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Abstract
The flood of genome-wide data generated by high-throughput technologies currently provides
biologists with an unprecedented opportunity: to manipulate, query and reconstruct functional
molecular networks of cells. Here we outline three underlying principles and six strategies to infer
network models from genomic data. Then, using cancer as an example, we describe experimental
and computational approaches to infer “differential” networks that can identify genes and
processes driving disease phenotypes. In conclusion, we discuss a network level understanding of
cancer can be used to predict drug response and guide therapeutics.

Cells contain a vast array of molecular structures that come together to form complex,
dynamic, and plastic networks. The recent development of high-throughput, massively-
parallel technologies has provided biologists with an extensive, although still incomplete,
list of these cellular parts. The emerging challenge over the next decade is to systematically
assemble these components into functional molecular and cellular networks, and then to use
these networks to answer fundamental questions about cellular processes and how diseases
derail them.

For example, how do these cellular components come together to robustly maintain
homeostasis, process exogenous and endogenous signals, and then coordinate responses?
How do genetic aberrations disrupt the regulatory network and manifest in disease, such as
cancer? In the Perspective, we reason that, even with a partial understanding of molecular
networks, biologists are currently poised to understand how networks are deregulated in
cancer cells and then predict how these networks might respond to drugs.
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Quantitative biophysical network models encompassing a small number of components have
made enormous contributions to our understanding of cellular networks. However, in this
Perspective, we focus on deriving network models at a large systems scale from high-
throughput data, using “data-driven network inference.” In this process, a set of modeling
assumptions are defined, such as “genetic aberrations alter normal cellular regulation and
drive tumor proliferation ” Then data is used to derive a specific model, such as specifying,
for each tumor, which particular genes drive proliferation. In the end, a ‘good’ inference
model of biological networks should be able to predict the behavior of the network under
different conditions and perturbations, and ideally, even help us engineer a desired response.
For example, where in the gene expression network of cancer cells should we perturb to
reduce tumor proliferation or metastasis? Such a global understanding of networks can have
transformative value, allowing biologists to dissect out the pathways that go awry in disease
then identify optimal therapeutic strategies for controlling them.

To illustrate the potential impact of global models, we note that the effect of a cancer drug is
often hard to predict because cross-talk and feedback are still poorly mapped in most
signaling pathways. For example, the mammalian target of rapamycin (mTOR) is critical for
cell growth, and its activity is aberrant in most cancers; hence, it was expected to be a good
therapeutic target. Nevertheless, it shows poor results in clinical trials. This deviation from
our expectations may be due to feedback and crosstalk between the Akt/mTOR and the
extracellular signal-regulated kinases (ERK) pathways(Carracedo et al., 2008). Inhibition of
mTOR releases feedback inhibition of the receptor tyrosine kinases, which can activate both
ERK and Akt (O’Reilly et al., 2006) and subsequently increase cell proliferation.

For targeted therapy to succeed, a global view of the interconnectivity of signaling proteins
and their influences is critical. In this Perspective, we consider the current state and potential
future of data-driven computational approaches to network inference, with an emphasis on
applications to cancer. We will describe three principles underlying molecular networks and
inferring these from data. These principles are matched to current experimental capabilities
and will need revamping as technological leaps produce new types of data (e.g., more
quantitative data and with real time dynamics). We then consider six promising
experimental-computational strategies for constructing network-level models. While not
exhaustive, these principles and strategies illustrate fruitful directions in network biology
and will hopefully stimulate discussion and experimentation among computational and
experimental biologists.

Principle 1: Molecular influences generate statistical relations in data
Network biology has been empowered by genomics technologies that enable the
simultaneous measurement of thousands of molecular species. Such data offer a global
unbiased view of the entire system, which in turn necessitates computation and statistics.
The key underlying assumption frequently used for inferring networks from genomic data is
that influences and interactions between biological entities generate statistical relations in
the observed data. For example, if protein A activates protein B, then we expect to see high
levels of protein B whenever levels or specific molecular states of its activator A are high.
The reverse of this logic is that statistical correlation between proteins indicates a potential
interaction between them. In a data driven manner, a computer can comprehensively test
millions of such hypotheses in seconds and provide a statistical score for each candidate
molecular interaction or influence. For example, one can test the statistical association
between the copy number of regulator DNA copy number and gene expression of a target,
for each locus and gene in the genome (see strategy 4).
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Various statistical frameworks have been successfully applied to these network
inference(Basso et al., 2005; Bonneau et al., 2007; Friedman et al., 2000); the commonality
between the frameworks is that they model a target’s behavior as a function of its regulators
and search for the most predictive regulator set. For example, Bayesian networks were used
to reconstruct detailed signaling pathway structures in human T-cells using only the
concentration of phospho-proteins simultaneously measured in individual cells (Sachs et al.,
2005). Based solely on this data, this network analysis discovered the majority of known
influences between the measured signaling components without prior knowledge of any
pathways. Moreover, the analysis uncovered a new point of cross-talk, which was confirmed
experimentally.

The same computational approach and mathematical formulae correctly reconstructed yeast
metabolic networks from gene expression data(Pe’er et al., 2001). Together, these studies
demonstrate the universal nature of statistical dependencies; the same formalism can be used
to reconstruct yeast metabolic networks from gene expression data and mammalian
signaling networks from phospho-protein abundances

Mathematical models of molecular networks have been derived from basic biochemical
principles for decades, combining chemical reaction equations into a quantitative model. For
example, Michaelis Menten equations are frequently used to model transcription factor
binding to DNA. Nevertheless, most contemporary datasets lack the quantization and
statistical power to resolve such models, even for small networks. Data driven approaches
typically necessitate hundreds of samples to gain the statistical power to resolve even a
partial qualitative map of molecular interactions. Data requirements are highly dependent on
the number of components modeled, the mathematical complexity of the equations
representing the molecular interactions, and the effect size of the influences themselves.
Thus, at the heart of data-driven modeling is finding the sweet spot in the trade-off between
more realistic (e.g., chemical reaction equations) and simpler models that can be inferred
more robustly from data (e.g., linear regression).

One option is to build qualitative, rather than quantitative models. These models can identify
qualitative features such as “Mek (mitogen-activated protein kinase) activates Erk” or that
“Met4 and Met28 are required together to induce sulfur metabolism.” If quantitative
modeling is important for the problem at hand, linear regression models provide a robust
alternative to non-linear models (e.g., target gene expression is a linear combination of its
transcription factors). Although non-linear relations frequently occur in biology, linear
regression models are more robust and thus, they often give better results, even when the
underlying model is non-linear. A detailed molecular model that is exhaustive in its
molecular species and in the modeling of their interactions remains beyond our reach for the
near future.

A powerful strategy in systems biology is to abstract and simplify models. In the “module-
network” approach(Segal et al., 2003), genes are grouped into modules that are assumed to
share a regulatory program. The rationale for this grouping is based on numerous examples
in which the same regulatory circuits coordinate activation or repression of groups of genes
that are involved in the same process (e.g. the entire ribosome complex is regulated by
common transcription factors). By pooling many similar genes together, the module-
network framework significantly increases the statistical power to identify regulatory
influences(Litvin et al., 2009).

Principle 2: Networks are not fixed: the role of context and dynamics
Molecular networks are not static; rather, they exhibit dynamic adaptations in response to
both internal states and external signals. Influences that determine network context can be
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divided into four categories. (1) Genetic background strongly determines network behavior
and gives rise to significant differences across individuals (and even cells in the special case
of cancer). (2) Cell lineages have dramatically different network structures because of
epigenetic changes and differential expression of genes. (3) Tissue milieu can reprogram
networks and their behaviors, as stromal cells do for tumors. (4) Exogenous signals, such as
nutrients and other chemicals affect networks (Figure 1). Ultimately, health or disease
emerges from an individual’s integration of internal and external cues.

In cancer, context can have profound impact on how patients respond to therapies. For
example, in recent clinical trials of a new generation of rationally targeted therapies (e.g.,
Gleevec, Herceptin and BRAF inhibitors for chronic myelogenous leukemia, breast cancer
and melanoma, respectively), even patients that share that share the targeted mutation and
tumor type displayed substantially variable responses to the drugs (Sharma et al., 2010a). In
addition, in another recent trial (i.e., phase II) a therapy was extremely effective at reversing
tumors in metastatic melanoma patients carrying the oncogenic BRAF mutation (Flaherty et
al., 2010), in which this drug effectively shuts down the ERK pathway critical for this
cancer. Strikingly, however, the same drug leads to the activation of the ERK pathway in
cells with wild-type BRAF (Poulikakos et al., 2010), potentially promoting tumors in these
cells.

To gauge such network activity, response, and potential, experiments must deliberately
perturb the cell. For example, blood cells from acute myeloid patients could not be
differentiated from healthy cells when only the basal levels of phosphorylation of key
signaling molecules were measured. Only when the samples were interrogated with growth
factors and cytokines did the resulting signaling profiles correlate with tumor genetics, drug
response, and disease outcome (Irish et al., 2004). The importance of interrogation with
stimuli comes into play because many important signaling responses, such as ERK2
activation in response to epidermal growth factor receptor (EGFR), depend only on fold
change, rather than basal protein levels that exhibit a high degree of variance (Cohen-Saidon
et al., 2009).

Cellular responses often involve multiple feedback loops and additional complexities (see
Regev review in current issue). For example, the transcriptional response to EGF stimulation
induces feedback attenuation factors, such as dual-specific phosphatases (DUSPs), which
shut down the same pathways that activate EGF target genes (Amit et al., 2007). Therefore,
to understand tumor network function, drug response and the emergence of drug resistance,
tumors must be systematically interrogated with different stimuli and drugs, followed by
time series measurements. These measurements can then be used to derive a model
describing the quantitative temporal sequence of events from the initial detection of an input
to the tumor’s response. The goal would be to generate a model that has a reasonable chance
of being able to predict responses to new, previously unmeasured inputs, such as new drugs
or combinations of drugs.

Principle 3: Extracting ‘differential’ networks’
Given the importance of context, a central challenge for the field will be to collect data
across multiple environments, cell types, and genetic backgrounds using genome-wide
profiling to infer network connectivity and function in each context. Rather than explicitly
modeling all the moving parts of a network, we propose that it is feasible to derive models
that focus on key components by capturing the essential differences in network wiring,
function and response between contexts (Figure 1).

A “differential-network” model is designed to elucidate the following: How do a small
number of changes to the network (e.g., genetic, epigenetic) alter the function of the
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network? At the center of such a model are the altered nodes (i.e., genes or proteins) and
data driven computation can be used to: (1) identify additional components that interact with
these altered nodes; (2) qualify and quantify how these interactions are perturbed; (3) and
model how these network perturbations continue to propagate though additional components
to generate the phenotype of interest, such as proliferation, invasion, or drug response. For
example, Carro et al., (2010) identify C/EBPβ and STAT3 as “master” transcription factors
for which their over-expression synergistically activates expression of mesenchymal genes
and subsequent tumor aggressiveness in malignant glioma (see strategy 3).

The network model can be significantly simplified because only the components that play a
role in the modeled response need identification and inclusion. Importantly, the differential
network strategy does not apply only to disease. It can be used in any context to address
questions such as, what is the difference between two cell types or how does nutrient status
affect cellular behavior?

Here we present six strategies that combine experimental and computational approaches to
generate network inference models in the context of cancer. Strategies 1 and 2 focus on
identifying key components; strategies 3 and 4 focus on deriving key network components
concurrently with their regulatory influences; and strategies 5 and 6 advance towards
increasingly detailed quantitative models of network influences.

Strategy 1: Discovery of inherited alleles and somatic mutations
Chromosomal aberrations and somatic sequence mutations are a hallmark of tumor cells.
Multiple genetic aberrations collectively influence the expression of thousands of genes,
altering the pathways and processes underlying malignant behaviors. The emergence of
high-resolution copy number assays and massively parallel sequencing technologies opens
the possibility of tracing phenotypic differences back to their genetic source. Large-scale
initiatives are currently sequencing thousands of tumor genomes to comprehensively catalog
the prevalent sequence mutations and chromosomal aberrations underlying each cancer type.
Indeed, entire cancer genomes have already been sequenced in dozens of tumors, revealing a
surprising degree of mutations and chromosomal aberrations in each individual cancer
(Stephens et al., 2009). On the other, exon capture techniques, called exome sequencing (Ng
et al., 2010), concentrate on the 1% of coding sequence in the human genome. This
technique enables a more economical cataloging of coding mutations in cohorts of hundreds
of tumors per cancer type. Finally, transcriptome (or RNA) sequencing identifies expressed
coding and non-coding RNA mutations. Transcriptome sequencing also reveals fusion genes
created by intronic translocations, which are therefore undetected by exon sequencing
techniques (Maher et al., 2009).

These large-scale sequencing projects have uncovered a staggering diversity of genetic
aberrations across tumors. Although each individual tumor typically harbors a large number
of aberrations, only a few play a role in pathogenesis. Therefore, distinguishing between
genetic changes that promote cancer progression mutations (i.e., driver mutations) and
neutral mutations (i.e, passenger) is like finding needles in haystacks.

Recurrence was a rule of thumb for copy number aberrations (Weir et al., 2007). Thus, it
was unforeseen that only a handful of genes would recurrently be targeted by sequence
mutations in each cancer type. The current presumption is that the majority of the driver
mutations are unique to each tumor. A key unresolved computational challenge is, therefore,
to identify the driver mutations associated with each cancer genome. Indeed, the
identification of these drivers is required before a “differential-network” approach can
model how the pathogenic behavior emerges. Computational methods addressing this task
are still under development (Akavia et al., 2010; Beroukhim et al., 2010; Carter et al., 2009).
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Although recurrence may not occur at the gene level, significant recurrence does occurs at
the level of pathways. For example, in glioblastoma, the majority of tumors have mutations
in each of three signaling pathways: P53, RB1 (Retinoblastoma protein 1), and RAS (RAt
Sarcoma)/P13K (Network, 2008). Since these findings define pathways, rather than genes,
as unifying explanations for tumor progression, it is clear that finding drivers will rely on
knowledge of molecular networks.

Unfortunately, there is currently insufficient information on pathways in existing databases.
First, the majority of signaling proteins are not associated with any known pathway. Second,
existing databases include only a small part of what is known and do not take context (e.g.
cell type) into account. More sophisticated experimental and computational methods will be
needed to define and catalog the components involved in each pathway. A promising
direction is the use of systematic experimental and computational approaches to build
interaction maps (Amit et al., 2009; Bandyopadhyay et al., 2010), which can subsequently
be used to identify key aberrant genes. For example, an algorithm known as IDEA
(interactome dysregulation enrichment analysis) (Mani et al., 2008) uses a specially derived
context-specific molecular network to identify key aberrant genes in lymphoma.

Strategy 2: Discovering key network components using RNAi
Although naturally occurring genetic alterations help nominate causal genes in cancer and
other diseases, deliberate perturbation greatly facilitates causal gene identification. Taking
advantage of sequenced genomes, mammalian interference (RNAi) libraries have emerged
as a central tool for systematic perturbation of any gene. Indeed, RNAi-based screens have
proven to be a major tool in cancer research in which cell lines are readily available and cell
proliferation and survival provide surrogates of tumorigenesis.

In one strategy, unbiased genome-wide RNAi screens in vitro and in vivo are used to
identify candidate causative oncogenes and tumor suppressors that impact cell proliferation
or survival. Typically, candidate genes that are found to have an aberrant sequence mutation,
copy number alteration, or expression change in tumors are usually selected for deeper
mechanistic characterization (Boehm et al., 2007; Ngo et al., 2010). However, one must
always keep in mind that candidate genes that are not aberrant may be equally important to
study and target therapeutically.

In a second strategy, candidate genes are first selected from cancer genomic datasets and
then validated with small-scale RNAi screens. For example, this strategy was recently used
to identify critical genes within tumor chromosomal deletions (Ebert et al., 2008) and for
finding the small subset of genes that impact metastasis among hundreds selectively
expressed in metastatic tumor (Bos et al., 2009).

Finally, unbiased screens can also shed light on the susceptibility or resistance of specific
tumors to treatment (Holzel et al., 2010) and to find ways to enhance the effects of current
therapies, such as taxanes (Whitehurst et al., 2007). Indeed, these types of findings can
rapidly influence clinical research and practice. In all cases, RNAi serves as a ‘functional
filter’ to pinpoint or annotate genes that affect proliferation, death, metastasis, or any
cellular processes.

Combining computationally-guided experiment design with RNAi screens has enormous
untapped potential. Although genome-wide datasets are the most comprehensive, they are
also expensive to perform at the large scale required to cover all contexts. A more
economical approach is to refine our understanding with iterative cycles of experimentation
and computation. Computational hypotheses derived from one dataset are used to design the
experiments for collecting the next dataset (figure 2). For example, protein interaction maps
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and microarray expression data were used to nominate high likelihood genes for
characterization in a RNAi screen that dissects interactions between influenza and its host
(Shapira et al., 2009). This approach deepened our understanding of how the virus
manipulates or is controlled by key host defenses through direct and indirect interactions
with 4 major host pathways.

In the cancer setting, a good network model combined with computational inferences can
suggest which gene combinations, genetic background, and cell assay (e.g., proliferation,
invasion, metabolism) should be matched in searching for new components. For example,
multiple mutations must occur together to produce a tumor (Land et al., 1983), necessitating
a combinatorial RNAi approach. However, a large-scale combinatorial RNAi screen is not
feasible, but, computational selection of likely combinations renders the experiments
feasible. Second, although most screens are performed in a single genetic background, in
reality, the functional impact of perturbation is highly dependent on genetic background:
disrupting the expression of gene can cause death in one cell line and have no effect in
another cell line (Luo et al., 2008). Thus, it would be useful to select cell lines with
informative genetic backgrounds. Finally, a good model can link genes with specific
biological processes (Akavia et al., 2010) and help us efficiently extend RNAi studies to
problems of invasion, metabolism, cell-cell interactions, and other cancer hallmarks that are
poorly understood (Hanahan and Weinberg, 2000).

Strategy 3: Statistical identification of dysregulated genes and their
regulators

After discovering key network components, the next step is to decipher the wiring of the
network. The majority of the computational work in this area has been through the analysis
of tumor gene expression profiles that have accumulated on the order of tens of thousands
microarrays over the past decade. Unlike the top down strategies described above, here the
approach is bottom up: first identify the differentially expressed genes relevant to a tumor
phenotype of interest and then use these genes to pinpoint the master regulator that brings
about their dysregulation.

Data driven approaches (Principle 1) have been particularly powerful at locating the
dysregulated genes and regulatory relations within tumor-related pathways. Analysis of
glioblastoma gene expression profiles using the ARACNE (Algorithm for the
Reconstruction of Accurate Cellular Networks) (Basso et al., 2005) algorithm revealed two
master regulators of mesenchymal transformation in malignant glioma (Carro et al., 2010):
the gene module that corresponds to the mesenchymal transformation and the transcription
factors most likely regulating this module (based on mutual information between regulator
and targets). Both transcription factors were then confirmed experimentally.

By extending this statistical reasoning to higher dimensions, the MINDY (Modulator
Inference by Network DYnamics) algorithm (Wang et al., 2009) could cleverly identify
post-translational activators and inhibitors of master regulators. Based on the assumption
that high (or low) expression of such activators (or inhibitors) would lead to increased (or
reduced) co-regulation of MYC with its known targets. MINDY uncovered new post-
translational modifiers of MYC in human B lymphocytes, and 4 of them were validated
using RNAi. Demonstrating the generality of the statistical approach, the identified
modifiers were found to act by diverse mechanisms, including protein turnover, transcription
complex formation, and selective enzyme recruitment.

As we wait for the development of experimental technologies that detect most post-
translational changes in high-throughput, thousands of existing mRNA expression datasets
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can benefit from this powerful statistical approach to predict key modulators of regulatory
activity, by any biochemical mechanism. We have thus, only begun to tap into the potential
of these approaches to uncover the regulatory mechanisms that lead to tumors and other
pathogenic phenotypes. Moreover, once profiles of cancer proteomes and their post-
translational modifications become more readily available, these methods will be
dramatically empowered.

Strategy 4: Integrating genotype and gene expression into causal models
Current analysis has only scratched the surface of existing datasets, and there is critical need
for powerful computational approaches to expose the wealth of hidden information. A
promising approach is “data integration” that builds a model from diverse data types (e.g.,
gene sequence, gene expression profiles, and protein-protein interactions), which each shed
a different light on the underlying biology. The resulting combination is more than the sum
of the parts (See Ideker review in current issue). A natural integration that captures the
essence of ‘differential networks’ is sequence and expression.

For example, the CONEXIC (COpy Number and EXpression In Cancer) algorithm (Akavia
et al., 2010) combines DNA copy number with gene expression levels to identify driver
mutations and predict the processes they alter. The modeling assumptions underlying the
data integration are: (1) A driver mutation should co-vary with a gene module involved in
tumorigenesis (i.e., it assumes that the module’s expression is “modulated” by the driver);
(2) Expression levels of the driver control the malignant phenotype rather than copy number
(because other mechanisms may lead to similar dysregulated expression of the driver gene).

This approach predicted two new tumor dependencies in melanoma and the processes they
alter. Moreover, these predictions were then confirmed using RNAi. CONEXIC thus uses
gene expression as an intermediary to connect genotype to phenotype, building a cascade of
events from DNA, through modulated gene expression, to tumorigenic phenotype.
Anchoring the model at the DNA provided support for causality of influence between driver
and module, although this influence can still be indirect by a cascade of unknown
mechanisms.

While such modeling approaches have only recently taken hold in cancer genomics, these
have been developing in genetic association for a few years. Chen and colleagues identified
gene networks that are perturbed by quantitative trait loci (QTL), which in turn lead to
metabolic disease (Chen et al., 2008). A single comprehensive computation locates the QTL,
how it perturbs the molecular network, and in turn leads to variation in disease traits. As
more data types that capture the “state” of the network are collected (e.g. metabolite
concentrations using mass-spec), these “differential-network” (Principle 3) approaches will
lead to increasingly mechanistic and causal models of disease.

Although this strategy can be applied to any process or disease, cancer is particularly suited
for these approaches because somatic mutations driving tumorigenesis typically have large
impact on multiple genes and cellular processes, and thus, their effect is more easily
detected. Disease genes based on germ-line mutations that persist though the powerful
evolutionary filters are typically more subtle and harder to detect; indeed, disease is
frequently invoked only by the combinatorial interaction of many genes.

As proof of concept of “personalized medicine” and using yeast as a model system,
CAMELOT (Causal Modeling with Expression Linkage for cOmplex Traits) (Chen et al.,
2009) integrated genotype and gene expression levels (measured prior to drug exposure) to
quantitatively predict drug sensitivity. Applying a differential network approach, a small
number of causative genes are identified and then used to build regression models to predict
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drug response for each yeast strain. The algorithm faithfully predicted both the causal genes
(24/24 predictions validated) and drug response. Although epistatic relations existed
between genes, the statistical simplicity of linear models led to more robust and accurate
models from data. We anticipate that a comparable dataset from patient tumors (including
genotype, basal gene expression, and quantitative drug response) could be used to rationally
select each individual patient’s drug treatment, essentially customizing and optimizing
patient care.

Strategy 5: Integration of single cell data to account for cell to cell
heterogeneity

Whereas the measurements discussed thus far were taken over population aggregates using
bulk assays, most signal processing occurs at the level of the individual cell. Over the past
decade, studies have repeatedly demonstrated a large degree of heterogeneity between
individual cells, even within clonal populations. This variation arises from differences in
protein concentrations and stochastic fluctuations in biochemical reactions involving
molecules with low copy numbers. A common finding is that a response appears dose
dependent in bulk assays, but is actually an “all or nothing” response in single cells. That is,
the intensity of the single cell response remains constant under dose but the fraction of the
cells that respond increases with dose (e.g. NF-kB in response to TNFα) (Tay et al., 2010).
In these cases, there are a number of distinct sub-populations, and no individual cell behaves
in accordance with the population average. Such sub-populations confound network
inference algorithms when two molecules exhibit statistical dependency at the population
level, but actually reside in mutually exclusive cells.

Heterogeneity of molecules at the single cell level can have crucial functional impact. Even
clonal cell lines treated with drugs under carefully controlled conditions exhibit a large,
previously unappreciated, degree of variation in cell survival and other parameters (Cohen et
al., 2008). A bulk growth assay can mask a small sub-population of drug-resistant cells,
which can later form a drug resistant tumor. While much debate still exists regarding the
origins and emergence of these sub-populations, it is clear such populations often exist in
tumors. For example, Sharma and colleagues identified a drug tolerant state that can be
transiently acquired and relinquished through reversible epigenetic changes that occur at low
frequency (Sharma et al., 2010b). Therefore, to model drug response in tumors, it is vital to
observe the system at the single cell level and take heterogeneity (stochastic, genetic and
micro-environment) into account.

A unique and beneficial feature of single cell data is the simultaneous observation of
multiple signaling proteins in each individual cell. The stochastic variation observed across
individual cells can be harnessed as a data-rich source for network inference, in which each
of many thousands of cells can be treated as an individual sample (Sachs et al., 2005). This
strategy provides significantly more samples than available in bulk assays (e.g. each
microarray is only a single sample).

Nevertheless, this amount of data comes with a technical tradeoff. To identify interactions
and their function, the participating signaling proteins need to be measured simultaneously
in the same sample. Typically, single cell measurement technologies are limited to a small
number of simultaneous channels (~4–10 channels for flow cytometry and ~3 channels for
microscopy) with microscopy having the unique advantage of real-time tracking across
space and time. A promising emerging technology is mass spectrometry-based single cell
cytometry (Ornatsky et al., 2008), which currently can measure up to 35 antibodies in a
single cell, with the potential scale up to 100. This approach will likely break new ground by
enabling the study of mid-scale networks in individual cells. We hope and must rely on
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clever chemists, engineers and physicists to take on this important challenge of measuring
many molecular states in live, single cells over time and space.

In the meantime, computational approaches can help bridge the gap by: (1) pointing to a
small number of key components in a differential-network, which would be valuable to
analyze at the single cell level; and, (2) stitching together small, overlapping sub-networks
into larger network models (Sachs et al., 2009). But there remains a need to develop
methods for integrating genomic data sets at the population level with single cell
measurements over small subsets of components at critical network junctures, leading to a
more accurate model of the underlying cellular computations.

Strategy 6: Using perturbations to reveal network wiring
To infer network models that describe how a network responds to stimuli, as well as through
what molecular interactions and mechanisms this sensing and response occurs,
comprehensive profiles must be measured following perturbations. We consider three
methods to perturb the system: RNAi, drugs, and natural variation. As this strategy is still
under development, this section is more speculative.

Measuring network behavior following an RNAi perturbation uncovers the functions of a
gene and provides definitive causal links between network components. A key strength of
RNAi is that it can be used effectively to target any desired gene. However, RNAi also has
limitations due to its slow kinetics and potential non-specific cellular responses (e.g., innate
immune response to double stranded RNA or overloading of the RNAi machinery and off-
target effects). Using RNAi-based perturbations followed by comprehensive measurements,
Amit et al. (2009) recently developed a network model of transcriptional regulation in the
pathogen-sensing response (Amit et al., 2009). Candidate regulators and a reduced signature
response were first selected from microarray data of cells stimulated with pathogens. Each
candidate was then knocked down with RNAi, and the effect on the signature was
quantified. This strategy uncovered many new factors involved in pathogen-sensing and
generated an informative network wiring diagram that revealed new cross-talk and feedback
in these pathways. This strategy and its variations should succeed in reconstructing medium-
size molecular networks in other systems.

A second perturbation to consider is small molecules, which often have unique and valuable
properties for network modeling and direct relevance to patient care. First, in contrast to
RNAi kinetics, the instantaneous action of small molecules allows for accurate control of
both dose and timing, leading to simpler interpretations of its effects, without the need to
consider network adaptation. Second, small molecules can have specific biochemical effects
on proteins, leading to elimination of edges in the network, rather than entire nodes as RNAi
does. By comprehensive monitoring of the resulting changes in the network upon drug
perturbation, we can refine network models, and importantly, discover how pathway
activation, cross-talk, and feedback differ across individual tumors with variable levels of
drug sensitivity.

Third, variation in the DNA across individuals is a powerful resource for studying the
effects of perturbation on network function. It is also effective for detecting regulatory
interactions, uncovering complex phenotypes, and inferring networks (Lee et al., 2006). In
contrast to deliberate and somewhat dramatic disruption of a gene’s function through RNAi
or drugs, more subtle effects, such as the attenuation or alteration of function, can be
observed in genetically divergent individuals. Natural variation provides us with numerous
genetic alterations in various combinations, as selected by evolution to produce functional
pathways. By monitoring functional pathways in action, we can infer how network
components work together under different conditions. Each individual’s genetic variation
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provides distinct information linking genotype and phenotype and helps explain network
behavior.

What still needs to be developed is an integrated experimental-computational strategy that
combines stimulations and perturbations with functional measurements from the same cells
to build network models. Variation in stimuli and environment allow us to derive what the
network is computing, and perturbations to its components elucidate how the network is
computing. This suggests expanding the framework set forth by Amit and colleagues (Amit
et al., 2009) to additional dimensions, including a time series of gene expression and
proteomic measurements, following each combination of stimuli and perturbations. Natural
variation between individuals and tumors combined with targeted perturbations using RNAi
or drugs will provide particularly powerful data for deriving tumor network models.

Executing the experimental design proposed above requires technological developments.
Much of the dynamics occurs at the level of proteins and their modifications, raising the
need for high throughput proteomics to measure protein abundances and activity states.
Importantly, the proposed design requires assaying a prohibitively large number of samples.
To make significant progress in the understanding of molecular networks, there is a critical
need for the development of more economical, multiplex functional assays that can measure
thousands of molecular species per sample at low sample cost. An iterative approach, in
which computational modeling with existing data guides the selection of the next set of
experiments, will provide the most cost-effective design (Figure 2).

New experimental technologies are rapidly progressing, with computational efforts lagging
behind. For example, generating transcriptome sequence reads is easy, but their assembly
remains challenging. To utilize the enormous potential of the data-types delineated above,
significant advances in computational modeling is required. Specifically, there is need for a
transition from static and qualitative models, to temporal and quantitative models.

Future: Personalized Cancer Medicine
Networks govern fundamental processes, such as the development of a multi-cellular
organism from a single cell and communication between immune cells in a response to a
pathogen. Fueled by technology and computation, research in the coming decade is expected
to unravel the details and principles behind diverse molecular networks and how they
compute life’s functions. For example, the ongoing revolution that has enabled the
sequencing of individuals provides the first opportunities to systematically study and explain
how DNA variation results in our phenotypic diversity. Reaching these goals, however, will
also necessitate a deeper understanding of the biophysical principles underlying signal
processing in small biological circuits and how these come together in systems of increasing
size and complexity.

Within cancer research, systems biology is dramatically advancing our mechanistic
understanding of tumor progression and the design of personalized therapeutics. Continued
success, however, will depend on critical advances in both experimental and computational
methods. Improvements in tools for measurement - especially mass spectrometry and cost-
effective multiplex detection- and perturbation -especially RNAi and small molecules- will
fill in our understanding of the many molecular layers that underly networks function. On
the computational end, the key bottleneck is the development of validated computational
methods that integrate heterogeneous data and build “differential-network” models on a per
tumor basis. These methods are required to: (1) identify the genetic aberrations and the
master regulators that drive proliferation, survival, metastasis, and drug resistance; (2)
model the adaptive/feedback mechanisms that thwart the efficacy of potent drugs; and (3)
predict additional target pathways for combinatorial drug treatment. Based on these
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predictions, more data can be collected to refine the models in iterative rounds of
computation and experiments. As three-dimensional models of cancer (Ridky et al., 2010)
continue to develop, we can also profile multiple cell types in a tumor environment and
model the interactions between these. In short, these studies should teach us what drives
cancers and what part of the networks we should target, both initially and after the network
adapts and mutates.

Many of us believe that the ultimate solutions to minimizing cancer reside in the regime of
combinatorial patient-specific drug therapy, immunotherapy, and gene therapy. Accurate
quantitative models of tumor networks should predict the effects of drug perturbations and
thus enable sophisticated rational therapy with optimized dosage, timing, and drug
combination for each individual tumor. Drug combinations can address feedback and
network adaptation, ensuring shut-down of the necessary pathways. Additionally, drug
combinations can target distinct sub-populations within a tumor.

Tumor networks are armed with the ability to adapt and rapidly evolve and thus, are a
powerful adversary. These need to be met with equally sophisticated and flexible therapy
regimes that can track these adaptations and dynamically adapt over time, placing us several
moves ahead of the tumor. Studying the emergence of drug resistance both in vitro
(Johannessen et al., 2010) and in vivo can better inform methods to anticipate potential paths
of resistance. The ultimate therapies would involve sending “networks” in vivo to track
tumor behavior and control the dosage and timing of drug release in response to tumor
behavior. This long-term goal should become feasible as the fields of network biology,
synthetic biology, and appropriate drug delivery methods mature. In the immediate future,
however, our goal should be to anticipate and monitor real-time changes in the tumor’s
network and adapt our therapies accordingly.
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