
Th
e

Jo
u

rn
al

o
f

Ph
ys

io
lo

g
y

J Physiol 589.6 (2011) pp 1259–1264 1259

TOP ICAL REVIEW

Erythropoietic and non-erythropoietic functions
of erythropoietin in mouse models
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Abstract As the basic function of erythropoietin (Epo) is stimulation of red blood cell production,
systemic overexpression of Epo results in erythrocytosis. The patho-physiological consequences
of chronically elevated red blood cell counts have been studied in Epo overexpressing mice.
Genetically modified mice, however, have also played an important role in discovering multiple
additional functions of Epo besides stimulating erythrocyte production. Non-erythropoietic
functions of Epo are widespread and play a role in organogenesis during early embryonic
development and in tissue protection in ischaemic diseases. Future work in the field will most
likely focus on these additional functions of Epo, which have great clinical potential.
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Introduction

Detailed phenotyping of experimentally mutated mice
is helpful in understanding physiology. Thus, it was a
milestone in understanding biological processes and the
multiple interactions between the different organ systems
of the mammalian organism when genetically modified
mice became available for research. This era started in
1977 with the first transgenic mouse (Jaenisch, 1977)
and the refinement of this technique a few years later
(Palmiter & Brinster, 1985). Finally, the discoveries of
how homologous recombination between segments of
DNA molecules can be used to specifically target genes
in the mammalian genome was honoured by the 2007
Nobel Prize in Physiology or Medicine to Drs Mario R.
Capecchi, Martin J. Evans and Oliver Smithies. In this
review we will summarize the insights into the biology
of erythropoietin (Epo) gained from the investigation of
genetically modified mice regarding Epo or its receptor
(EpoR).

Epo-trangenic mice

The first Epo-transgenic mouse line harbouring the
full-length human Epo gene was published 1989 (Semenza
et al. 1989), and was followed up by additional ones from
the same group (Semenza et al. 1991). These mouse lines
were used to study the mechanisms resulting in tissue

specific expression of Epo in liver and kidney. Analogously,
another group generated several different Epo-transgenic
mouse lines in order to study the effects of various amounts
of flanking DNA on Epo gene expression (Madan et al.
1995). The next Epo-transgenic mouse model published
(Ruschitzka et al. 2000) was generated to assess the cardio-
vascular effects of excessive erythrocytosis. Most recently,
a transgenic mouse line expressing the human Epo cDNA
under the control of the bovine β-casein promotor has
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Table 1. Some non-erythropoietic functions of Epo as discovered using genetically modified mice

Mouse model Main finding Reference

Epo−/− or EpoR−/− Embryonically lethal due to anaemia and heart
hypoplasia.

(Wu et al. 1999)

EpoR-tg or EpoR-LacZ-tg EpoR is highly expressed in the embryonic brain. (Liu et al. 1997)

Brain restricted Epo-tg (tg21) Brain-derived Epo (brainstem) regulates the hypoxic
ventilatory response

(Soliz et al. 2005)

tg6 and tg21 Epo is protective in cerebral infarction as long as the
haematocrit is normal

(Wiessner et al. 2001)

tg6 Systemic Epo is protective in hypoxia induced
pulmonary hypertension

(Weissmann et al. 2005)

tg6, rd1 & VPP Epo is protective in light-induced photoreceptor
apoptosis but not retinitis pigmentosa

(Grimm et al. 2004)

Cardiomyocyte-specific sonic
hedgehog−/−

Cardioprotective effects of Epo in heart ischaemia
require sonic hedgehog signalling

(Ueda et al. 2010)

Additional non-erythropoietic Epo functions have been established also in wild-type animals as well as cell culture
models (cf. text).

been generated but only one out of five founding lines
survived exhibiting a moderate erythrocytosis with a
haematocrit of 63% (Kim et al. 2007). In particular,
the so-called tg6 mouse line generated by Ruschitzka
et al. (2000) has been used extensively to study the
pathophysiology of excessive erythrocytosis, but in the past
decades it turned out that Epo has many other functions
apart from promoting red cell production.

Non-erythropoietic functions of Epo

In addition to the studies on the pathophysiological
consequences of excessive erythrocytosis, other genetically
modified mouse lines have revealed important insights
into Epo’s additional biological effects that were
independent of the production of red cells (Table 1).
This started with studies on mice lacking either Epo or
its receptor (EpoR) (Wu et al. 1999). Mice deficient for
Epo or EpoR die around embryonic day 13.5 only partly
due to impaired erythropoiesis. In the developing mouse
heart, EpoR is expressed between embryonic day 10.5 and
14.5. The loss of Epo signalling in the embryonic heart
results in severe ventricular hypoplasia independent of
hypoxia due to a reduction in the number of proliferating
cardiac myocytes as well as epicardium detachment
and abnormalities in the vascular network (Wu et al.
1999).

Epo signalling might also play a role in the development
of the central nervous system. Different experiments
analysing binding of 125I-labelled Epo, EpoR mRNA levels
as well as the expression of lacZ under control of the EpoR
promotor have revealed that EpoR is highly expressed in
the embryonic brain and also to a lesser extent in the adult

central nervous system (Digicaylioglu et al. 1995; Marti
et al. 1996; Liu et al. 1997; Chen et al. 2006). In addition,
progenitor cells from endothelial and skeletal muscle show
EpoR expression (Anagnostou et al. 1994; Ogilvie et al.
2000). In this context it is interesting that lethality of EpoR
deficiency can be rescued by EpoR expression restricted
to erythroid cells, resulting in mice without obvious
phenotype (Suzuki et al. 2002). This finding indicates
that further studies are necessary to define the function
of Epo in normal embryonic development. In adulthood,
however, the lack of EpoR in non-haematopoietic tissues
might be a disadvantage in disease situations, as has been
demonstrated by rescuing EpoR deficient mice (Suzuki
et al. 2002) for pulmonary hypertension (Satoh et al. 2006).
In line with these findings, tg6 mice that chronically over-
express the human Epo gene do not develop pulmonary
hypertension in normoxia or after exposure to chronic
hypoxia (10% O2 for 3 weeks) (Weissmann et al. 2005).

Despite the fact that the EpoR is massively (4
orders of magnitude) down-regulated in neuronal tissues
until embryonic day 17 (Liu et al. 1994), there is
considerable evidence that Epo is functional in the
adult brain. For example, acclimatization to a hypo-
xic environmant involves carotid body stimulation by
peripherally produced Epo as well as Epo up-regulation
in combination with down-regulation of the soluble
EpoR in central respiratory centres of the brainstem
(Soliz et al. 2005, 2007). Of great clinical importance
is that Epo is supposed to have protective functions
in many different tissues (Sasaki et al. 2001). In the
brain, both Epo and its receptor are up-regulated during
ischaemia/hypoxia (Sakanaka et al. 1998; Siren et al.
2001b) and Epo administration considerably inhibits
apoptosis after middle cerebral artery occlusion (Siren
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et al. 2001a). These findings resulted in a clinical study
in stroke patients confirming the beneficial effects of Epo
therapy in case of brain ischaemia (Ehrenreich et al.
2002) but only in patients not additionally receiving
recombinant tissue plasminogen activator (Ehrenreich
et al. 2009). In line with this, in mice overexpressing Epo
solely in the brain (termed tg21) infarct volume was about
22% but not significantly lower compared to wild-type
controls (Wiessner et al. 2001). In contrast, the same study
showed that mice systemically overexpressing Epo with
haematocrit values around 0.85 (tg6) had 49% enlarged
infarct volumes suggesting that increased haematocrit
levels and/or the concomitantly elevated serum NO levels
might reduce possible protective effects of Epo after
stroke. Apart from its positive effects in acute ischaemic
brain damage, Epo was also shown to be beneficial for
treatment of blunt cortical trauma, neurotoxin exposure
and experimental autoimmune encephalitis (a model
of multiple sclerosis) (Brines et al. 2000). In keeping
with neuronal tissue, the mouse retina is protected
against light-induced degeneration by inhibiting photo-
receptor cell apoptosis by Epo, induced by either hypo-
xic preconditioning or direct application of recombinant
human Epo (Grimm et al. 2002). Similarly, Epo over-
expression in the retina as it occurs in tg6 mice protects
against light-induced retinal degeneration (Grimm et al.
2004). Photoreceptor apoptosis is also the common path in
retinitis pigmentosa (RP). Crossbreeding with two mouse
models of human RP with tg6 mice, however, did not affect
the time course or the extent of retinal degeneration in
a light-independent (rd1) and a light-accelerated (VPP)
mouse model of RP. Similarly, repetitive intraperitoneal
injections of recombinant human Epo did not protect
the retina in the rd1 and the VPP mouse. These effects
were not due to adaptational downregulation of Epo
receptor (Grimm et al. 2004). Thus, Epo appears to be
protective in the retina during acute, light-induced photo-
receptor cell death but not in genetically based retinal
degeneration.

Apart from its beneficial effects under pathological
conditions, Epo appears to modulate cognitive function.
This effect can at least partly be explained by changes
in haematocrit (Weiskopf et al. 2006), but there is most
likely an additional effect of Epo directly in the brain. In
contrast to brain ischaemia, in healthy mice systemically
administered Epo needs to cross the blood–brain barrier
to exert effects on neurons. Indeed, it was suggested
that that 0.5–1% of a systemically administered high
Epo dosage crosses undamaged the blood–brain barrier,
according to the authors, by receptor mediated trans-
cytosis (Brines et al. 2000; Brines & Cerami, 2005). Intra-
peritoneal injections of Epo in healthy wild-type mice
improved sequential learning and memory components of
a complex long-term cognitive task (El-Kordi et al. 2009).
This can be explained by modulating plasticity, synaptic

connectivity and activity of memory-related neuronal
networks in the hippocampus (Adamcio et al. 2008).
Effects of Epo in brain tissue of healthy mice require
Epo’s capability to cross the intact blood–brain barrier.
As Epo is a large molecule (molecular mas: 34 kDa) this
appears to be quite unlikely and consequently has been
questioned (Boado et al. 2010).

Similar to ischaemic neuronal tissue, Epo has tissue
protective effects also in other tissues suggesting a
stereotypic mechanism, maybe with the endothelial cells
as a key player in this process. Indeed, the endothelium was
the first non-haematopoietic tissue described as a physio-
logical target for Epo (Knudtzon & Mortensen, 1975).
Later it was established that Epo is a growth and chemo-
tactic factor for endothelial cells (Anagnostou et al. 1990).
Moreover tissue repair appear to be at least supported by
Epo-induced release of endothelial progenitor cells from
the bone marrow (Heeschen et al. 2003; Westenbrink
et al. 2007; Santhanam et al. 2008). Numerous studies
show also the expression of Epo receptors on other than
endothelial cells (Noguchi et al. 2008). For example in
the ischaemic heart this effect appears to rely on direct
protective effects on cardiomyocytes and endothelial cells
as well as stimulation of angiogenesis (Ruifrok et al. 2008).
Another example is the protective effect of stimulation of
non-erythropoietic Epo receptors observed in a murine
kidney ischaemia–reperfusion model (Brines et al. 2008).
The protective properties of Epo might rest on a counter-
balancing effect of Epo against tumour necrosis factor
α (TNFα) that ultimately results in increased apoptosis
of cell that escaped the initial tissue damage (Brines,
2010). In addition, Epo appears to promote tissue repair
by supporting or inducing angiogenesis. Mice studies
revealed that the transcription factor sonic hedgehog could
play a role in promoting the pro-angionetic effects of Epo
in the post-ischaemic heart (Ueda et al. 2010).

The non-erythropoietic functions of Epo might be
transduced by a receptor distinct of that found on
erythroid cells. Interestingly it could be shown that
on erythroid cells interleukin 3 (IL3) also is able to
stimulate haemoglobin synthesis (DiFalco & Congote,
2002). While on erythroid cells the EpoR is a homo-
dimer (Jelkmann et al. 2008), the IL3 receptor is a
heterodimer consisting of an α-subunit with high affinity
to IL3 and the common βc-subunit. It has been speculated
that in extra-haematopoietic tissues the Epo receptor
is a heterodimer with one Epo receptor monomer and
the common βc-subunit that is shared by the IL3,
IL5 and GM-CSF receptors (Leist et al. 2004; Brines
& Cerami, 2006). These distinct Epo receptors could
represent the physiological basis for development of tissue
protective Epo analogons that have no unwanted effects
on haematopoiesis.

Taken together there is overwhelming data showing that
Epo has many non-erythropoietic functions. As such, it
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appears incomprehensible that some authors still claim
that the EpoR has no other biological function than
erythropoiesis (Sinclair et al. 2010; Swift et al. 2010), as this
statement has been clearly refuted (Ghezzi et al. 2010).

Conclusion and outlook

In summary, genetically modified mice have taught us that
Epo has several non-haematopoietic functions. This was a
clinically very important discovery and will surely be the
future direction of the research in the field. Thus, many
new details about these additional functions of Epo will be
discovered as expression of Epo, and its receptor, has been
shown in numerous tissues including the reproductive
organs, gastric mucosal cells, pancreatic islets, inner ear
and prostate epithelial cells. The exact mechanisms for
the non-erythropoietic functions of Epo await further
elucidation but there are efforts to develop drugs that
specifically stimulate Epo receptors in non-erythropoietic
tissues, thus avoiding the negative side effects of increased
haematocrit values (Ueba et al. 2010). The rationale
behind these efforts is based on the fact the EpoR in
non-erythopoietic tissues might differ from that trans-
ducing erythropoiesis (Masuda et al. 1993). Accordingly,
peptide analogues of the B-helix of the four α-helix
(A–D)-containing Epo molecule were successfully used to
induce tissue protection without increasing haematocrit
(Leist et al. 2004; Brines et al. 2008). One day these peptides
might be replaced by small, orally active non-erythopoietic
Epo receptor mimetics.
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