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Abstract

The environments in which organisms live and reproduce are rarely static, and as the environment changes, populations
must evolve so that phenotypes match the challenges presented. The quantitative traits that map to environmental
variables are underlain by hundreds or thousands of interacting genes whose allele frequencies and epistatic relationships
must change appropriately for adaptation to occur. Extending an earlier model in which individuals possess an ecologically-
critical trait encoded by gene networks of 16 to 256 genes and random or scale-free topology, I test the hypothesis that
smaller, scale-free networks permit longer persistence times in a constantly-changing environment. Genetic architecture
interacting with the rate of environmental change accounts for 78% of the variance in trait heritability and 66% of the
variance in population persistence times. When the rate of environmental change is high, the relationship between network
size and heritability is apparent, with smaller and scale-free networks conferring a distinct advantage for persistence time.
However, when the rate of environmental change is very slow, the relationship between network size and heritability
disappears and populations persist the duration of the simulations, without regard to genetic architecture. These results
provide a link between genes and population dynamics that may be tested as the -omics and bioinformatics fields mature,
and as we are able to determine the genetic basis of ecologically-relevant quantitative traits.
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Introduction

Biologists are interested in the diversity of life and the

mechanisms permitting maintenance of the diversity. Both

evolutionary processes and ecological interactions provide impor-

tant mechanisms to that end. We would like to more completely

unify ecology and evolution into an integrated body that permits

scaling from genes up to ecological dynamics, and from ecological

dynamics back down to genes; that is, we want to span at least

three levels of organization, the genotype, the phenotype, and the

environment to elucidate the genotype-environment map. Evolu-

tionary biologists tend to focus on changes in lineages and relative

fitnesses, whereas ecologists tend to focus on population changes

and absolute fitness. The two fields are joined by the fact that

environments are constantly changing and traits must evolve in

order to permit population persistence. Van Valen [1] described

this as the Red Queen Hypothesis: a population must be

constantly running to stay in the same place. Similarly,

Anotonovics asserted that ecological change is almost always

associated with changes in allele frequencies, i.e., evolution ([2];

tenet 5).

Ecologists increasingly consider that evolutionary change may

be an important component of ecological dynamics [3–5], which

has implications for both basic and applied research. For example,

trait evolution can lessen the per-capita impact of predators [6,7],

and ultimately alter community structure [8,9]. Given contempo-

rary concerns about the impacts of global change [10], we might

expect species will need to adapt to novel conditions such as higher

temperatures, longer droughts, or novel communities arising from

these changes, or else face extinction [11].

The rate at which a trait can evolve is described by a trait’s

heritability: higher heritabilities confer faster change than lower

heritabilities. Heritability is defined as the ratio of genetic (total or

additive) variance to phenotypic variance, thus, the greater the

genetic variance, the higher the heritability. One of the great

advances of the Modern Synthesis, specifically the work of Fisher

[12], was the realization that the details of the genetic architecture

of a quantitative trait do not need to be known in order to make

predictions about a trait’s response to selection. However, Crow

and Kimura [13] and Bürger [14] showed analytically that the rate

of change in genetic variance should be inversely proportional to

the number of loci underlying a trait. If the mapping from

genotype space to phenotype space is not 1:1, then there may be a

disparity between the rates of change of genetic and phenotypic

variance. That is, given the rate of change – number of loci

relationship, at a given point in time, we would expect the variance

of a small network to have changed more than the variance of a

large network, and heritability is affected depending on the rate of

change of phenotypic variance. As a result, trait heritability could

by systematically affected by the number of genes underlying a

trait.

With technological advances in fields such as genomics (and other

-omics sciences) and methodological advances in bioinformatics, we

can begin to discover the genetic details of phenotypes, including

the number of genes underlying a particular trait [15,16]. One of

the results of these novel approaches is the conceptualization of
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the genotype-phenotype map as a complex network of interacting

genes, proteins, and other small molecules [17–20]. (Note that other

factors, such as other environmental inputs, play a distinct role in

the proximate causation of a phenotype [21]. However, because

examining the evolution of the trait is the goal of this paper, I focus

on the heritable portion of the variation, the genes.) Such a map

introduces extensive epistasis as a result of the hierarchy of

relationships among genes, and with it, a genotype-phenotype

map that is not purely additive. This epistasis may be directional,

rather than zero-sum as is assumed in classical analytical models,

which means that epistatic variance may be converted to additive

genetic variance [22–25]. The conversion from epistatic to additive

variance in effect hides and reveals standing additive genetic

variance, and should alter heritability. Given this departure from

the classical additive models, we would like to have a set of

expectations for what we should uncover as genomics moves

forward. For example, should we expect a priori for some traits to be

underlain by fewer genes than others? Do we expect different

network topologies for some traits than for others?

The implication of a possible link from gene network

characteristics to heritability raises the possibility of systematically

linking the genetic architecture of quantitative traits to evolution-

ary ecological dynamics. Gomulkiewicz and Holt [26] showed

analytically that higher trait heritability translates to faster

population recovery after a sudden environmental change. Bell

and Gonzalez [27] demonstrated the predicted U-shaped recovery

path using yeast whose growth media was suddenly changed. A

theoretical or computational challenge is to incorporate network

representations of the genotype-phenotype map into evolutionary

ecology, a problem that has recently begun to be addressed. Three

papers stand out as most-similar to the research presented here.

Importantly, the authors of each of these papers focused on

variation in the density of connections of the underlying network,

which, due to the computational complexity, limited the size of the

networks they examined. Frank [28] described the evolution of a

network underlying a trait that needed to pass through two distinct

developmental phases and found that intermediate network

connectivity resulted in the greatest robustness. Kimbrell and

Holt [29] used a model similar to Frank’s and found that

colonization of a novel patch from a source patch was maximized

when gene network complexity was minimized. Repsilber and

colleagues [30] modeled small gene networks (3–10 genes) of

varying connectivity and found that smaller networks result in

faster evolution.

Malcom took the opposite approach and simplified network

connectivity while examining the evolution of a trait underlain by

networks of 16–256 genes to test the effects of genetic architecture

on trait heritability in a static environment and population

recovery after a sudden environmental change [31]. He found that

smaller, scale-free networks conferred higher heritability and faster

population recovery than larger, random-topology networks. A

natural extension of these results is to hypothesize that smaller

networks permit longer persistence times in constantly-changing

environments.

In this contribution I use simplified gene network connectivity, but

assume that environmental change is constant and fluctuates

between a maximum and minimum through time (directional

selection). I test two basic hypotheses: first, the genetic architecture

(i.e., number of, and functional relationship among, genes) of a

quantitative trait plays a large role in determining the trait’s

heritability under constant directional selection. Second, the genetic

architecture, by way of heritability, affects the persistence times of

populations in a fluctuating environment. I find that both hypotheses

are supported, with a caveat that the rate of environmental change is

very important. There is a strong interaction between network size

and the rate of environmental change such that small-network

populations persist longer when the environment changes rapidly,

but populations in slowly-changing environments persist indefinitely

without respect to network size. I discuss how these results refine

those of Malcom [31], and how, in conjunction with prior research

focused on network connectivity, they provide a set of expectations

requiring empirical testing.

Results

Differences in genetic architecture result in differences between

the rates of change of phenotypic and genotypic variance (dVP/dt

and dVA/dt, respectively; Table 1). dVP/dt in a fluctuating

environment depended primarily on the size network underlying

the trait and the rate of environmental change (Figure 1A). The

AIC-best model (i.e., the model with the lowest Akaike’s

Information Criterion value) included all terms and first-order

interactions, making interpretation very convoluted. A much

reduced model (DAIC .300) used only network size and rate of

environmental change still explained 68% of variance in dVP/dt.

Pairwise contrasts (Tukey HSD) showed that all network size

contrasts, with the exception of 64- and 128-gene networks, were

significantly different in their effect on dVP/dt. In contrast, dVA/

dt varied much less according to the specifics of network

architecture, with the exception at the smallest network size

(Figure 1B). Interestingly, VA tends to actually increase for

networks with .32 genes as epistatic variance is converted to

VA. The most readily-interpretable model (DAIC = 11) for dVA/

dt used only network size and rate of environmental change as

predictors, but explained only 25% of the variance. Tukey HSD

comparisons showed that dVA/dt for 16-gene networks was

significantly different from all other network sizes, but there were

no other significant differences. The ‘atypical’ mean estimates and

large confidence intervals for 64–256 gene networks at the highest

rate of environmental change reflects the rapid extinction of

populations with these combinations of network size and rate of

change.

The differences in rates of change of variance components

translated to systematic alterations of heritability, at least at some

rates of environmental change. The global model relating all

predictors to average trait heritability over the course of each

simulation run possessed the lowest AIC score and R2 = 0.93. The

reduced model that used only network size and rate of

Table 1. Factors affecting the rates of change of genetic and
phenotypic variance during the first 250-generations in a
constantly-fluctuating environment.

Response Predictor % Var. P-value

Variable Explained

dVP/dt Network Size 57 ,2.2e216

dE/dt 8 ,2.2e216

n * dE/dt 4 2.29e27

dVG/dt Network Size 16 ,2.2e216

dE/dt 2 0.013

n * dE/dt 7 0.0001

dVP/dt is the rate of change of phenotypic variance; dVG/dt is the rate of change
of genetic variance. n refers to network size; dE/dt is the rate of environmental
change.
doi:10.1371/journal.pone.0014747.t001

Gene Networks and Changing Env
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environmental change as predictors had a much higher AIC score

(DAIC , 300), but still explained 78% of the variance in average

heritability (P,2.2e216; Table 2). Network size alone accounts for

little variance, but when considered with the rate of environmental

change, a clear interaction emerges: at slow rates of environmental

change all network sizes converge on high heritability, but

heritability declines with increasing network size at the fastest

rate of change (Figure 2). That is, proportionally more additive

variance is removed from large-network populations relative to the

amount of phenotypic variance at high rates of environmental

change. Tukey HSD contrasts showed the effects on heritability of

most network contrasts, and all rates of environmental change, to

be significantly statistically different at a= 0.05. Many interactions

between network size and rate of environmental change were not

significantly different, as is evident in Figure 2. The preceding

results are useful, but do not reveal the dynamics of the evolution

of variance components and heritability through time. All variance

components are very similar at the end of the 2,000-generation

simulation, but significantly lower variance values for larger

networks in the early stages of the simulations has a large impact

on whether or not the population will survive long enough for high

heritability to evolve (Figure S1).

The joint effects of genetic architecture and rate of environ-

mental change on trait heritability translate directly to differences

in levels of population variation through time and population

persistence times in a fluctuating environment. At high rates of

environmental change, population size coefficient of variation

(CV) increased with increasing network size; there was little

relationship between network size and CV at intermediate rates of

environmental change; and CV was slightly negatively related to

network size at the slowest rate of environmental change (Figure 3).

These relationships are reflected in population persistence times.

The global model relating population persistence to interactions

among all predictor variables possessed the lowest AIC by nearly

30 points, but the residuals were strongly kurtosed. The reduced

model employing only network size and rate of environmental

change possessed an AIC score .100 points higher than the global

model, but the model residuals were normally distributed and the

reduced model still explained 66% of the variance (P,2.2e216;

Table 3). Network sizes appear to be ‘‘matched’’ to a given rate of

environmental change, such that when the environment is

changing rapidly, smaller networks confer an adaptive advantage

that translates to longer population persistence (Figure 4).

However, when the rate of environmental change is very slow,

populations with any size network encoding the critical trait are

able to adapt and populations tended to persist the duration of the

simulation.

An implication of more genes underlying variation in a particular

trait is systematically lower additive genetic variance for larger

networks at simulation initiation [31]. By virtue of these differences

we would expect differences in persistence time without some

Figure 1. Rates of change of phenotypic and genetic variance as a function of network size and rate of environmental change. Panel
A shows the rates of change (695% CI) of phenotypic variance during the first 250-generations of simulations, conditional on different-sized gene
networks and different rates of environmental change. Panel B shows the rates of change of genotypic variance (695% CI) during the same time
period. Selection at the phenotype-environment interface has a disproportionate affect on VP compared to VG in all but the smallest networks.
doi:10.1371/journal.pone.0014747.g001

Table 2. Primary factors influencing trait heritability averaged
over the existence of populations.

Predictor % Var. P-value

Explained

Network Size 5 0.001

dE/dt 52 ,2.2e216

n * dEdt 21 1.75e212

n refers to network size; dE/dt is the rate of environmental change.
doi:10.1371/journal.pone.0014747.t002

Gene Networks and Changing Env
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canalization so that different-size networks have equivalent levels of

variance. To address this aspect, I ran another set of simulations in

which the environment was held constant until the population

achieved an additive genetic variance of 5, 10, or 15. Environmental

fluctuations began at the same rates in the experiments above once

the ‘trigger’ level of VA was reached. When the additive variance is

approximately the same between network sizes, smaller network

populations tend to persist longer in faster changing environments

and there is little difference in persistence to the end of the

simulation when the rate of environmental change is slowest.

However, the strongest determinant of persistence is clearly the rate

of environmental change (Figure 5). The higher average persistence

time of 64-gene networks is an artifact of simulation truncation: the

time-to-start of fluctuations was much lower for 64-gene networks

than for 16- and 32-gene networks. It is likely that if these

simulations had continued beyond 2000 generations the 16- and 32-

gene populations would have persisted longer than the 64-gene

populations. Variance partitioning (Table 4) quantifies the impor-

tance of the rate of environmental change. It also shows the role of

mutation rate, and the mutation-by-network size interaction (i.e.,

mutational variance), in shaping persistence time.

Discussion

Biology is approaching the stage at which data can be gathered

from the level of entire genomes up through communities.

Successful integration across levels of organization will require

bridging at least three distinct levels: the genotype, the phenotype,

and the ecotype (i.e., environment). The processes of gene

duplication and loss [32] provide a mechanism by which the

gene networks underlying quantitative traits may evolve (both in

size and topological organization), and potentially alter the speed

at which the trait can evolve. This, in turn, has the potential to

limit the environments in which a species can persist when the

environments are constantly changing. We have analytical

expectations of a relationship between genetic variation and

population dynamics in changing environments [33,34]. For

example, Bürger and Lynch [34] explored the relationships

between rates of environmental change, population persistence,

and genetic variance analytically and with a 50-locus, additive

model. Here I build upon their work—and previous research

focused on variation in network connectivity rather than size—to

investigate how network size and basic topology influence

quantitative trait heritability and population persistence in a

changing environment. I find that network characteristics and the

Figure 3. Population size Coefficient of Variation (CV; ±95%
CI) as a function of network size and rate of environmental
change. The amount of variation in a population time-series is
positively related to network size when the rate of environmental
change is fast, but negatively related when the rate of change is slow.
The higher stochasticity of a population, the greater the likelihood of
extinction.
doi:10.1371/journal.pone.0014747.g003

Table 3. Primary factors influencing population persistence
times in a fluctuating environment.

Predictor % Var. P-value

Explained

Network Size 1 0.001

dE/dt 58 ,2.2e216

n * dEdt 7 1.75e212

n refers to network size; dE/dt is the rate of environmental change.
doi:10.1371/journal.pone.0014747.t003

Figure 2. Average heritability (±95% CI) of the quantitative
trait as a function of network size and rate of environmental
change. The differential impacts of selection on rates of change of
phenotypic and genotypic variance results in higher heritabilities for
trait underlain by small (and scale-free) networks. As importantly, the
rate of environmental change alters heritabilities, with higher rates of
change resulting in systematically lower heritability.
doi:10.1371/journal.pone.0014747.g002

Gene Networks and Changing Env
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rate of environmental change interact to shape trait heritability,

which ultimately alters population persistence times.

All network sizes have time to evolve to a high average

heritability under the relatively weak selection imposed by a slowly

changing environment. This is the conclusion from classical

quantitative genetics [35]: there is no relationship between the

number of underlying loci and heritability. This results from the

fact that there is no variance at non-terminal genes in the network

(i.e., upstream, controlling genes) and the GPM is essentially

purely linear. At high rates of environmental change, however,

populations in which the trait is underlain by a large network are

much slower to adapt, go to extinction more quickly, and are not

able to evolve high heritability. As such, a relationship between

network size and heritability is maintained, as in simulations where

the environment is modeled as a static value with a single, sudden

change [31]. The result is that the rate of environmental change

interacts with the species’ genetic architecture for the limiting trait

to constrain or facilitate the evolution of the trait’s heritability.

This result is consistent with, although examined in a rather

different context than, the findings of Price and Schluter [36].

They showed that high environmental variance should depress

heritability even when substantial additive genetic variation is

present.

The effects of genetic architecture and environmental change

cascade to systematically alter population persistence times. Only

populations where the trait is underlain by small networks persist

for even several hundred generations when the rates of

environmental change are high. In contrast, when the rate of

environmental change is very slow, populations persisted the

duration of the simulations regardless of the underlying genetic

architecture. Genetic variance of internal genes is lost over these

longer time periods resulting in the purely linear GPM. Given that

smaller networks result in greater genetic variance because the

variance contribution of each gene is greater, this is essentially the

same result found by Lande and Shannon [37] using analytical

models of additive genotypes.

Building from the literature on the diversity-stability hypothesis

[38], Agashe used Tribolium to show that increased heritable

variation in a population resulted in increased population dynamic

Figure 5. Population persistence times (±95% CI) in fluctuating
environments, as a function of network size and rate of
environmental change, when controlling for additive variance.
Populations exhibit a strong network-by-rate of environmental change
(dE/dt) effect: smaller networks tend to perform better than large
networks at high rates of environmental change, but population
performance is essentially identical when the rate of environmental
change is very slow. See the text for a discussion of the high persistence
time values for 64-gene networks at dE/dt = 0.005.
doi:10.1371/journal.pone.0014747.g005

Table 4. Primary factors influencing population persistence
times when fluctuations start at a given level of additive
variance in the population.

Predictor % Var. P-value

Explained

Network Size 2.3 5.18e212

Mutation rate 12.1 ,2.2e216

dE/dt 60.5 ,2.2e216

n * dEdt 3.8 2.48e216

Mutation * dE/dt 9.4 ,2.2e216

n refers to network size; dE/dt is the rate of environmental change.
doi:10.1371/journal.pone.0014747.t004

Figure 4. Population persistence times (±95% CI) as a function
of network size and rate of environmental change. The generally
negative relationship between network size and persistence times is
evident at the highest rate of environmental change (0.005 units/
generation). At the slowest rate of environmental change (1e24 units/
generation), however, the relationship with network size is absent: the
environment is changing slowly enough that all networks can adapt
sufficiently fast.
doi:10.1371/journal.pone.0014747.g004

Gene Networks and Changing Env
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stability [39]. Here I have found that population stability (CV)

tends to be related to higher additive genetic variance, but that it is

conditional on the background rate of environmental change. Willi

and Hoffmann [40] found Drosophila population persistence

correlated with genetic variability (and demographic parameters),

with greater variability resulting in longer persistence. The

network-to-persistence time hypothesis could be tested by

combining GPM estimates with population experiments such as

those of Agashe or Willi and Hoffmann.

While range expansion was not modeled here, prior research

has indicated that the heritability of a limiting trait can play a

strong role in determining range limits [41]. Patterson and Stone

noted nearly 70 years ago that the range of D. melanogaster in North

America had expanded north faster than the range of D. simulans

[42]. This information taken in conjunction with the estimates of

cold resistance heritability in several Drosophila species by

Kellermann and colleagues [43] suggests a causal chain of higher

heritability resulting in greater population persistence, which then

results in faster range expansion. There may, in fact, be a feed-

forward process in that the continued range expansion will permit

the maintenance of even greater genetic diversity in a patchy

landscape, and contribute to increased heritability. Network size

(and topology) evolution could contribute to the process. The link

between size and topological characteristics of networks underly-

ing range-limiting traits in various species could be tested in a

straightforward, if correlational, manner.

The differences in population persistence given different

network characteristics at different rates of environmental change

suggests a novel axis of species sorting. Species sorting is a specific

model of community assembly that proposes species sort according

to their ‘preferred’ habitats [44–46]. Here, rather than suggesting

species possess fixed traits which are environmentally filtered, it

appears that species could assort according to the rate of

environmental change. These differences in rates of change could

either be spatial or temporal. We can hypothesize that such

population-level effects of genetic architecture could be extended

further. For example, Urban and colleagues investigated the role

of heritability on community assembly dynamics and found that

different heritabilities affect the ability of species to colonize and

monopolize patches in a metacommunity [9]. By extension, gene

networks that contribute to variation in heritability may provide a

mechanistic basis of scaling from genes to communities.

Given the importance of the rate of environmental change in

interacting with genetic architecture to potentially shape herita-

bility and population persistence times, what should the reader

make of the rates that have been examined here? The values were

not taken from the literature for any long-period cyclical

environmental variable (e.g., ENSO). Instead, the goal was to

explore a parameter space of rates of environmental change to see

if an interaction with network characteristics was apparent. Such

an interaction was recovered. The inference should therefore be

that the genetic architecture is important in the context of the rate

of environmental change relative to some faster or slower rate of

change, but we should not expect these values to be empirical

estimates. The simplicity of a Boolean network further precludes a

direct application to reality. We should only state from these

results that relative network sizes, say, compared between species,

could be an important component of explaining population

persistence in fluctuating environments.

As with any model, the system investigated here is a simplification

of reality. The network structure and dynamics are simplified for

computational tractability in the present model, and future

computational research should consider combining the larger

network sizes (such as those here) with the more complex topology

as considered by others [28,29]. Here, I have considered only a

single trait and ignored pleiotropic effects, which are well-known to

influence rates of trait evolution [47]; future work should investigate

the intersection of networks and pleiotropy. Lastly, only a single-

species is considered here, but real species exist in communities

where heterospecifics also evolve as they compete with, prey upon,

facilitate, or parasitize a focal species [48]. However, even with these

simplifications, the model is useful because it suggests new

relationships between gene networks and ecological dynamics.

Furthermore, the conclusions establish basic hypotheses to be tested

empirically.

The basic conclusion of this paper is that the genetic

architecture of a quantitative trait—that is, the size and topology

of the underlying network—interacts with the rate of environ-

mental change to alter trait heritability, which in turn effects

persistence times. In particular, populations whose limiting trait is

underlain by smaller, scale-free networks persist longer in fast-

changing environments, and quickly gain higher trait heritability

as a result. In contrast, populations persist indefinitely regardless of

the details of genetic architecture when the rate of environmental

change is slow, and even large-network species can achieve high

trait heritability. Either rejecting or supporting these conclusions

empirically will lead to a better understanding of the evolution and

ecology of species and communities.

Methods

Model Presentation
I focus on individuals of a single species living in a single patch

with an environmental variable against which each individual’s

trait is tested. This variable is a ‘‘driver’’, i.e., a variable whose

value is not affected by the presence or activity of individuals in a

patch. Examples of drivers include temperature and pH. In these

simulations the environment can take a value between 0 and 140,

and was initialized at 70 in all simulations. The environment

begins changing at a constant rate—either 5e-3, 1e-3, 5e-4, or 1e-4

units per generation—immediately upon simulation initiation.

Individuals possess a single quantitative trait that maps to the

environmental variable. For the three environmental driver

examples above, this might include thermoregulatory ability, or

the ability to regulate osmotic balance or pH. The trait is encoded

by a directed Boolean network of 16, 32, 64, 128, or 256 genes, the

state of each determined dynamically (see below). The topology of

the network is initiated as either random (no preferential

attachment) or scale-free (with preferential attachment) in its

out-degree distribution [19]. Randomly-connected networks show

an approximately Poisson degree distribution, whereas scale-free

networks exhibit an power law degree distribution [19]. I use a

lottery model algorithm, i.e., the probability of an existing

gene acquiring a connection to a new gene is proportional to

the number of existing connections, to form the scale-free

networks [49].

At the start of a run, every individual’s network is randomly

determined (as guided by the constraints of topological specifica-

tion); with these relatively small populations, it is very unlikely that

any two individuals possess the same exact network at simulation

initiation. The binary state [0, 1] of each gene in the network

except the upstream-most is determined by comparing the state of

the gene immediately upstream to the functional relationship of

the gene pair (Figure 6a, encoded by chromosome of 6c). The state

of the upstream-most gene is determined randomly for each

individual at simulation initiation, and is then inherited for

subsequent generations. Some genes may act as repressors and

others as activators, and the state of the downstream gene is

Gene Networks and Changing Env
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determined by the match or mismatch between the state of the

upstream gene and the function (Figure 6b). For example, if the

upstream gene is ‘‘on’’ (state = 1) and is a repressor (function = 0),

then the downstream gene takes the ‘‘off’’ state (state = 0).

Alternatively, if the upstream gene state is 0 and it is a repressor,

then the downstream gene takes the ‘‘on’’ state. Each gene except

the basal-most has a single input to ease computational

requirements (the number of calculations increases according to

22k

with k inputs [28]), but may have one or more outputs (i.e.,

may be pleiotropic). All network information is stored on a single

chromosome consisting of two parts (Figure 6c). First, the topology

is defined by a ‘‘tails list’’ of the downstream genes; the ‘‘heads list’’

(the controlling, upstream genes) is inferred from the index

position of each tail list element. The relationship between heads

and tails genes is randomly determined at the start of a simulation

run, but, as noted above, the out-degree distribution is constrained

by the scale-free versus random topological assignment. Figure 6a

is an example 13-gene network whose states have been calculated

given the information from the chromosome in Figure 5c.

Each individual’s phenotype is determined by summing the states

of all terminal genes in the network, i.e., genes with out-degree = 0,

and scaling the value to the range of the environment ( = 140). So,

for example, the network in Figure 6a possesses eight terminal

genes, four of which are ‘‘on’’, thus the individual possesses a

phenotype of 70 ( = (140/8) * 4). I am thereby assuming that there

are no biochemical limits given a particular network size; individuals

with a 16-gene network can approximate a phenotype of 140, as can

individuals with a 256-gene network. The consequence for this re-

scaling is that smaller networks have lower resolution than larger

networks, which is a reasonable assumption given that dividing any

particular task among fewer actors will result in lower overall

accuracy. I stored the phenotypes of each individual’s parents and

used mid-parent regression to estimate the trait’s heritability in the

population. Additive genetic variance was derived by multiplying

the phenotypic variance by the heritability.

Each individual’s phenotype is translated to a fitness relative to

the environment using a Gaussian function of the form,

RF~e{0:001�Dv
,

where D is the absolute value of the difference between the

environment and the phenotype, and v is a value that changes the

breadth of the selection function. I varied v from 1.5 (high

tolerance for a phenotype-environment mismatch) to 2.5 (low

tolerance for a phenotype-environment mismatch) in the simula-

tions. In this way I assume that the environmental effect is absolute

and the phenotypic variance of the population plays no role in

how an individual is selected. Each individual’s RF does not affect

the number of offspring produced, but does affect the probability

that an individual will survive to reproduce.

Individuals are sexually-reproducing hermaphrodites who mate

at random. The number of offspring from a mating is determined

by drawing a random value from a Poisson distribution with

l= 1.5. Gametes undergo recombination during a diploid meiotic

stage to create an offspring chromosome that is a mixture of

parental alleles, which in this model are the tails list and the

functional relationships. The first element of the offspring

chromosome is chosen from the first element of one parent, then

subsequent elements are taken from the same parent until a

random uniform number less than the recombination rate (r = 0.05

or 0.5) is drawn, at which point the element is drawn from the

opposite parent. This continues the length of the chromosome.

Mutation, as determined by testing a uniform random number

against the mutation rate (1e24 and 1e26) for each chromosomal

element, occurs after the new chromosome is created. Although

these mutation rates appear high, as noted by Frank [28], because

the trait is directly related to fitness, the effective mutation rate is

about one order of magnitude lower. All mutations are non-

synonymous and may affect either the controlling function of a

gene (an activator mutates to suppressor) or the relationship to

another gene (i.e., alter network topology).

Death occurs after reproduction in three stages. First, all parents

are killed to prevent over-lapping generations. Next, the new

generation is culled according to each individual’s relative fitness:

if the RF is less than a uniform random number, then the

individual dies. Last, a carrying-capacity is enforced by randomly

killing individuals to bring the population below K = 500.

Analysis
The experiments were a full factorial design using five network

sizes, two network topologies, two recombination rates (0.05 and

0.5), two mutation rates (1e24 and 1e26), and the four rates of

Figure 6. An example network, functional map, and chromo-
some. Panel A shows an example 13-gene Boolean network. Black nodes
are up-regulated (‘‘on’’; state = 1) genes and white nodes are down-
regulated (‘‘off’’; state = 0). If an edge connecting two nodes is black, the
‘‘head’’ gene (upstream) activates the ‘‘tail’’ gene (downstream), and if an
edge is gray, the head represses the tail gene. Panel B provides the
functional map; for example, if the head gene is ‘‘off’’ and the edge
connecting the head and tail genes is an activator, then the tail gene is off
(upper-right quadrant). Panel C shows the chromosome corresponding
to the network in Panel A. Each block represents a gene (numbers along
the left-hand side); within each block, the top number defines the ‘‘head’’
(i.e., immediately-upstream) gene while the bottom number defines the
functional relationship (e.g., if 0, then the head gene is a repressor).
doi:10.1371/journal.pone.0014747.g006
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environmental change, replicated three times for a total of 480

simulations. (I also ran 480 simulations of an earlier version of the

model, in which the recombination code was insufficient, and the

results of that run were nearly identical to those presented here.)

The simulations continued for 2000 generations or until the

population went extinct, whichever occurred sooner. I considered

four response variables: the rate of change of phenotypic variance,

the rate of change of genotypic variance, average trait heritability

over the duration of each simulation, and population persistence. I

extracted the rates of phenotypic and genetic variance change

during the first 250 generations of each of the 480 simulations

using a liner regression of time on genetic and phenotypic

variance. I then used linear regressions to assess the influence of

each predictor (characteristics of genetic architecture plus the rates

of environmental change) on each of the response variables. In all

analyses, predictor variables were factors, rather than continuous

variables, thus obviating a need for nonlinear model terms. I used

Tukey’s HSD to calculate corrected pairwise tests [50]. For some

analyses, a full-interaction model resulted in far too many terms to

be readily interpretable. I therefore used Akaike’s Information

Criterion (AIC) to determine how different the best interpretable

model was from the AIC-best model [51]. All statistical analyses

were completed in R 2.10 [52].

Supporting Information

Figure S1 An example of change in variance components and

heritability over 2,000 generations. The mean additive genetic

variance, phenotypic variance, and heritability of the ecologically-

important trait regulating the simulated species’ population

dynamics, when the rate of environmental change is slow (dE/

dt = 0.0001 units per generation). VA is derived from the directly-

measured parameters heritability (from mid-parent regression) and

phenotypic variance. Even though variance components for each

network size converge by 2,000 generations, larger networks start

with lower variance and are not able to adapt fast enough to

survive long enough to evolve the beneficial, higher heritabilities

when dE/dt is high.

Found at: doi:10.1371/journal.pone.0014747.s001 (0.65 MB TIF)
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