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Abstract

Recent studies reported two opposite types of adaptation in temporal perception. Here, we propose a Bayesian model of
sensory adaptation that exhibits both types of adaptation. We regard adaptation as the adaptive updating of estimations of
time-evolving variables, which determine the mean value of the likelihood function and that of the prior distribution in a
Bayesian model of temporal perception. On the basis of certain assumptions, we can analytically determine the mean
behavior in our model and identify the parameters that determine the type of adaptation that actually occurs. The results of
our model suggest that we can control the type of adaptation by controlling the statistical properties of the stimuli
presented.
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Introduction

Perception as Bayesian inference
The perception of incomplete information occurs commonly in

daily life. For example, objects are often partially hidden from

view, requiring estimation of occluded components. Further,

certain aspects of our surroundings cannot be predicted. This is

true even for the nervous systems within the human body. For

example, generation of receptor noise and firing of neurons cannot

be predicted. Thus, it is necessary for a person to develop ways to

deal with such unknown aspects to gain accurate perceptions of

the world.

A number of studies have shown that some aspects of human

perceptual and motor systems can be explained by optimal

Bayesian observer models that deal optimally with uncertainty (for

a review, see [1]). These studies have typically compared the

performance of human subjects with that of optimal Bayesian

observers, and generally reported that they are approximately

identical. That is, human perception has been found to be optimal

in this sense.

Adaptation is an important aspect of human perception and

action. The external environment is constantly changing, and the

human body undergoes continuous changes as a result of injury,

growth, and aging. Thus, our perceptual and motor systems must

adapt to such changes to accurately perceive and interact with the

external world. Adaptation is important not only as a subject of

study in itself, but also because it can be used to deduce the

mechanisms underlying perceptual and motor systems in psycho-

physical and brain imaging experiments [2–4]. Such experiments

are important for investigating the human brain, which, due to

ethical issues, cannot be directly examined using other techniques

common in neuroscience, such as invasive electrophysiological

methods.

Bayesian models of perception raise the possibility that

adaptation itself is a result of inferences drawn from changes in

the inherent statistical properties of our surroundings and our

bodies. Indeed, some researchers have modeled the adaptation of

perceptual and motor systems using Bayesian inference [5–7],

successfully explaining experimental results.

Two types of adaptation
In this paper, we focus on perceptual adaptation to two

temporally separated events, a phenomenon that is found across a

broad range of human perceptual modalities [8–14].

Previous studies have revealed the existence of two opposite

types of temporal adaptation. When audiovisual stimuli separated

by fixed temporal intervals are repeatedly presented to subjects,

they perceive the stimuli to be simultaneous [8,13]. This

phenomenon is known as ‘‘lag adaptation.’’ The same basic type

of adaptation has been found in many areas of psychophysics [10–

12]. A recent study reported, on the other hand, a type of

adaptation that acts oppositely to lag adaptation [9]. The

experimenters presented two tactile stimuli to each hand of a

subject [9]. Then, it was observed that the adaptation effect

occurred in the opposite direction relative to the effect observed in

lag adaptation. That is, the participants were less likely to perceive

simultaneity for repeatedly presented stimuli, and were more likely

to judge stimuli with a reverse temporal order as simultaneous.

The authors referred to this type of adaptation as ‘‘Bayesian

calibration [9].’’ Although it is clear that there are at least two

different types of adaptation, the question of why these different

types exist and factors determining which type of adaptation is

induced remain unclear.

To clarify the characteristics of the two types of adaptation, let

us consider a situation in which a pair of stimuli, separated by a

time interval, is presented to a subject; the subject’s task is to judge

which stimulus was presented first. If we plot the percentage of

‘‘stimulus 1 was the first’’ responses for various test temporal

intervals, we obtain the psychometric function as shown by the
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solid line in Figure 1. The center of the psychometric function

represents the temporal interval at which the subject judges the

pair of stimuli as being simultaneous. During an adaptation

period, stimuli with a constant time interval are repeatedly

presented. The adaptation stimuli during the adaptation period

are not necessarily identical: they may be drawn from a probability

distribution. After the adaptation period, we measure the

psychometric function again. The type of adaptation is indicated

by the difference between the center of the psychometric function

plotted before the adaptation period and that drawn after the

adaptation period. If the center is shifted toward the adaptation

stimuli, the resulting adaptation is of the lag adaptation type, and if

it is shifted away from the adapting stimuli, the adaptation is of the

Bayesian calibration type (see Figure 1).

Adaptation in a Bayesian model of perception
In a Bayesian model of perception, it is assumed that the

quantity to be perceived (in the example above, a temporal

interval between stimuli) cannot be directly observed and that only

noisy information can be obtained. This noise might result from

noise in sensory organs, uncertainty in firing of neurons, or other

factors. If the observer has some knowledge about the quantity, it

is a good strategy to use that knowledge in the estimation. Bayesian

inference enables the observer to estimate the quantity by

combining information gained by observation with prior knowl-

edge. Let x denote the temporal interval between stimuli that are

presented to the subject. Let y denote an observable noisy quantity

that is stochastically determined by x according to a conditional

probability P(y|x). In Bayesian inference, the observer makes an

estimation on the basis of the posterior probability of x given y, i.e.,

P(x|y). From Bayes’ theorem, it follows that

P(xjy)!P(yjx)P(x), ð1Þ

where P(y|x) is the likelihood function that represents the noise

distribution and P(x) is the prior probability distribution of x that

represents prior knowledge about x. Thus, Bayesian inference

involves two factors: namely, the likelihood function and the prior

probability distribution.

In an earlier study [15], we showed that the ventriloquism

aftereffect — the lag-adaptation-type phenomenon observed in

audiovisual spatial adaptation — can be explained by adaptive

learning of the likelihood function. On the other hand, in [9], it

was shown that Bayesian calibration could be explained by

assuming that the participants had learned the prior distribution of

stimulus timing. Thus, the two types of adaptation are comple-

mentary in their phenomenological characteristics and from the

viewpoint of Bayesian modeling.

In another study, we extended our model of adaptation to

include both types of adaptation and investigated the parameters

governing them, and discussed the parameters determining which

type of adaptation occurs [16]. However, the physical or

physiological meaning of the model parameters remains unclear.

In the present study, we propose a Bayesian model of sensory

adaptation. By analyzing the model, we sought to identify the

parameters that determine the type of adaptation. Our model

suggests that the statistical properties of the presented stimuli affect

the type of adaptation; thus, it might be possible to control the type

of adaptation that is induced in experiments.

Our aim here was not to quantitatively reproduce the results in

the experimental literature, but to provide novel insights about

why two types of sensory adaptation exist, and the factors

determining the type of adaptation that actually occurs. In

addition, we sought to propose an experimental paradigm that

could lead to deeper understanding of adaptation.

Here, we consider lag adaptation to represent learning of the

likelihood function, and Bayesian calibration to represent learning of

the prior distribution. Because both types of adaptation in our model

are the result of Bayesian inference and adaptation to temporal lag,

the above names of the adaptation types might cause confusion.

Therefore, in the following, we refer to lag adaptation as ‘‘Type A’’

adaptation, and Bayesian calibration as ‘‘Type B’’ adaptation.

Methods

In this section, we first formalize adaptation as the adaptive updating

of parameters in the likelihood function and the prior distribution in a

Bayesian model of timing perception. Next, we derive updating rules of

estimated parameters from the model. Finally, we analytically obtain

the center point of the psychometric function after adaptation, and

deduce the factors determining the type of adaptation.

Bayesian model of adaptation
It is common to assume a Gaussian noise distribution. In

addition, we introduce a shift of the mean value of the probability

distribution [16]. We assume that both the noise distribution (the

likelihood function) and the prior distribution of x are Gaussian

with shifted mean values as follows:

P(yjx)~
1ffiffiffiffiffiffi

2p
p

sl

exp {
(y{x{ml)

2

2s2
l

 !
, ð2Þ

P(x)~
1ffiffiffiffiffiffi

2p
p

sp

exp {
(x{mp)2

2s2
p

 !
, ð3Þ

where sl and sp are standard deviations of the noise distribution

and the prior distribution, respectively, and ml and mp are mean

values of the distributions, respectively.

Figure 1. Two types of adaptation effects on a psychometric
function. The solid line represents a psychometric function before
adaptation, and the other two dotted lines represent psychometric
functions after two types of adaptation.
doi:10.1371/journal.pone.0019377.g001

Bayesian Model of Sensory Adaptation
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We assume that mean values ml and mp can change because of

certain factors, and we interpret adaptation as the updating of the

observer’s estimation of ml and mp. The change in mp might result

from a change in the statistical properties of the external world,

while a change in ml may result from changes in sensory organs

due to injury, growth, aging, changes in the neuronal encoding of

stimuli, or other factors. We discuss this point in detail in the

Discussion section.

On the basis of these assumptions, we propose the Bayesian

model of adaptation shown in Figure 2. Because the parameter

values change from time to time, we denote their values at time t

with the superscript t. Time refers to trials in actual experiments.

Figure 2A shows the physical dependence of each model

parameter on other parameters. The arrows in Figure 2A show

the causal relations between the parameters. Figure 2B shows the

process of estimation after the observer observes yt at time t. The

quantities that the observer can directly observe are y up to time t.

The observer’s task at time t is to estimate the real time interval xt.

The observer must estimate mt
l and mt

p to estimate xt, and we

interpret adaptation as the observer’s adaptive learning, i.e.,

estimations of ml and mp.

Let us consider an experiment in which the presented stimuli

are controlled by an experimenter according to the prior

distribution in our Bayesian model, and a subject perceives the

stimuli. Here, to make our model analytically tractable, we assume

that mt
l and mt

p are Gaussian processes; that is, they are determined

stochastically by adding Gaussian noise to their previous values.

Thus, we assume that

P(mt
l jmt{1

l )~
1ffiffiffiffiffiffi

2p
p

g2
l

exp {
(mt

l{mt{1
l )2

2g2
l

 !
, ð4Þ

P(mt
pjmt{1

p )~
1ffiffiffiffiffiffi

2p
p

g2
p

exp {
(mt

p{mt{1
p )2

2g2
p

 !
: ð5Þ

The parameters gl and gp represent the standard deviations of the

time evolution of ml and mp, respectively. We assume that the

variance parameters such as sl, sp, gl, and gp are unchanged and

that the observer knows them. The parameter mt
p represents the

expected value of the presented stimulus at time t. The true mt
p

might change from time to time, but its expected value at an

arbitrary time t is its initial value. The parameter mt
l represents the

expected value of the sensory noise at time t, which the

experimenter may not be able to directly observe. It is possible

that many of the previous experimental studies on sensory

adaptation satisfy these assumptions.

Mathematically, the observer’s task is to maximize the posterior

probability P(xtjy?t), where y?t represents the set of all yt0 from

time t0~0 to time t0~t. In calculating the estimation of xt, we

need to specify the posterior probability distribution of

mt:(mt
l ,m

t
p)T (see Appendix S1 for more detailed mathematical

description).

If we assume that P(mt{1jy?t{1) is a normal distribution, then

P(mtjy?t) is also a normal distribution, and the mean of P(mtjy?t)
can be interpreted as the observer’s estimation of mt. Thus, we

assume that

P(mtjy?t)!exp {
1

2
(mt{m̂mt)T (Rt){1(mt{m̂mt)

� �
, ð6Þ

where m̂mt represents the observer’s estimation of mt and Rt is the

covariance matrix of the posterior distribution P(mtjy?t) at time t.

We can show that the observer’s task does not involve the

calculation of Rt itself, but only st
l:rt(1, 1)zrt(1, 2) and

st
p:rt(2, 1)zrt(2, 2), where rt(i, j)represents the (i,j)th component

of Rt. Therefore, we are not concerned about Rt itself, but only

about st
l and st

p hereafter.

Assumption of initial convergence
We consider adaptation to be the estimation of the adaptation

parameters ml and mp, which change from time to time. Such

changes take place in our daily life. Because the update rule of st
l

and st
pdoes not depend on the observed or estimated timing of the

stimuli (Appendix S1), it might be possible that st
l and st

p have

already been updated a sufficient number of times before the

experiment. In addition, it might be possible to design an

experiment in which st
l and st

p are updated a sufficient number

of times. Therefore, we assume that st
l and st

p have converged

before the experiment.

Psychometric function
We are interested in investigating what determines the type of

adaptation, which is characterized by the center point of the

psychometric function. We denote the center point of the

psychometric function at time t as mt
psycho.

Figure 2. Schematic diagram of our Bayesian model. A: Physical
relations of parameters. Values of variables in circles with superscript t
are stochastically determined at time t. The arrows represent causal
relations between variables. B: The process of estimation after the
observer observes yt at time t. Variables y up to time t (blue color) are
directly observed, and others are not observable. The observer’s task is
to infer xt. For the observer to infer xt, it must also estimate mt

l and mt
p .

doi:10.1371/journal.pone.0019377.g002

Bayesian Model of Sensory Adaptation
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In practice, to determine mt
psycho experimentally, test stimuli with

various temporal intervals must be presented to a subject, and such

stimuli must lead to a change in m̂mt if presented too many times.

However, theoretically, we can calculate mt
psycho at all times by

considering the subject’s psychometric function assuming that m̂mt is

fixed.

In our model analysis, we determine mt
psycho as the time interval

where the average estimation of xt by the observer is 0. Although

we can derive the center of the psychometric function more

formally [9,16], this simplified calculation is sufficient for our

purpose.

Analysis of model behavior
From the parameter dependence shown in Figure 2 and the

assumptions about the shape of probability distributions, we can

derive the update rules of the estimations of mt
l and mt

pas follows:

m̂mt
l:m̂mt{1

l z
st

l

s2
yt{(m̂mt{1

l zm̂mt{1
p )

� �
, ð7Þ

m̂mt
p:m̂mt{1

p z
st

p

s2
yt{(m̂mt{1

l zm̂mt{1
p )

� �
, ð8Þ

where s2:s2
l zs2

p. Detailed description of the calculation is

provided in Appendix S1.

In practice, although y is determined randomly in every trial, we

can determine the average behavior of our model by fixing y at its

expected value m0
p during the adaptation period. First, we

investigate the model behavior analytically with this assumption

and later validate the analytical result through numerical

simulations.

We can solve equations (7) and (8) under the assumption of the

initial convergence, and the converged value of mt
psycho is given by

m?
psycho~

ks2
l

kz
g2

p

s2
p

 !
g2

l zg2
p

� � g2
l

s2
l

{
g2

p

s2
p

 !
m0

p, ð9Þ

where

k:
g

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

g

2s

� �2
r

{
g

2s

 !
w0, g2:g2

l zg2
p: ð10Þ

The type of adaptation is determined by the sign of m?
psycho relative

to m0
p, which is the expected value of the presented stimuli.

Therefore, equation (9) shows that the type of adaptation is

determined by the sign of g2
l

�
s2

l {g2
p

.
s2

p.

Results

Numerical simulations
We analytically derived m?

psycho in equation (9) by fixing y at its

expected value. Here, we conducted numerical simulations to

check whether our analytical result matches the simulated

behavior.

Figure 3 shows examples of numerical simulations of mt
psycho for

two sets of parameter values and the corresponding analytical

solutions. We assume that the true mt
l either does not change

during this experiment or changes only slightly so that we can

neglect its change. Thus, we assume the true mt
l to be 0. We also

assume that the observer’s initial estimation of m̂m0 is 0. The

parameter values are x = 100 ms, sl = 50 ms, gl = 0.5 ms, and

sp = 0 ms. The solid blue line shows the result for gp = 0.08 ms,

while the solid red line shows the result for gp = 0.11 ms. The two

dashed lines show the corresponding analytical solutions. Figure 3

clearly shows almost perfect agreement between the analytically

obtained behavior and the simulated behavior. We confirmed the

agreement for all the parameter values we examined. It can also be

seen that the type of adaptation is opposite between these two sets

of parameter values.

Model prediction
One important implication made by our model is that the type

of adaptation depends on the model parameters, as shown in

equation (9). The adaptation is of Type B if g2
l

�
s2

l vg2
p

.
s2

p and of

Type A otherwise. The parameters of the prior distribution, sp and

gp, describe the statistical properties of the presented stimuli and

can be easily controlled in experiments. It means that, by

controlling the statistical properties of the presented stimuli, the

experimenter might be able to control the type of adaptation. In

Figure 4, we show examples of two time series of presented stimuli

with small and large values of gp

�
sp, together with the time

evolution of mt
psycho. In this figure, we generate xt and updated mt

p

according to equations (3) and (5). The initial value of mt
p is set to

m0
p = 80 ms. The parameter values are sp = 30 ms and gp = 0.2 ms

in Figure 4A, sp = 20 ms and gp = 3 ms in Figure 4B, and

sl = 50 ms, gl = 5 ms in both figures. As can be seen from the two

figures, the whole distributions of the stimuli for these sets of

parameter values are almost the same. However, our model

predicts that the adaptation effects of the two types of stimuli with

different temporal structures are completely different.

Discussion

In this study, we constructed a Bayesian model of sensory

adaptation, in which the observer estimates the mean value of the

likelihood function and that of the prior probability distribution.

We showed that the difference between the ratio of parameters

related to the likelihood function and that of the prior distribution,

Figure 3. Time course of the center point of the psychometric
function. The solid lines show numerical simulation results and the
dashed lines show the corresponding analytical results. The two blue
lines show the results when g2

l

�
s2

l wg2
p

.
s2

p , while the two red lines

show the results when g2
l

�
s2

l vg2
p

.
s2

p .
doi:10.1371/journal.pone.0019377.g003
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g2
l

�
s2

l {g2
p

.
s2

p, is essential. Because parameters related to the

prior distribution are the statistical properties of the presented

stimuli, our model predicted that a stimuli presentation method

can dramatically change the type of adaptation.

In most previous studies of temporal perceptual adaptation,

adapting stimuli were either fixed (e.g. [8,13]) or drawn from a

Gaussian distribution (e.g. [9]). The latter is clearly the case in

Figure 4A. In the former case, the use of fixed stimuli implies that

sp = gp = 0 ms, which means that we cannot define its ratio. It is

not likely that a human subject can obtain a variance value of

exactly zero. Although we must develop a model of the learning of

these parameters to fully elucidate this issue, our model suggests

that fixing gp to 0 ms might lead to Type A adaptation. This may

explain why Type A adaptation has been observed in most

previous experiments. Especially in the case of audiovisual

adaptation, the size of adaptation effects was relatively large

compared with the temporal interval of adapting stimuli in an

experiment in which sp had a large value [9], and relatively small

in experiments in which sp was zero [8,13], consistently with the

results by our model.

It should be noted that we do not claim that the type of

adaptation would necessarily differ when we use the sets of stimuli

shown in Figures 4A and 4B, because other parameters related to

the likelihood functions also affect which type is induced. In fact, in

the experiment of Miyazaki et al. [9], adaptation stimuli similar to

those shown in Figure 4A were used, and Type B was observed.

However, we suggest that, even if the parameters related to the

likelihood functions are unknown, a stimulus pattern like that

shown in Figure 4A will make the adaptation effect more similar to

Type A, while a stimulus pattern like that shown in Figure 4B will

make the adaptation effect more similar to Type B. Other

parameters should be determined to quantitatively predict the

effect of different stimulus presentation methods. The experiment

of Miyazaki et al. [9] suggests that the ratio gl=sl is so small as to

be negligible in the tactile system. Therefore, our prediction that

the two time courses of stimuli shown in Figures 4A and 4B can

lead to different types of adaptation might be better tested in the

audiovisual system.

A study by Miyazaki et al. [9] revealed that, even if the same

stimulus presentation patterns are used, Type A and Type B

adaptation can be observed in the cases of audiovisual sensations

and tactile sensations, respectively. In the context of this finding,

we now discuss the physical parameter that a subject attempts to

estimate in the perception of external stimuli. Let us consider a

case in which an external object causes an event in which a pair of

audiovisual stimuli are generated, and perceived by the observer.

In our model, x represents the true time interval between the

stimuli that the observer estimates from noisy observations. There

Figure 4. Examples of the time courses of presented stimuli with different statistical properties. A: An example with a small value of
gp

�
sp . B: An example with a large value of gp

�
sp . The blue circles represent the temporal intervals of presented stimuli, xt, and the solid blue lines

represent their expected values, mt
p. The red dashed lines represent the time courses of the point of simultaneity. Right figures in A and B: the

histogram of x for each time course.
doi:10.1371/journal.pone.0019377.g004

Bayesian Model of Sensory Adaptation
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are two possible ways to find exactly what x represents, i.e.,

whether it represents the physical time interval between the stimuli

when they are delivered to the observer or that when the event

occurs. In the case of audiovisual sensations, the former can be

large even if the stimuli originate simultaneously, because of (1) the

low speed of sound compared with the speed of light and (2) the

reflection and diffraction of sound, which result in the sound

traveling over a large distance. When the object is still and the

surroundings are stable, even if the value of the time difference

between the stimuli delivered to the subject is large, the variance of

the time difference recorded for many pairs of stimuli would be

small. Continuous movements of the object or continuous changes

in the surroundings might be a major factor determining the

variance of the time difference between the stimuli delivered to the

subject. Therefore, it might be the change of the expected value of

the time difference that varies from time to time. If we consider x

as the time interval when the stimuli are presented to the observer,

the physical factors that can change the time interval discussed

above should be included in the prior distribution of x because

they are related to the generation of x. Thus, in that case, the

physical factors should cause a greater increase in gp than in sp.

On the other hand, if we consider x as the time interval when the

event occurs, the physical factors should be considered as the time

evolution of ml, because it is relevant to the generation of y after x is

determined. This implies that gl should be large. On the basis of

our model, we can say that in a natural environment, the latter

interpretation of x leads to Type A adaptation, which has been

experimentally observed in the case of audiovisual adaptation.

Thus, our model suggests that perception as inference is the

estimation of the characteristics of the stimuli at their source. This

claim is supported by experimental results (e.g., [17]). On the

other hand, the origin of a tactile stimulus is a physical touch, and

the time interval between the instants at which stimuli are

generated is equivalent to the interval between the instants at

which the touch stimuli are presented to the subject. Therefore,

there is no physical factor that causes a greater increase in gl

relative to that in sl in tactile sensations, meaning that tactile

adaptation is likely to be of Type B.

Berniker and Kording proposed a motor adaptation model in

which internal and external causes of motor errors could be

separately estimated [7]. The model we propose here is similar to

their model in terms of the notion that the adaptation involves the

estimation of different causes: internal and external causes might

correspond to ml and mp in our model, respectively. However, there

are some differences between the models. First, in our model, ml

and mp do not necessarily represent internal and external factors as

discussed above. Next, in their model, the difference between the

estimations of internal and external causes of motor errors is

driven by the probability that the external disturbance exists, while

in our model, it is the relative relations of variance parameters sl,

sp, gl, and gp that drive the difference.

In an earlier study, we constructed a simple integrative model of

adaptation [16]. It can be seen that the Bayesian model proposed

here has exactly the same mathematical structure as the earlier

model if we assume the initial convergence of sl and sp. However,

the physical or physiological meaning of parameters is much

clearer in the presently proposed model, which facilitates control

of the types of adaptation.

In this study, for simplicity we assumed that adaptation was the

learning of mean parameters mt, while other parameters related to

variances such as sl, sp, gl, and gp were known. Parameters sl and

gl might be learned from the subject’s past experience. It has been

suggested that human subjects can learn the prior distribution

from presented stimuli [18,19]. When we control the prior

distribution of the stimuli, we can control their mean values and

variances independently. Therefore, it might be possible to set up

an experiment in which the variances can be learned before the

adaptation of the mean values. However, it is also possible that the

learning of the variance variables concurrently occurs with the

learning of the mean values. Also, it is not obvious whether the

variance parameters related to the likelihood function and those

related to the prior distribution can be learned independently. An

experimental paradigm in which the parameters of the likelihood

function and the prior distribution can be separately measured has

been proposed [20], which might enable us to measure the

interaction between the learning of the parameters of the

likelihood and the prior distribution. The relationship between

the learning of the variance parameters and that of the mean

parameters, and that between the variance parameters of the

likelihood and the prior distribution should be investigated in

future.

In equation (9), we showed how the adaptation effect depends

on model parameters. This equation is sensitive to changes in the

variance parameter values such as sl, sp, gl, and gp, especially

when the parameters are set so that the model exhibits Type B

adaptation, i.e., m?
psychov0. The point of simultaneity, m?

psycho, can

have a very large negative value, though not a large positive value,

depending on the variance parameter values, which might be

impossible in human perception. This problem must be discussed

together with the learning of the variance parameters sl, sp, gl, and

gp. By constructing a model that includes the learning of the

variance parameters, we might be able to elucidate whether

m?
psychois limited to a plausible value, and how stable the adaptation

effect is.

It has been suggested that the causal relationship between

stimuli is essential for human perception, action, and adaptation

(e.g. [15,21,22]). In this paper, we assumed that the observer

considers all of the presented stimuli as causally relevant and thus

involve them in adaptation. Our model might be extended to

explain a broader range of experiments by considering the causal

relationship between paired auditory and visual stimuli or between

pairs of stimuli.

In the current paper, we investigated a computational model of

temporal sensory adaptation. Adaptation is a ubiquitous phenom-

enon involved in many aspects of human perceptual, cognitive,

and motor systems. Therefore, the mathematical structure of our

model was formulated in a general form, which can be applied to

other aspects of human perception or action only with minor

modifications. Adaptation may have different functions in different

systems, but it is also possible that it has a common function

among different systems in the brain. Thus, our approach,

involving abstraction of the computational function of adaptation,

provides a plausible approach for investigating the fundamental

function of adaptation as a general phenomenon.

Supporting Information

Appendix S1 Detailed calculation of the model analysis
(DOC)
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