure 2) dismisses founding of the Mediterranean popu-

lation solely by a simple dispersal scenario from the

geographically closest populations of the NWA (separated

by more than 51 mutational steps; figure 1). Conse-

quently, the question arises as to whether the five or six

mutations differentiating MED and Indo-Pacific haplo-

types indicate an isolated Mediterranean subpopulation,

or a stock with contemporary and persistent demographic

connections with the Indo-Pacific. The most divergent

haplotypes within either the south-western Pacific or the

NEP differ by nine (GW21 to either GW27 or GW33)
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and eight substitutions (GW12 to the group of GW18/7/

4/3/1), respectively. This suggests that divergence

between Indo-Pacific and MED haplotypes corresponds

to levels of genetic differentiation observed within each

group. However, the large geographical distance separ-

ating Mediterranean and Oceania waters, and the

absence of the Mediterranean haplotype along routes

from the Indo-Pacific, including comprehensively

sampled South African locations, suggest that demo-

graphically contiguous contemporary or historical

populations are unlikely.

The shortest route connecting Indo-Pacific and MED

populations is through the Red Sea and Suez Canal.
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Nevertheless, occurrence of white sharks in the Red Sea

is disputed [38], and a recent record from the Arabian

Sea is considered a misidentification [39]. Zuffa et al.

[40] reported the presence of C. carcharias off southern

and western Madagascar, with northernmost records off

Kenya and Zanzibar, findings consistent with descriptions

of a 6.4 m pregnant female off Kenya [41]. Additionally,

the thermal barrier of tropical waters, and hypersalinity of

the Red Sea, Bitter Lakes and Suez Canal, were thought

to prevent white shark dispersal. However, satellite

tagging reveals that this species tolerates a wide tempera-

ture range [3], consistent with it traversing the Red Sea.

Nevertheless, Fergusson [11] suggests some seasonality
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of white sharks, catch data indicating movement into

cooler northern areas (the Adriatic) from the south (Tuni-

sia and Sicilian Channel) in summer months. Consistent

with this, high summer sea surface temperature (SST) of

approximately 268C (close to the species’s upper limit

[42]) in the Red Sea and adjacent waters, and a lack of

confirmed sightings, suggests this area acts as a thermal

barrier, making a Lessepsian migration route less likely.

So, what mechanism can be invoked to explain the

anomalous presence of these haplotypes? Consideration

of when the Mediterranean and Indo-Pacific sequences

diverged may help elucidate this issue.

The lower estimate for white shark control region

mutation rate is similar to that of scalloped hammerheads

(0.8% [43]) and lemon sharks (0.67% [35]), corroborat-

ing the slow evolution of elasmobranchs [44]. Hence,

the MED/Indo-Pacific separation is estimated to have

occurred in the Late Pleistocene (approx. 0.45 Ma),

roughly corresponding with the postulated origin of the

NEP population [19] (with the caveat that calculations

are based upon a single, unconserved region). Signifi-

cantly, the dynamic eustatic and climatic changes of this

period have been implicated in promoting dramatic

changes in population dynamics and range fluctuations

[45]. A recognized yet infrequent historical connection

between the Indo-Pacific, southwest Atlantic [46] and

ultimately the Mediterranean open intermittently at this

time has been used to explain the distribution of other

pelagic fish stocks [47]. This alternative longer route

evokes eustatic regression events, widely accepted to pro-

duce vicariance in pelagic species, entailing historical

dispersal across the Indian Ocean to South Africa, into

the Atlantic and north to the Straits of Gibraltar. Glacial

events over the last 700 000 years have caused repeated

sea level falls of more than 80 m below present heights.

Notably, on such occasions the Sunda and Sahul shelves

formed a barrier between the Pacific and Indian Oceans,

with vigorous leakage of Indian Ocean fauna later

facilitated by an enhanced Agulhas current during

Pleistocene inter-glacials [46]. This oceanic interchange

has been suggested to account for the distribution of

Pacific clades of swordfish in the eastern Atlantic and

particularly the Mediterranean, which they entered

during an inter-glacial, surviving the last glacial maximum

(LGM) in an eastern refuge [47]. It could be argued

that swordfish and white sharks exhibit ecological com-

monalities in their colonization of the Mediterranean.

Both have similar temperature tolerances and natal philo-

patry [3,18], and swordfish are also prey of white sharks.

However, though Alvarado-Bremer et al. [47] suggest that

some Mediterranean swordfish haplotypes are of Pacific

origin, they emphasize that the ubiquity and contempor-

ary presence of these haplotypes in the southern

Atlantic is consistent with sustained unidirectional gene

flow. Furthermore, despite evidence that the Mediterra-

nean stock survived the LGM isolated in the eastern

Mediterranean, their relationship with Pacific haplotypes

in the Atlantic suggests that glacial conditions did not

erase the earlier signature of persistent migration into

the Atlantic and subsequently the Mediterranean.

Although several alternative hypotheses can be invoked

to explain white shark colonization of the Mediterranean,

every scenario except historical infrequent long-distance

dispersal relies upon evidence of ubiquitous clades in
Proc. R. Soc. B (2011)
the Atlantic and Pacific, whereas the global population

is composed of clades specific to ocean basins. There is

no recorded co-occurrence of clades in the Atlantic, as

is often cited for other pelagic species whose analogous

phylogeographic patterns are explained by protracted uni-

directional gene flow from the Indo-Pacific into the

Atlantic [47]. Nor is there evidence of Pacific lineages

in the southern Atlantic, which would also support such

a scenario. Additionally, palaeoclimatic reconstructions

of Pleistocene Atlantic SST [48] do not support retreat

from the Atlantic to leave a relictual Mediterranean popu-

lation during glacial maxima; temperatures remained

above the critical 158C threshold for white shark

movements in the Atlantic [49].

It would therefore seem a less than parsimonious

explanation to consider the GWS Pacific stock once ubi-

quitous but eradicated from the Atlantic during glacial

maxima. Conversely, glacial conditions promoting south-

ward expansion of Arctic fauna may have sustained rather

than displaced white sharks in the equatorial Atlantic.

Rather, assuming that in situ divergence corresponds

to an inter-glacial around Marine Isotope Stages 12

to 10, we suggest the estimated divergence time of

Mediterranean and Pacific haplotypes at around

450 Kya. Hence, historical accident during dramatic

and dynamic Pleistocene climate change can be invoked

to explain Mediterranean white shark origins, at least par-

tially. This scenario would be consistent with dominance

of few unique Pacific lineage haplotypes across the eastern

Mediterranean. A later migratory event following MED/

Indo-Pacific divergence cannot be ruled out, but could

be invoked by the same climatic trigger occurring

repeatedly in the late Pleistocene.

The climatic instability of the Pleistocene may have

induced navigational errors, with sharks following an

Agulhas ring or eddy. During inter-glacials of the last

700 000 years this would have been remarkably stronger

than the contemporary phenomenon [46], directing

animals north along the African coast. Following expand-

ing swordfish and bluefin tuna populations, which arrived

via these anomalous currents, a propensity to swim east to

natal grounds would have led ultimately to entrapment

in the Mediterranean. Entrapment is also proposed

to account for the strong Indo-Pacific monophyletic mito-

chondrial signature of Mediterranean swordfish [47].

Dominance of few distinct haplotypes over such a wide

area would be wholly consistent with isolation, population

reduction, natal philopatry and restriction to eastern

Mediterranean refugia during glacial advances. Even if

white sharks were able to penetrate the cooler Atlantic

at this time, natal philopatry, as evidenced by our juvenile

samples, would invariably associate these haplotypes

with the Mediterranean. Genetic differences are also

apparent between northern Atlantic and Mediterranean

populations of other transoceanic dispersing marine pre-

dators, such as the sperm whale, Physeter macrocephalus

[5]. Their differentiation can be explained by female

philopatry, but their colonization is clearly attributable

to a founder event involving northern Atlantic individ-

uals. Like Lessepsian migrants, founding white sharks

may have encountered oceanographic characteristics and

prey availability in the eastern (as distinct from the

western) Mediterranean basin approximating their Indo-

Pacific natal areas. This scenario, consistent with the
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absence of these Mediterranean haplotypes from our

comprehensive genetic analyses of South African white

sharks [18,50], argues for a disjunct distribution of the

Indo-Pacific clade.

As a species exhibiting strong natal female philopatry,

these sharks probably constitute a sink population

established at a time of extreme climate change. Conse-

quently, if the haplotypes recovered truly reflect white

shark diversity there would seem little potential for

replacement females to enter and establish in the

Mediterranean should the current population become

unsustainable. Some migration of white sharks into the

Mediterranean cannot be dismissed, but they are rare in

the north-eastern Atlantic [51], with most captures

from oceanic islands, particularly the Azores, of mature

individuals. An occasional visitor [52], its origins and

limits of distribution in this region remain poorly known

[11]. Additionally, no information is available from the

Straits of Gibraltar, where interchange between the Atlan-

tic and the Mediterranean would be most apparent. In

contrast, available sightings suggest that large individuals

are resident at eastern basin Mediterranean sites for a year

or more [53], with catches year round. Hence, migration

between these populations, while not impossible, seems

unlikely. Currently, there is no available tagging data for

Mediterranean white sharks, and recent analysis of a

few tagged north-western Atlantic individuals indicates

migration along the US coast (Cape Cod, 2009; G.

Skomal 2010, personal communication) rather than

across the Atlantic. Indeed, white sharks are encountered

most frequently in continental shelf waters from Cape

Cod to Cape Hatteras in the north-western Atlantic

Ocean [49], showing a more seasonal (January–April)

presence west of Florida [54]. Nevertheless, even if

males from the Atlantic occasionally mate with Mediter-

ranean females, the natal philopatry of the latter

guarantees that continuity of the Mediterranean stock

remains inextricably linked to the fate of these anomalous

haplotypes. Future analyses incorporating both nuclear

and mitochondrial markers in larger population samples

will determine the likelihood of male- and female-

mediated gene flow into the Mediterranean, determining

if this is truly a closed population established by infre-

quent historical migration of ‘founder’ females.

A key member of a vulnerable ecosystem, currently of

huge commercial and scientific value, the Mediterranean

white shark population may be considered a consequence

of historical accident and female philopatry, revealing it to

be at greater risk of local extirpations than previously

thought. Demise of this top predator in a relatively

small and contained sea may precipitate a catastrophic

trophic cascade, already recorded in more robust ecosys-

tems following depletion of populations of large sharks

[1]. It is disturbing to speculate about the disproportion-

ate deleterious effects white shark loss may have on

ecosystem stability in this relatively enclosed and econ-

omically important environment.
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Capepé, C. 2005 Capture of a pregnant female white
shark, Carcharodon carcharias (Lamnidae) in the Gulf of

Gabès (southern Tunisia, central Mediterranean) with
comments on oophagy in sharks. Cybium 29, 303–307.
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