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When hatchlings outperform adults:
locomotor development in Australian brush

turkeys (Alectura lathami, Galliformes)
Kenneth P. Dial* and Brandon E. Jackson

Flight Laboratory, Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA

Within Galliformes, megapods (brush turkey, malleefowl, scrubfowl) exhibit unique forms of parental

care and growth. Hatchlings receive no post-hatching parental care and exhibit the most exaggerated pre-

cocial development of all extant birds, hatching with fully developed, flight-capable forelimbs. Rather

than flying up to safety, young birds preferentially employ wing-assisted incline running. Newly hatched

Australian brush turkeys (Alectura lathami) are extraordinarily proficient at negotiating all textured

inclined surfaces and can flap-walk up inclines exceeding the vertical. Yet, as brush turkeys grow, their

forelimb-dependent locomotor performance declines. In an attempt to elucidate how hatchlings perform

so well, we analysed hindlimb forces and forelimb kinematics. We measured ground reaction forces

(GRFs) for animals spanning the entire growth range (110–2000 g) as they ascended a variably posi-

tioned inclined ramp that housed a forceplate. These data are compared with a similar dataset for a

chukar partridge (Alectoris chukar) that exhibit a growth strategy typical of most other Galliformes and

that demonstrate improved incline performance with increasing age. The brush turkeys’ ontogenetic

decline in incline running performance is accompanied by loss of traction at steep angles, reduced

GRFs and increased wing-loading. We hypothesize that Australian brush turkeys, in contrast to other

Galliformes, develop from forelimb-dominated young that exploit a variable terrain (e.g. mound nests,

boulders, embankments, cliffs, bushes and trees) into hindlimb-dominated adults dependent on size

and running speed to avoid predation.
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1. INTRODUCTION
Mammals and birds develop along a pronounced altricial

to precocial axis. Altricial young (e.g. primates and song-

birds) are born or hatch naked, with eyes closed, and are

completely dependent on their parents for thermoregula-

tion, feeding and protection. Juveniles of altricial species

become independent only after they grow to near adult

mass and have well-developed locomotor skills. In con-

trast, precocial species (e.g. ungulates and game birds)

are born covered with hair or feathers, eyes open, ther-

mally independent and ambulatory so that they can

forage and flee danger. Members of the megapod family

(Galliformes; e.g. Australian brush turkey, Alectura

lathami, malleefowl, scrubfowl) of the Indo-Pacific

region are at the extreme of the precocial spectrum in

birds and, as such, are characterized as super-precocial

[1]. Hatchlings emerge from the nest alone and comple-

tely independent of their parents, with wings fully

functional and even capable of aerial flight [2]. No

other avian clade exhibits such advanced hatchling

development.

At birth, precocial young are confronted with immedi-

ate challenges, as they must escape predators, search for

food and behaviourally thermoregulate. Locomotor

capacity is therefore critical. However, the relatively small
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size and incomplete neuromuscular development in

young animals is predicted to limit locomotor perform-

ance, even in precocial species [3]. Despite this paradox,

quantitative studies of the ontogeny of locomotor perform-

ance are scarce. The limited available data demonstrate

that among many precocial species, youngsters have similar

or superior absolute escape performance when compared

with adults (e.g. hares, Lepus [4,5]; lizards [6]; birds,

Alectoris [7]. See [8] for review).

Despite excellent physiological and ecological studies

(e.g. [2,9–13]), there are no quantitative investigations

of megapod locomotor performance during growth. We

found that Australian brush turkeys of all ages preferred

to use wing-assisted incline running (WAIR; [14,15]),

rather than flight, to reach an elevated refuge and to navi-

gate their natural habitat. WAIR involves simultaneous

use of running hindlimbs and flapping forelimbs

[14,15]. Since WAIR requires less aerodynamic output

than flight [16] and is exhibited by all ages of brush tur-

keys and other Galliformes, it offers a common metric

of locomotor performance during avian development

[7,14,15,17].

We quantified locomotor performance of Australian

brush turkeys throughout development using the maxi-

mum angle ascended during bouts of WAIR and

compared performance among age classes to measures

of forelimb kinematics and hindlimb ground reaction

forces (GRF). Many researchers have quantified GRF

values for running on the level (e.g. [18–21]). However,

studies of incline running are few and most involve
This journal is q 2010 The Royal Society

mailto:kdial@mso.umt.edu
http://dx.doi.org/10.1098/rspb.2010.1984
http://dx.doi.org/10.1098/rspb.2010.1984
http://dx.doi.org/10.1098/rspb.2010.1984
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


Locomotor ontogeny in brush turkeys K. P. Dial & B. E. Jackson 1611
studying animals ascending only shallow inclines (,158)
[22,23]. Here we study how brush turkeys negotiated

inclines from horizontal to 1108 (i.e. 208 past vertical).
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Figure 1. Brush turkeys ran over a multi-axis forceplate that

describes normal (blue arrow) and parallel (green arrow)
forces. Bottom panel shows a representative force trace
from a young brush turkey flap-running up a 708 ramp
(pictured).
2. MATERIAL AND METHODS
Nine wild Australian brush turkeys were captured using hand

nets 110 km northeast of Adelaide during January 2004. The

youngest bird was captured the day it emerged from its nest

mound. We estimated the ages (days post-hatching ¼ dph) of

the older birds (ranging from 116 to 1890 g) from growth

curves described by Göth [24]. Every 3–5 days each

animal was weighed and photographed with their wings out-

stretched against a gridded background in order to obtain

wing length and wing area (analysed in IMAGEJ [25]) to calcu-

late wing-loading (body mass divided by the surface area of

both wings). Low wing-loading (large wings relative to

body size) is generally associated with the ability to produce

high aerodynamic forces relative to body weight, yet may be

costly because of aerodynamic drag on the wings particularly

at higher velocities. Every 2–3 days each bird was challenged

to ascend a textured runway ramp outfitted with a forceplate

flush with the ramp. The ramp was inclined over a broad

array of angles including 08 (horizontal) and from 508 to

1108 in 108 increments (figure 1). Each bird was tested

over a two-week period (during January–February 2004).

During that period the fastest growing individual was the

youngest bird, which increased in mass by approximately

40 per cent (116–162 g). However, no birds demonstrated

a change in performance ability during the two weeks, thus

all data for each individual were pooled. After the exper-

iment, all nine brush turkeys were released at their area of

capture.

All brush turkeys readily performed WAIR when placed at

the bottom of the inclined ramp (electronic supplementary

material, video S1). Runs were recorded with a laterally

placed high-speed digital video camera (250 Hz,

Motionscope, Redlakes Inc.) and saved to digital videotape

(mini-DV, Sony Camcorder). The ramp (15 cm wide by

2 m long) was covered in a 30-grit sandpaper covered with

rubber carpet backing and fine hardware cloth in order to

maximize traction. A 3-axis forceplate (15 � 15 cm, record-

ing at 200 Hz via amplifier model PJB-101 to NETFORCE

software, v. 2.2, AMTI, Watertown, MA, USA) was

mounted flush with the ramp’s surface at the midpoint.

The forceplate top-sheet was also covered with sandpaper

and hardware cloth.

The video served several functions. From it, we calculated

wing beat frequency and stroke-plane angle (angle between

the line swept by the wingtip at mid-downstroke and the

global horizontal) for each run. We also scored each run as:

(i) success (ascent without slipping), (ii) slipping (occasional

foot slips while successfully ascending), (iii) treadmilling

(running in place on the ramp with no forward progress),

and (iv) failure (sliding backwards or abandoning the

ramp) (table 1). Finally we used the video to confirm

single foot-strikes on the forceplate.

Force plate recordings were filtered with a five-sample

moving average and analysed in IGOR PRO (Wavemetrics,

Inc., Portland, OR, USA). From the forceplate recordings,

we determined foot-down time (force . 5% body mass),

and toe-off time (force , 5% body mass). Between these

times, we determined peak and average normal and parallel

(in line with ramp direction) forces, and peak and average
Proc. R. Soc. B (2011)
total GRFs. Peak transverse forces were typically less than

5 per cent of peak GRF and thus were not included in

this analysis.

We present results for individual birds and for age cat-

egories. The nine brush turkeys were grouped based on

similar mass and estimated age into five categories (hatchling,

young, juvenile, sub-adult, adult; table 1). Age category means

values are presented as the pooled mean of measurements

among all individuals within a given category.

For comparative purposes, we present previously unpub-

lished forceplate data for developing chukar (Alectoris

chukar). Recording and analysis techniques were the same

as for brush turkeys, except that chukars were recorded

only at 508 and 708. Chukar care, age and kinematic data

are available in Jackson et al. [7].
3. RESULTS
(a) Performance

Incline locomotor performance, determined by maximum

ascent angle, decreased with age and size (table 1, figure 2

and electronic supplementary material, video S2). The 2

dph ‘hatchling’ easily ascended 1108 inverted inclines

without slipping. In contrast, the two oldest birds could

negotiate inclines only up to 608 but lost traction and

slipped during most steps (table 1). On the 708 ramp,

these oldest birds were unable to gain traction and even-

tually slipped-off the ramp sideways or backwards. The

oldest bird to successfully ascend a 908 incline was esti-

mated to be 99 dph and had less than 25 per cent of



Table 1. Best performance for each bird on inclined substrates. Italic entries indicate successful ascents. Comparable

behavioural data for Chukar available in Dial et al. [17].

bird 1 2 3 4 5 6 7 8 9

mass (g) 163 233 271 361 374 426 585 856 1861

age (dph) 2 43 56 82 84 99 138 180 adult

category hatchling young young juvenile juvenile juvenile sub-adult sub-adult adult

ramp angle
50 walk/run walk/run walk/run walk/run walk/run WAIR WAIR slip slip
60 WAIR WAIR WAIR WAIR WAIR WAIR slip slip slip
70 WAIR WAIR WAIR WAIR WAIR WAIR slip treadmill treadmill
80 WAIR WAIR WAIR WAIR WAIR WAIR treadmill treadmill treadmill
90 WAIR WAIR WAIR WAIR WAIR WAIR treadmill fail fail
100 WAIR slip fail fail fail fail fail fail fail

110 WAIR fail fail fail fail fail fail fail fail

30

45

60

7590105
120

0
adulthatchling

sub-adultyoung
juvenile

developmental stage

chukar

Figure 2. Maximal locomotor performance, measured as the
steepest angle successfully ascended, decreased with age in
brush turkeys (this study) in sharp contrast to the increase
observed in chukars (data from Jackson et al. [7]).
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adult mass (bird 6, table 1). Older birds progressively

failed as ramp angle increased: clean footsteps were fol-

lowed by occasional slips, then protracted failure with

treadmilling (i.e. hindlimb slipping or running in place)

and finally complete inability to maintain position on

the ramp (table 1).
(b) Ground reaction forces

The hindlimbs functioned primarily in weight-support

against gravity and propulsion up the inclines (figure 3).

On shallower inclines (level through 708), average and

peak forces were oriented within 158 of vertical. On

80–908 inclines, slipping and treadmilling birds produced

average and peak forces oriented greater than 308 from

vertical. At 808 and 908, the angle between the ramp

(or vertical) and the GRF increased with age (figure 3).

The youngest bird produced peak forces of 1.8 times

body weight (�mg, where m is body mass in kilogram

and g is the acceleration owing to gravity) on the level,

and 1.1 � mg (1.6 N), oriented nearly in line with the

1008 incline (average forces of 0.9 � mg and 0.6 � mg,

respectively) (figure 4). Thus, even on an inverted

(i.e. overhanging) substrate, the legs produced significant

propulsive forces. Generally, individuals maintained
Proc. R. Soc. B (2011)
parallel forces but reduced normal forces with increasing

incline angle, resulting in lower peak and average GRF at

steeper inclines (figure 4). For example, in the youngest

bird, average GRF during stance decreased from 0.8 �
mg on 508 inclines to 0.2 � mg on 1108 inclines. This

trend corresponded with a change in gait from running

at 508 to ‘walking’ (duty factor .0.5) at inclines steeper

than 708.
Chukar produced peak and average GRFs similar in

magnitude and orientation to those produced by brush

turkeys (figure 5). Peak forces, as multiples of body

mass, decreased with age at 708 (the only angle that

nearly all ages of both species can ascend). Peak parallel

forces of sub-adults of both species averaged just above

1 � mg. Peak normal forces in both species decreased

with age, from near 1.0 to 0.6 � mg in chukars, and 0.7

to 0.3 � mg in turkeys (figure 5), with similar patterns

for average forces. The two oldest age categories of tur-

keys slipped and treadmilled at 708, suggesting that

normal forces between 0.5 and 0.6 � mg are necessary

to provide the traction required for WAIR at 708
(threshold line in figure 5).
(c) Wing-loading, frequency, stroke-plane angle

Wing-loading was lowest in the youngest birds and more

than doubled during growth. Wing-loading remained

essentially unchanged over the first 30 days post-hatching

(40–46 N m22; figure 6). Further, feather growth was

minimal, and as body mass increased wing-loading grew

to 70 N m22 at 100 dph, and 100 N m22 at 200 dph.

Wingbeat frequency generally decreased with age, but

increased with ascent angle (figure 7). The turkeys beat

their wings intermittently at the lowest ascent angles (i.e.

508 and 608), usually pausing between mid-upstroke and

end-upstroke, resulting in the lowest frequencies at a

given age. When wingbeats were more consistent at steeper

inclines, wingbeat frequency ranged from 9.2 to 10.3 Hz in

the youngest bird, and from 6.9 to 7.8 Hz in the largest

(figure 7). Maximum wingbeat frequency scaled as m20.10.

Stroke-plane angle changed very little with age or ramp

angle (figure 3). Because of the intermittent wingbeats at

508 and 608 incline angles, variation in stroke-plane

angles was high. At steeper inclines, mean stroke-plane

angle ranged from 1158 to 1288 among all ages, and

showed no trend with changes in incline angle or bird age.
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Figure 3. Average GRF never exceeded body weight during successful ascents, independent of age (age indicated by size of
shapes) in brush turkeys (red circles) or chukar (grey squares), but generally was oriented against gravity so as to provide
weight support. With increasing ramp angle, the larger (older) brush turkeys failed, and only the hatchling was able to

ascend the 1108 ramp. Curved arrows represent average stroke-plane angle (measured at mid-downstroke) for the youngest
bird.
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4. DISCUSSION
Hatchling Australian brush turkeys consistently out-per-

formed older birds as they climbed a variable-pitched

inclined ramp, built to emulate inclined objects that
Proc. R. Soc. B (2011)
birds encounter in nature (e.g. earthed mounds, trees,

boulders, cliffs). Although capable of true flight, the day

they emerge from their ground nest, brush turkeys, like

other Galliformes, preferentially used WAIR to ascend

to an elevated refuge. Ricklefs [3] argued that precocial

species should be adept at burst locomotion. In the

wild, young brush turkeys are often exposed to intense

predation (,15% may survive the first three weeks),

and they seek elevated refuges when threatened or for

roosting [2]. As adults, brush turkeys and other Galli-

formes can outrun many predators and use their wings

only for brief escape flights. To avoid predators, young

brush turkeys must negotiate a highly variable terrestrial

environment on their own. Our data suggest that one

trait promoting early incline-running performance is

their extraordinarily low wing-loading—the lowest of

their lives. This low wing-loading is achieved because

hatchlings have very large wings, the development of

which probably explains their prolonged egg stage

(approx. 50-day incubation; [26]). This is in stark
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contrast to other Galliformes (20–25-day incubation)

that cannot generate useful aerodynamic forces for several

days after hatching and lack the running speeds of the

adults [7], but enjoy the protection of their parents.

In brush turkeys, declining performance during devel-

opment coincided with increasing wing-loading and

decreasing relative normal GRF. All else equal, high

wing-loading implies low aerodynamic force production

relative to body weight. During WAIR in chukars, the

wings produce forces that accelerate the bird towards

the inclined surface [16,27]. Thus, even on a vertical

incline, the hindlimbs can develop traction (via normal

GRF) and accelerate the bird’s centre of mass (via paral-

lel GRF; [27]). In turkeys, both peak and average

normal forces systematically declined with incline angle

(hatchlings: peak normal GRF from 1.7 � mg in level

movement to 0.5 � mg at 908, figures 3 and 4). By con-

trast, peak parallel forces did not change (hatchlings:

1.0 � mg; figure 4). Similarly in adult chukars, normal

GRF decreased from 0.7 to 0.6 � mg, and parallel

GRF remained near 0.8 � mg (60–908 inclines). The

only other forceplate data for running at extreme

angles [27] reported peak forces from adult chukar

partridge well above our brush turkey and chukar data

(see electronic supplementary material for discussion).

Older turkeys produced lower relative normal GRF at

all angles, and lost traction at shallower angles than

younger birds. Thus, the high wing-loading of older tur-

keys may therefore preclude them from maintaining

hindlimb traction. However, changes in foot and claw

morphology with age may modify the interface with the

substrate and the animals may simply loose their behav-

ioural propensity to employ WAIR with age.

Additionally, as WAIR requires a small fraction of the

aerodynamic forces of level flight [16] and adult brush

turkeys are capable of powered level flight, it is unlikely

that increased wing-loading is the sole limiting factor

on WAIR performance.

What does the ontogenetic increase in wing-loading

indicate? Adult brush turkeys have stout hindlimbs that

they use to construct and maintain their enormous

(2000–6000 kg) mound nests [2]. Breeding males may

move up to 50 kg of earth daily during incubation [28].

Adult turkeys also use their hindlimbs to flee from preda-

tors and in combat with other territorial males during the

breeding period [2]. Thus, brush turkeys may experience

a developmental and functional tradeoff between fore-

limb-dependent flap-running locomotor performance

and development of stout hindlimbs for adult survival

and reproductive success.

We hypothesize that Australian brush turkeys, in

contrast to other Galliformes, develop from forelimb-

dominated young that avoid predation by taking

advantage of steep terrain and natural obstacles into

hindlimb-dominated adults that have transitioned to an

anti-predation strategy dependent on body size and run-

ning speed. We expect this developmental shift also to

be marked by other morphological and physiological

changes (e.g. in relative limb size and robustness, and in

foot morphology for traction on incline versus level run-

ning). Compensating for their reduced inclined running

locomotor performance, adults appear more adept at

high-speed horizontal movement and are probably less

naive of threatening situations (K. P. Dial 2004, personal
Proc. R. Soc. B (2011)
observation); although currently no empirical data exist

to substantiate this behavioural observation.

Furthermore, the young of mound-builders (scrubfowl,

malleefowl, and brush turkey) are far more capable of

covering larger distances in the air than the adults [2].

It is the young birds, for the most part, that colonize

new areas. In some cases the smaller, flight-capable kids

cross considerable stretches of unsuitable habitat and

thus are responsible for the majority of dispersal, particu-

larly over water to other islands [29].

Locomotor performance develops quickly in many

precocial species (for review, see [8]). In the only other

study of locomotor ontogeny in birds (chukar partridges),

WAIR performance increased with age and was correlated

with morphological and kinematic changes early in devel-

opment (8–20 days; [7]). However, there are few known

examples where young outperform adults in escape-

relevant behaviours: jackrabbits (Lepus; [4,5]), lizards

(Anolis, [6]), crickets (Nemobius sylvestris [30]), brush tur-

keys (this study). It is likely that such developmental

strategies evolved in response to high predation early in

life (e.g. [8]), as is the case in brush turkeys (.85%

juvenile mortality; [2]).

Understanding the relationship between locomotor

ontogeny and degree of parental care of extant species

may shed light on the historic ecological and evolution-

ary habits of extinct groups. For example, recent

analyses suggest that many theropod dinosaurs grew

over a period of several years, through a wide range of

sizes, before reaching asymptotic size [31,32]. Small

and immature members of a species, then, may have

relied on different locomotor strategies than older and

larger members. Some relatively small eumaniraptoran

theropods, for instance, are preserved with fully feath-

ered wings (e.g. Microraptor [33]; Anchiornis [34,35]).

Yet larger and presumably flight-incapable adult thero-

pods have been discovered with feathered forelimbs

(e.g. Caudipteryx [36,37]; Velociraptor [38]) that perhaps

generated useful aerodynamic forces only for the diminu-

tive juveniles. Recently, Xu et al. [39] reported a

dinosaur, Similicaudipteryx, that appears to exhibit chan-

ging feather morphology with age. This implies that

different age classes may have enjoyed different locomotor

capacities. Thus, just as brush turkeys begin life with aero-

dynamically functional forelimbs and become less aerial

during development, some theropod dinosaurs may

have exploited a more three-dimensional environment

as juveniles, and become more obligately bipedal with

age. The idea of immature animals exploiting unique

ecological niches appears consistent with other forms

exhibiting semi-indeterminate growth, as reported for

locomotor development in crocodiles [40]. The ontogeny

of locomotion in extant organisms can thus provide

insight on the evolution of locomotion in extinct

organisms.
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