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Abstract

In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a
noninactivating or slowly inactivating component: the persistent sodium current (INaP). The INaP is found in normal primary
sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the
gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of INaP in DRG
neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-
diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which
blocks the INaP, also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly,
riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to
intracellular current injection with a single full-sized spike. In addition, the INaP was enhanced in medium- and large-sized
neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the INaP without affecting the transient
sodium current (INaT). Taken together, these results demonstrate for the first time that the INaP blocker riluzole selectively
inhibits INaP and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests
that the INaP of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.
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Introduction

Voltage-dependent sodium channels are responsible for the

generation and conduction of action potentials in the membranes

of excitable cells. In addition to a fast activating and immediately

inactivating sodium current, the inward current of many types of

excitable cells also has a non-inactivating or slowly inactivating

component: the persistent sodium current (INaP). The INaP is

present in neurons throughout the central nervous system,

including those of the hippocampus, neocortex and cerebellum

[1]; it has also been found in thalamic neurons [1,2], mesence-

phalic trigeminal sensory neurons [3], and hypoglossal motoneu-

rons [4]. When present, INaP lowers the actviation threshold of

most neurons by about 10 mV, and is blocked by a low level of

tretrodotoxin (100 nM) [1,5,6]. Under physiological conditions,

INaP is critical to neuronal excitability, the modulation of near-

threshold membrane potentials, the amplification of synaptic

currents, and the facilitation of repetitive firing [7,8,9,10]. There is

evidence from a genetic model of amyotrophic lateral sclerosis and

spinal cord injury that an increased persistent sodium current

determines the hyperexcitability of central cortical neurons

[11,12]. It also has been reported that INaP participates in epileptic

firing in the central nervous system [5]. Among such cells as

mesencephalic trigeminal sensory neurons and hippocampal

neurons, INaP is considered to be one of the threshold currents

modulating neuronal excitability under both physiological and

pathological conditions.

Recently, a number of reports have focused on the effects of

riluzole on INaP in central neurons [13,14,15,16,17], and have

proposed riluzole as a relatively specific persistent sodium channel

blocker [18,19]. Riluzole has been used clinically in the treatment

of several neurological disorders, including amyotrophic lateral

sclerosis [20] and epilepsy. However, the mechanisms underlying

these clinical applications are far from clear.

The dorsal root ganglion (DRG) is the gateway for ectopic

impulses originating in pathological pain signals from the

periphery. The INaP has been found in normal primary sensory

neurons where it is mediated by tetrodotoxin-sensitive sodium

channels [21]. However, the role of INaP in DRG neurons is

uncertain, particularly in neuropathic pain states. Our recent work

has shown that in compressed DRG neurons, INaP is blocked by

gabapentin and low doses of lidocaine, and that these analgesic
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drugs suppress the submembrane potential oscillations of injured

DRG neurons [22,23].

In the present study we demonstrate that behavioral changes in

rats undergoing a chronic compression of the dorsal root ganglion

(CCD) [24,25] are concurrent with a significant enhancement of

INaP, along with its associated subthreshold membrane potential

oscillations (SMPOs) and ectopic spotaneous activity (SA), in the

correspondingly injured A-type DRG neurons. Local application

of riluzole clearly inhibits INaP while suppressing SMPOs and SA,

indicating a potential role for the INaP of injured DRG neurons in

neuropathic pain states.

Materials and Methods

1. CCD animal model
Experiments were conducted on adult Sprague–Dawley rats

(200–250 g) of both sexes. The animals were purchased from the

Animal Center of the Fourth Military Medical University

(FMMU) and were housed and handled according to the

guidelines of the institutional and national Committees of Animal

Use and Protection.

The animal model used in this study was established in our

department as described previously [24,25]. In the present study, a

stainless steel L-shaped rod (4 mm in length and 0.66 mm in

diameter) was implanted in the intervertebral forman at L5 to

chronically compress the DRG.

2. Behavioral testing
Mechanical paw withdrawal threshold. Paw withdrawal

thresholds to mechanical stimulation were assessed using von Frey

filaments (Stoelting Co, USA). Each animal was placed on a metal

mesh floor in a plastic cage (20625615 cm). To test the tactile

threshold required to evoke withdrawal of the stimulated paw, von

Frey filaments (2–15.0 g) were applied perpendicularly in

ascending order to the plantar part of the hind paw [26].

Withdrawal, flicking, or licking of the hind paw were all

considered positive responses. Each filament was applied five

times, with the overall response assessed as positive if three or

more positive responses of the hind paw were obtained. The paw

withdrawal threshold was determined by the lowest strength of

stimulation. To avoid tissue damage, the cut off threshold was

assigned at 15.0 g [27].

3. Electrophysiological recordings
3.1 Extracellular recording of DRG single fiber

activities. Unit activities of single DRG A-fibers were

recorded 3–8 days after the CCD surgery. Under sodium

pentobabital anesthesia (40 mg/kg, i.p.), laminectomies were

performed at the L1–L2 and L4–L5 levels separately, and two

small pools were formed above the exposure regions. In the L4–L5

pool the stainless steel rod was removed. The spinal nerve was

transected 7–10 mm distal to the DRG so that the discharge

activities of the dorsal root fibers would originate primarily from

the DRG region and not from peripheral sources. During

recording the L4–L5 pool was filled with warm Krebs solution

(35–37uC) containing (in mM): NaCl 150, KCl 5, CaCl2 2, MgCl2
1, D-glucose 10 and HEPES 10, with the pH adjusted to 7.4.

The L1–L2 pool was filled with warm paraffin oil (35–37uC).

Under a microscope, a microfilament (20–50 mm in diameter) and

presumably including up to a few nerve fibers was isolated from

the dorsal root and cut off. The proximal end was placed on a fine

platinum electrode (29 mm in diameter) for electrophysiological

recording of DRG single fiber activities. The firing patterns of a

single fiber were displayed on a memory oscilloscope (VC-11,

Japan) and recorded via an A/D board to a computer hard drive

and stored for offline analysis. Unit activities with identical wave

forms were selected as single fiber activities [24,28].

Riluzole (Sigma, USA) was dissolved in dimethyl sulfoxide

(DMSO) as a stock solution and kept frozen; it was diluted in

ACSF before the experiments. Unit discharges were recorded in

the presence and absence of riluzole or vehicle for at least another

3 min. The percentage changes in discharge rate were calculated

as: (maximal discharge rate - baseline rate)/baseline rate6100%.

The changes in single fiber firing rates were considered significant

if the differences were 15% or greater [28].

3.2 Intracellular recording of SMPOs in DRG

neurons. In order to examine the effects of riluzole on these

oscillations, DRG neurons from CCD animals were intracellularly

recorded in vivo using sharp electrodes. The compressed DRG was

exposed under sodium pentobabital anesthesia (40 mg/kg, i.p.). A

small pool was formed surrounding the CCD ganglion and filled

with warm paraffin oil, as described above. Recording

microelectrodes were pulled from borosilicate glass tubes using a

microelectrode puller (P97, Sutter Instruments, USA). After being

filled with 3 M potassium acetate the microelectrodes had a final

resistance of 40–60 MV. DRG neurons were impaled under visual

control by advancing the microelectrode at 4–8 mm steps, with

application of a small capacitance buzz when necessary.

The conduction velocity was measured by delivering a brief

electrical pulse to the sciatic nerve through a stimulus isolator.

DRG neurons were categorized by their conduction velocities

[29]. Only A-type neurons with conduction velocities of 15.0–

35.1 m/s having stable resting membrane potentials below

250 mV and/or spontaneous activity were selected for further

investigation. Recordings were terminated if the resting membrane

potential dropped more than 10% below control values. Riluzole

(80 mM) was locally applied after control recordings.

3.3 Whole-cell patch recording of sodium currents in

DRG neurons. Three to eight days after the CCD surgery, the

animals that showed the positive behavioral responses described

above were selected for further electrophysioloical recordings.

After these animals were anesthetized with sodium pentobarbital

(50 mg/kg, i.p.), the compressed L5 DRGs were carefully removed

from the vertebral column and placed in cold oxygenated ACSF.

The ACSF contained (in mM): NaCl 125, KCl 2.5, NaH2PO4 1.2,

MgCl2 1.0, CaCl2 2.0, NaHCO3 25, and D-glucose 10. The

connective tissue was gently removed under a microscope and the

ganglia were digested with a mixture of 0.4 mg/ml trypsin (Sigma)

and 1.0 mg/ml A-type collagenase (Sigma) for 40 min at 37uC
while agitated by gentle bubbling with 95% O2 and 5% CO2.

Finally, the ganglion was transferred into a holding chamber

containing normal ACSF bubbled with 95% O2 and 5% CO2 at

26uC [23].

Recording electrodes had resistances of 4–8 MV after being

filled with an internal solution. To measure membrane potentials

and the effects of riluzole on the SMPOs of A-type DRG neurons,

the internal solution contained (in mM): KCl 140, MgCl2 2,

HEPES 10, Mg-ATP 2, with the pH adjusted to 7.4. To examine

the effects of riluzole on sodium currents in A-type DRG neurons,

recording electrodes were filled with an internal solution

containing (in mM): CsCl 110, NaCl 5, MgCl2 3, CaCl2 1,

EGTA 3 and HEPES 40, adjusted with Tris buffer to pH 7.4. The

bath solution consisted of (in mM): NaCl 100, TEA-Cl

(tetraethylammonium chloride) 40, KCl 3, MgCl2 1, CaCl2 1,

D-glucose 10, HEPES 10, BaCl2 1, CsCl 1, 4-AP (4-aminopyr-

idine) 2 and CdCl2 0.1, with the pH adjusted to 7.4 [30].

The ganglion was kept in the holding chamber for at least 1 hr

before being transferred to the recording chamber. During
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recording, the ganglion was kept submerged and perfused with

warm (32uC) ACSF saturated with 95% O2 and 5% CO2.

Individual neurons were visualized with a 406 water-immersion

objective under a microscope (BX51WI; Olympus) equipped with

infrared differential interference contrast optics. Whole-cell

current and voltage recordings were carried out using a Multi-

clamp 700B amplifier (Molecular Devices, USA). The signals were

digitized at 10 kHz by a 1320 A/D board (Molecular Devices,

USA) and stored in a computer hard drive for offline analysis. P-

clamp 9 software (Molecular Devices, USA) was used for data

acquisition and analysis. Typically, a gigaohm seal was formed by

a small negative pressure, and whole-cell recording was established

by rupture of the cell membrane with further negative pressure or

a buzz signal, or a combination of both. Membrane potential was

held at 260 mV under voltage clamp. Neurons that showed

resting membrane potentials below 250 mV along with over-

shooting action potentials were selected for further study.

Recordings were terminated if the Ra increased or resting

membrane potential dropped by 20% or more from control levels.

Sodium current amplitude was transformed into conductance

using the Ohm’s law in the form: G = I/(V2ENa), where V is the

test potential and ENa is the Na+ equilibrium potential calculated

using the Nernst equation. Conductance was normalized, plotted

against V and fitted with a Boltzmann function of the form: G/

Gmax = 1/{1+exp[(V2V1/2)6k21 ]}, where V1/2 is the half-

activation voltage and k is the slope factor.

4. Statistical analysis
All values were expressed as mean 6 SEM. Statistical

evaluations were performed using Statistical Product and Service

Solutions (SPSS) software (paired t-test, non-paired t-test, repeated

measure, and one-way AVOVA methods) with the significance

criterion set at P = 0.05.

Results

1. Mechanical allodynia in CCD animals
During the behavioral test period which lasted for up to two

weeks, all animals appeared to be gaining weight, which suggests

that they were in good health. Animals were usually well groomed

and exhibited no self-inflicted wounds. No abnormal gait or

posture was observed in the control group. However, all tested rats

post-CCD surgery developed varying degrees of gait and postural

abnormality. They were often seen to lift the ipsilateral hindpaw

from the ground and then hold it in a protected position next to

the flank while standing or sitting. When the affected hindpaw was

touching the ground, the animals often reduced the weight placed

on it by leaning to the other side or by sitting on the opposite

haunch. These behaviors appeared as early as one day after the

CCD surgery, and all animals showed such behaviors within the

first two weeks, as reported earlier [24,25]. No control or test

animals exhibited any signs of autotomy or abnormal nail growth.

However, the CCD rats used for subsequent electrophysiological

recordings showed clear behavioral indications of allodynia, as

reported previously [24,25].

As shown in Figure 1A, the thresholds for paw withdrawal in

control animals were relatively stable (8.560.4 g, n = 6), while the

values for the same tests on the contralateral side were slightly

decreased (Fig. 1B), but not to a statistically significant extent (non-

paired t-test, P.0.05). However, the thresholds for paw with-

drawal on the ipsilateral side of the CCD animals were clearly

reduced starting on the day after the CCD surgery (one-way

AVOVA method, P,0.05). The reductions became statistically

significant from day 5 on and remained low until the end of the

tests (4.060.8 g, n = 4; non-paired t-test, P,0.05, Fig. 1A). These

behavioral responses of the CCD animals are characteristic of

mechanical allodynia. Similar results have been reported by our

group [24] and by others [25].

2. Inhibitory effects of INaP blocker riluzole on the
spontaneous activity of A-type fibers from compressed
DRG neurons

A total of 53 spontaneously discharging A-type single fibers of

the L5 DRG were recorded from 38 CCD ganglions in intact

animals. CCD fibers/neurons can be classified into two classes

based on the dynamic features of their spontaneous activities [28].

The periodic class is characterized by the interspike intervals that

appear repeatedly at regular intervals, and 21 of 53 fibers (39.6%)

fell into this category. Fibers in the non-periodic class have an

irregular pattern of interspike intervals, and 32 of 53 fibers (60.4%)

were included in this group.

Basal firing rates normally fluctuated from 0.6% to 14.2% of the

average control value (6.460.5%, n = 53). Five minutes after local

application of the INaP blocker riluzole (100 mM) to the DRG

region, rates of spontaneous activity were reduced in all cases

Figure 1. Mechanical allodynia in CCD rats. (A) Time course of changes in the withdrawl threshold of the ipsilateral hindpaw for control (n = 6,
open circles) and CCD (n = 4, closed circles) rats. The mechanical threshold for withdrawl of the ipsilateral hindpaw was significantly lower in the
chronically compressed rats (* P,0.05 or **P,0.01 compared with the average for the ipsilateral hindpaw of the control group). (B) Average
ipsilateral and contralateral paw withdrawl thresholds for the control and CCD groups on the postoperative 5 days.
doi:10.1371/journal.pone.0018681.g001

Blockade of INaP Mediated Inhibition of Riluzole

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18681



(n = 6). Figure 2A shows one such recording, in which firings were

reversibly abolished after the riluzole application. The results of

similar recordings can be summarized as showing that the

spontaneous activity of A-type CCD fibers is suppressed by

riluzole in a dose-dependent manner (n = 6, Fig. 2B). Again, the

riluzole-mediated inhibition of the spontaneous activity in A-type

CCD fibers was shown to be reversible in most cases, as the

spontaneous activity resumed in 78.6% (22/28) of the fibers within

20 min after washout (Fig. 2A). In the presence of 0.1% DMSO,

the discharge rate of A-type fibers from compressed DRG neurons

was 19.962.9 Hz (n = 4), which is not significantly different from

the discharge rate of A-type fibers in the absence of the vehicle

(paired t-test, P.0.05).

3. Inhibitory effects of riluzole on SMPOs in compressed
A-type DRG neurons

3.1 Inhibitory effects of riluzole on spontaneous SMPOs

at the resting membrane potential. The SMPOs observed in

DRG neurons of CCD animals can be considered a useful

electrophysiological indication of neuronal injury. To examine

whether riluzole affects SMPOs and would thereby block such

downstream effects, DRG neurons in CCD animals were recorded

in vivo using sharp electrodes. Upon penetration, most of these DRG

neurons were silent and had a relatively stable membrane potential

(261.360.9 mV, n = 30), but some (7/63, 11.1%) displayed

sinusoidal SMPOs (78.263.4 Hz, n = 12) and spontaneous activity

at the resting membrane potential. After a 5 min period of baseline

recording from 4 of such neurons, riluzole (80 mM) was locally

applied onto the DRG. It was found that the resting membrane

potential remained stable in all of these cells, but that the frequency

of the spontaneous activity gradually decreased and finally

disappeared in about 60 s. The SMPOs showed similar changes,

decreasing in amplitude and then disappearing. The inhibition of

riluzole on spontaneous activity and SMPOs was largely recovered

following washout in all the tested neurons (Fig. 3A).

3.2 Inhibitory effects of riluzole on the spontaneous

activity in vitro. Few if any DRG neurons recorded using

whole-cell patch-clamp methods displayed spontaneous activity

following the compression of the DRG. The effects of riluzole were

examined in these neurons by the bath application of the drug

(10 mM) to three DRG neurons in vitro, after which the

spontaneous activity slowed down and eventually was eliminated

(Fig. 3B).

3.3 Inhibitory effects of riluzole on SMPOs at different

levels of depolarization. Using whole-cell patch-clamp

methods, about a third of the recorded DRG cells (10/28,

35.7%) displayed high frequency sinusoidal SMPOs and repetitive

discharges during the injection of 800 ms depolarizing current

pulses. The effects of riluzole were examined in five of these

neurons by the bath application of the drug (10 mM). It was found

that the SMPOs were eliminated and that the repetitive firing

slowed down and eventually stopped 3 min after the drug

Figure 2. Effects of riluzole on the spontaneous activity of A-type neurons in the compressed DRG. (A) Time histogram showing that
local application of the INaP blocker riluzole reduces the basal firing rate of an A-type fiber in a dose-dependent manner (n = 6; P,0.05). (B) Percent
inhibition of spontaneous activity in A-type fibers with respect to the concentration of locally-applied riluzole (mM; n = 6; *P,0.05, **P,0.01,
***P,0.001). (C) Time histogram showing the suppression of spontaneous activity induced by riluzole (100 mM) in an A-type afferent fiber from a
compressed DRG. Expanded traces in right panel show firing patterns before (a) and during (b) the drug application.
doi:10.1371/journal.pone.0018681.g002
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Figure 3. Effects of riluzole on the spontaneous activity and SMPOs of A-type neurons in the compressed DRG. (A) Intracellullar sharp
electrode recordings from an A-type DRG neuron in vivo, showing spontaneous activity and SMPOs under control conditions (a), after local
application of riluzole (80 mM; b,c), and during washout (d). The spikes have been truncated. Inserted segments (a–d, lower panel) are expansions of
the original traces at the times indicated and show details of the spikes and SMPOs. (B) Whole-cell patch recordings from an A-type DRG neuron in
vitro. Spontaneous activity (a) was significantly inhibited in the presence of riluzole (10 mM; b,c) and restored after washout (d). The spikes have been
truncated. Inserted segments (a–d, lower panel) are expansions of the original traces at the times indicated. (C) Whole-cell patch recordings from an
A-type DRG neuron in vitro. (a) The cell responded to depolarizing current pulses of 1.7 nA (upper panel) and 2.4 nA (lower panel) with repetitive
firing and SMPOs (insertion). (b) In the presence of 10 mM riluzole (upper panel), both the repetitive firing and SMPOs (insertion) induced by
depolarization were abolished; however, a single action potential was still evoked immediately after application of the current pulse.
doi:10.1371/journal.pone.0018681.g003

Blockade of INaP Mediated Inhibition of Riluzole
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application. It is interesting to note that although riluzole largely

abolished the evoked SMPOs and the repetitive firing, these DRG

neurons still responded to the same depolarizing current pulses

with a single action potential at the initial phase of the current

pulse, indicating that these cells are still capable of generating

action potentials in the presence of riluzole (Fig. 3C). In all the

neurons tested, the SMPOs and repetitive firing were largely

recovered after riluzole washout.

4. Increased INaP in injured A-type DRG neurons
Using whole-cell patch-clamp methods, 114 large- and medium-

sized neurons ($35 mm in diameter) were recorded in in vitro DRG

preparations taken from CCD animals. These neurons had a

stable resting potential of 255.760.9 mV (n = 80), a membrane

resistance of 89.665.3 MV (n = 80), and a membrane capacitance

of 92.463.3 pF (n = 80).

In these experiments, the glass recording pipettes were filled

with a Cs+-based internal solution, while K+ and Ca2+ channel

blockers were added to the bath. Under a holding potential of

260 mV, INaP was recorded in normal DRG neurons by applying

a 3 s depolarization ramp current from 280 to 0 mV [30]. The

inward sodium current was induced at potentials of 260 to

250 mV, reached a peak at 235 mV, returned to control levels at

220 mV (Fig. 4A), and was sensitive to a low dose of TTX

(100 nM, not shown). In injured A-type DRG neurons, the

average current density of INaP was also significantly increased

(CCD group: 2.860.3 pA/pF, control group: 1.660.3 pA/pF,

non-paired t-test, P,0.05; Fig. 4A–4C). The activation curves of

INaP in control and compressed DRG neurons were both fit with a

Boltzmann distribution equation; the differences were not

statistically significant (Fig. 4D).

5. Selective inhibitory effect of riluzole on INaP in injured
A-type DRG neurons

The average current peak of INaP in injured A-type DRG

neurons was 249.1648.3 pA or 248.4647.9 pA (n = 4) in the

absence or presence of DMSO (0.1%), respectively, a difference

which is not statistically significant (paired t-test, P.0.05;

Fig. 4E&4F). Riluzole significantly inhibited the INaP of injured

A-type DRG neurons in a dose-dependent manner. At doses as

low as 2 mM, the drug clearly reduced the peak value of INaP by

,40% (n = 5, non-paired t-test, P,0.05; Fig. 5A), and the IC50 for

riluzole inhibition of the INaP was 4.1 mM (n = 5; Fig. 5B).

To determine the specificity of this riluzole-induced inhibition

in injured A-type DRG neurons, we next examined the effects of

the drug on the TTX-sensitive transient sodium current (INaT). In

whole-cell recordings performed under voltage-clamp, INaT was

evoked by depolarization voltage steps (Fig. 5C). Riluzole was then

bath-applied at 10, 200 and 500 mM, and the percent inhibition of

the INaT peak amplitude in each neuron was plotted against the

different voltage steps (Fig. 5D). The inhibition of INaT at 200 and

500 mM riluzole was 58.966.5% (n = 4, paired t-test, P,0.05) and

82.061.7% (n = 3, paired t-test, P,0.001), respectively.

Discussion

The primary finding of the present study is that a local

application of the INaP blocker riluzole to the DRG selectively

reduces the INaP and INaP-associated SMPOs of injured DRG

neurons in the CCD animal model of neuropathic pain. The INaP

is enhanced in medium- and large-sized DRG neurons of the

compressed DRG.. Our data shows for the first time that the INaP

and INaP-associated SMPOs of injured DRG neurons are

important to the spontaneous activity of primary afferents in

neuropathic pain states. Hence, the blockade of INaP in DRG

neurons may play an anti-nociceptive role at the primary afferent

level.

1. Spontaneous activity in neuropathic pain states
In our animal model, a chronic and steady compression is

ipsilaterally applied to the DRG in rats (CCD model), causing the

animals to show behaviors typical of mechanical allodynia

ipisilaterally [24]. Ectopic spontaneous activity plays an important

role in maintaining central sensitization and neuropathic pain.

Moreover, the level of ectopic discharge is generally well

correlated with the degree of pain behavior in neuropathic

animals [31]. Our in vivo experiment demonstrate that the

spontaneous activity of large diameter primary afferent fibers is

inhibited by the INaP blocker riluzole in a dose-dependent manner

and is completely abolished at a concentration of 500 mM. This

concentration of riluzole was slightly higher than that of the

riluzole used in our in vitro whole-cell patch-clamp experienments

of the present study, due to the rapid circulation of blood within

the DRG in vivo. These results indicate that the INaP blocker

riluzole inhibits the spontaneous activity of compressed type-A

DRG neurons, and hence reduces pathological pain signals

originating in the periphery.

2. SMPOs in A-type DRG neurons
Previous work has shown that low levels of TTX also suppress

SMPOs and abolish ectopic spontaneous activity in injured DRG

neurons [32,33,34], indicating that SMPOs of injured DRG

neurons are essential to the generation of abnormal spontaneous

activity and pain behaviors. The fact that peripheral receptors and

large parts of the axons were removed in our preparations suggests

that SMPOs must be generated in the soma or in proximal

segments of DRG cell axons. Hence, pathological hyperexcitabil-

ity may originate not only at receptors in the skin but also in the

somatic region of primary afferent neurons. Our recent work has

shown that analgesic drugs such as gabapentin and lidocaine have

inhibitory effects similar to those of riluzole on INaP [22,23]. The

results reported here further demonstrate that INaP plays an

important role in the generation of SMPOs that occur in injured

A-type DRG neurons after compression of the DRG. In the rat

trigeminal mesencephalic nuclei, INaP is responsible for the

enhancement of SMPOs and also participates in the generation

of bursting in central neurons [19]. Taken together, these studies

strongly suggest that injury and inflammation may cause large-

and medium-sized DRG neurons to increase a TTX-sensitive INaP

and its associated SMPOs. The latter may in turn facilitate the

generation of ectopic spontaneous activity, an important basis for

pathological pain signals in the periphery under neuropathic pain

states. Using sharp electrode recordings in vivo and whole-cell

patch-clamp recordings in vitro, we observed sine wave-like SMPOs

in DRG neurons. Moreover, although repetitive firing and

SMPOs were abolished by riluzole, DRG neurons still responded

to intracellular current injection with a single full-sized spike,

demonstrating that they are still capable of firing action potentials

under riluzole.

3. INaP in A-type DRG neurons
The vast majority of pain studies at the peripheral level have

focused on small DRG neurons (,25 mm in diameter) and their

fibers. However, in cases of allodynia the non-nociceptive stimuli

associated with these cells become nociceptive, and almost any

type of stimulus may cause pain. It is a reasonable hypothesis that

medium- and large-sized primary afferent fibers and their DRG

neurons are responsible for allodynia [35,36]. The present study
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has focused on these neurons and their fibers in a CCG model to

further characterize allodynia’s cellular mechanisms.

INaP is a TTX-sensitive current that is activated in the

subthreshold voltage range and is slowly inactivating. Such

dynamics enable neurons to amplify their responses to synaptic

inputs, thereby driving them to spiking or repetitive firing [9,11].

To measure INaP directly, we injected ramp current into the

recorded cells while isolating the INaP by adding the non-selective

K+ channel blocker cesium to the internal solution and the non-

selective Ca2+ channel blocker cadmium to the bath [30]. Our

Figure 4. Enhanced INaP in A-type neurons of the compressed DRG. (A) Traces of INaP in A-type neurons from control (normal; grey line) and
compressed (CCD, solid line) DRGs (bottom) as induced by increasing applied voltage (top). (B) Bar graph showing that the average peak INaP is
significantly greater in neurons recorded from compressed DRGs (CCD; n = 31) compared to the average peak value from control group recordings
(normal; n = 26; *P,0.05). (C) Bar graph showing that average peak INaP current density is significantly greater in compressed DRG neurons (n = 31)
compared to the average peak value from control group recordings (n = 26; *P,0.05). (D) Steady state activation curves for INaP conductance with
respect to voltage in control and compressed DRG neurons as fit with a Boltzmann distribution equation. The differences are not statistically
significant. (E) Traces of INaP in a compressed DRG neuron in the absence (control, solid line) and presence (DMSO, grey line) of 0.1% DMSO (bottom)
as induced by increasing applied voltage (top). (F) Bar graph showing that average peak INaP in compressed DRG neurons (n = 7) in the presence of
0.1% DMSO is not significantly different from the average peak INaP in the absence of DMSO (control, filled; n = 7; P.0.05).
doi:10.1371/journal.pone.0018681.g004
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results show that INaP is indeed present in normal A-type DRG

neurons and is blocked by the presence of a low concentration of

TTX (100 nM). Moreover, after induction of the ganglion

compression characteristic of the CCD model, INaP was signifi-

cantly increased in A-type DRG neurons. INaP activation curves for

compressed DRG neurons were not significantly different from

those of the control group. These results suggest that increased INaP

contributes to the hyperexcitability of injured A-type DRG

neurons.

There is evidence that under experimental pain conditions, at

least two types of Na+ channels, Nav1.7 and Nav1.8, are

upregulated and downregulated concurrently with corresponding

effects on TTX-sensitive and TTX-insensitive currents [37]. The

sodium channel Nav1.7 is expressed predominantly in DRG and

sympathetic ganglion neurons [38,39,40,41], specifically in most

functionally-identified DRG nociceptive or small neurons [42].

This channel has been proposed as a molecular gatekeeper of pain

detection at peripheral nociceptors [43]. Nav1.7 is slowly

inactivated with dynamics similar to those of INaP [44]. The

expression of Nav1.7 in large- and medium-sized DRG cells, in

addition to its upregulation concurrent with changes in INaP, have

been observed in a model of diabetic neuropathy [45]. There is

also evidence that increased INaP determines cortical hyperexcit-

ability in a genetic model of amyotrophic lateral sclerosis [11].

4. Potential anti-nociceptive effects of INaP blocker
riluzole

Animal studies have shown that riluzole reduces the develop-

ment of mechanical and cold hyperactivities in a neuropathic pain

model through its pronounced suppression of glutamate and

aspartate levels in the spinal dorsal horn [46]. Riluzole also

attenuates formalin-induced flinching behaviors that follow from

its blocking effects on sodium channels, although a specific site of

this action has not been demonstrated [47]. In the rat, local

injection of riluzole into the ventral posterolateral thalamic nuclei

was found to reduce carrageenan-induced mechanical hyperalge-

Figure 5. Effects of riluzole on INaP and INaT in A-type neurons of the compressed DRG. (A) Traces of INaP (bottom) induced by increasing
applied voltage (top) in a compressed DRG neuron in the absence (control) and presence of riluzole (2, 10, 50 mM). (B) Dose-inhibition curve showing
effect of locally applied riluzole on INaP in compressed DRG neurons (n = 5; IC50 = 4.3 mM). (C) INaT traces in a DRG neuron evoked by applied
depolarization (220 mV) under control conditions and in the presence of riluzole (10, 200, 500 mM). (D) Bar graph showing that average peak INaT

current density (pA/pF) in the presence of riluzole (10, 200, 500 mM) is significantly decreased in neurons recorded from compressed DRGs (*P,0.05,
**P,0.01).
doi:10.1371/journal.pone.0018681.g005
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sia due to a decrease in glutamate release [48]. In addition, riluzole

was reported to induce anti-nociceptive effects along with a

general anesthetic state, probably by blocking glutamatergic

neurotransmission [49]. However, clinical research has shown

that oral administration of riluzole does not affect thermal and

mechanical hyperalgesia in patients with inflammatory pain [50]

or alleviate allodynia and mechanical hyperalgesia in neuropathic

pain patients [51].

These controversial effects of riluzole in clinical application and

animal research call for simplified model systems to explore its

basic mechanisms at cellular and molecular levels. To avoid the

complexity of riluzole’s effects on the CNS, we have systematically

investigated its effects on DRG neurons as representing the first

stage of the peripheral pain sensory system. We have shown that

riluzole selectively inhibits the INaP of injured A-type DRG

neurons, thereby suppressing their SMPOs and ectopic spotaneous

activity. Those results suggest that the INaP of DRG neurons can be

a potential target for analgesia at the peripheral level.

Our results indicating that riluzole may excert an anti-allodynia

effect in the DRG after nerve injury are also consistent with

reports that riluzole decreases the development of mechanical

allodynia in a rat model of neuropathic pain [46] and that the drug

attenuates nociceptive responses in a formalin-induced inflamma-

tory model [47]. Clinically, however, riluzole does not affect

thermal hyperalgesia in the inflammatory pain induced by heat

stimuli [50]. These results strongly suggest that riluzole selectively

reduces mechanical allodynia under neuropathic pain states, but is

not as effective in treating other types of pain that are conveyed via

thin afferent fibers. Compared with the anti-convulsant agents

gabapentin and lamotrigine, lower doses of riluzole were more

effective in relieving mechanical hypersensitivity. The effects of the

drug were also long-lasting, extending up to 12 days after

systematic administration [46]. Apparently, riluzole is much more

efficient than these other agents in reducing mechanical

hypersensitivity under conditions of neuropathic pain. The

discrepancy of its clinical ineffectiveness may be due to the use

of insufficient doses of the drug at local sites. Our recent work

showing that INaP is suppressed by gabapentin and low doses of

lidocaine in compressed DRG neurons [22,23], as well as the

inhibitory effects of riluzole in the same CCG model shown here,

indicate that the INaP of injured DRG neurons remains a potential

target for analgesia at the peripheral level.

From a clinical point of view, most pain symptoms in peripheral

neuropathy are of peripheral origin [52]. The gateway function of

the DRG suggests that the INaP of DRG neurons could be a

potential target in treating patients with peripheral pain

symptoms. Our results demonstrate that local application of INaP

blocker riluzole within the DRG could be specific and effective as

a peripherally-acting analgesic agent that does not penetrate the

blood-brain barrier and is therefore free of central nervous system

side effects [53].
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