
RNA localization signals: deciphering the message with
bioinformatics

Russell S. Hamilton and Ilan Davis*

Wellcome Trust Centre for Cell Biology, School of Biological Sciences, Kings Buildings, University
of Edinburgh, Edinburgh, EH9 3JR, United Kingdom

Abstract
mRNA localization is an important posttranscriptional method of targeting proteins to their site of
function. The sorting of transcripts to their correct intracellular destination is achieved by a
number of mechanisms, including selective degradation or transport by molecular motors along
the cytoskeleton. In all cases, this involves mRNA localization signals, or so called zip codes,
being recognized by trans-acting cellular factors. In a few cases, primary sequence motifs for RNA
localization can be identified, but in general, localization signals operate at the level of secondary
(2D) and tertiary (3D) structure. This inevitably means that searching for localization signal motifs
is a complex task requiring specialist knowledge of bioinformatics. Furthermore, the publications
describing these searching methods tend to be aimed at the bioinformatics community. In this
review, we have surveyed the major tools for folding, comparing, and searching potential mRNA
localization signals in transcripts or across genomes. Our aim is to provide an overview for
biologists, who lack specialist computer and bioinformatics training, of the major RNA
bioinformatics tools that are available. The examples provided are focused on mRNA localization
signals and RNA stem-loop structures, however these tools can be applied to the study of any
RNA signals.
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Introduction
mRNA localization targets transcripts to particular regions of the cytoplasm, in order to
concentrate the synthesis of the proteins they encode at their site of function [1]. Localized
transcripts are known in all major eukaryotic model systems and include examples encoding
a wide range of types of proteins, from nuclear transcription factors, to membrane proteins
and secreted signals. A variety of mechanisms of localization have been demonstrated, but
perhaps the predominant mode of transcript sorting within the cell involves transport by
molecular motors along the cytoskeleton. RNA cargos are known for all 3 classes of
molecular motors, myosin, kinesin and dynein [2]. The process of mRNA localization is no
exception. Transcripts are thought to contain localization signals [3], consisting of discrete
stem loops structures that associate with a particular combination of RNA binding trans-
acting factors, determining the composition of the RNP complexes and site of localization of
the transcripts. This can be achieved by recruiting specific molecular motors, influencing the
activity of motors [4], dictating a mode of anchoring [5] as well as promoting or preventing
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degradation. However, in most cases, characterizing the consensuses for RNA binding and/
or the signal for localization has proven intractable. Only in rare instances is RNA binding
or signals for RNA localization defined at the level of primary sequence. In the vast majority
of cases, binding to proteins and signals for RNA localization are defined at the secondary
and tertiary structure level. While computational approaches can predict RNA base pairing
in relatively small stem loops with reasonable reliability based on the minimum free energy,
this may not represent the in vivo folding of the RNA. Such programs only consider the
canonical Watson-Crick base pairs (and the G:U wobble pair) and not the thirty or so other
non-Watson-Crick bases pairings and triplets, as well as RNA pseudo-knots, G-quartets and
other structures. Furthermore, RNA signals are recognized in three dimensions and the
surfaces presented to a protein in 3D are very difficult to predict computationally. Finally,
there is the added complication that the RNA may change its conformation upon binding to
a protein.

This review is intended for readers who have identified a discrete RNA signal of biological
significance and are wondering how they can find similar signals in other specific genes, or
across multiple genomes. We aim to help the reader decide how to assess whether the signal
can be searched on a primary, secondary or tertiary sequence level, and which resources are
available for these tasks. We provide a quick guide through the plethora of bioinformatics
methods for predicting, comparing and searching for primary, secondary and tertiary RNA
structure. Throughout the review, biological examples are highlighted from the field of
mRNA localization and RNA stem loop structures, but these methods and the principles
described can be applied to any small RNA signal with functions in any aspect of RNA
biology. Not all RNA secondary structure prediction methods are described. Instead, we
cover the most powerful and commonly used algorithms. The review is divided into three
major parts, each dealing with a distinct set of bioinformatics tools required to work with
specific kinds of RNA localization signals. The first part addresses searching for similar
RNA localizing elements by their primary sequence, and supporting secondary structure
information. These types of searches are suited to examples where the localization signals
are thought to be highly similar in primary sequence so conventional sequence search
algorithms can be employed as well as some more specialized methods such as Stochastic
Context Free Grammars (SCFG). The second part describes the majority of cases, involving
the comparison of secondary structures of localizing RNA signals. In this case, there is
insufficient primary sequence similarity, but sufficient secondary structure consensus for
identifying further examples of the signal. The third and final section introduces some
software for predicting the tertiary structure of RNAs and highlights the potential of these
methods. However, these are so far limited in their utility and do not replace experimental
determination of the 3D structures.

1 Primary Sequence
In a few cases, RNA localization signals are defined at the primary sequence level without
requiring any secondary structure information. Similar sequences can then be searched for in
sequence databases or genomes, using sequence only search methods such as the BLAST [6]
suite of tools, hidden Markov models (HMM) or more specialized search programs.

1.1 Sequence Similarity Searches
In Xenopus laevis, Vg1 RNA is localized to the vegetal cortex of oocytes and has been
mapped to a 340nt signal in the 3′UTR [7]. Further investigations found four repeated
sequences E1, E2, E3 and E4 [8]. Deletion of the E2 sequences abolish localization, whist
the deletion of the E1, E3 and E4 sequences reduce localization efficiency. Two copies of
the E2 motif have been shown to be sufficient for the localization of Vg1 and the VM1 motif
(UUUCAC) was found to be a critical component [9]. VegT, another vegetally localized
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Xenopus transcript was identified as having five copies of the E2 motif in a 440nt region of
the 3′UTR. The E2 motif was found to be necessary and sufficient for the localization of
VegT [10]. Sequence search methods, such as BLAST, could therefore be applied to
searching for further RNAs containing multiple copies of the E2 motif. However, due to the
short repeated sequence motifs a new program was developed called REPFIND [11], which
was used to find further sequences containing clusters of CAC motifs. Interestingly, this led
to the discovery of a conserved CAC motif in the majority of RNAs localizing to the vegetal
cortex in Xenopus oocytes. In addition, the CAC motifs were found to be conserved across
chordates, although their precise functions in localization vary between species [11].

1.2 Statistical Model Sequence Searches
Statistical models for sequence searching are more sensitive than sequence similarity search
algorithms such as BLAST. Profile Hidden Markov models (pHMM) are probabilistic
models of nucleic acid or protein sequences and are employed by the hmmer [12] and SAM-
T98 [13] methods. If there are several similar sequences already known, they can be aligned
and transformed into a pHMM, which can be used to search databases for other similar
sequences.

Sequence searches can be greatly enhanced by including secondary structure in the search
model. These searches use SCFG encoding both sequence and secondary structure into a
probabilistic model, also referred to as covariance models, and can be used to find
homologous RNAs in sequence databases, with similar sequences and secondary structures.
RSEARCH [14] is such a method and is more sensitive than sequence based search
methods. Such searches are extremely processor intensive, but with increasing computer
power can now be run on genomes of modest size. SCFGs can also be used to predict the
structure of a set of closely related RNAs (see the consensus structure prediction section
below for more details).

1.3 Databases to Search
Most known localization signals have so far been found in the un-translated regions (UTR)
[3,15], so searching databases of UTR sequences is a good starting point. UTRdb [16] is a
non-redundant database of eukaryotic 3′UTR and 5′UTRs. Each entry in the database is
annotated and links are provided to the genomic and/or protein data. To search for
homologous RNAs across genomes, the Ensembl project [17] provides sequence data for a
large number of genomes, including all common model organisms. Rfam [18] is a database
of families of RNAs and the SCFGs describing them. In addition, Rfam provides a
collection of putative RNAs from over 100 genomes, which can be used to search for
homologous RNAs.

2 Secondary Structure
Many RNA signals have characteristic stable secondary structures, but lack any
recognizable primary sequence features. In such cases, even the most sophisticated primary
sequence search methods fail to identify other examples of the same motif. For example, the
gurken (GLS) and I factor (ILS) localization signals have similar stable secondary
structures, competing for the same cellular machinery required for localization [19]. RNA-
binding proteins associate with these signals and then recruit components of the dynein
motor complex. The GLS and ILS only share limited sequence similarity, so that primary
sequence searches for the GLS fail to find the ILS, and vice versa.

A recent study by Rivas and Eddy for the identification of non-coding RNAs [20],
concluded that the stability of RNA secondary structure alone is not sufficient to distinguish
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them from the folding of random sequences, indicating that there are primary, secondary
and/or tertiary structure elements important for the function of these RNAs.

Several reviews have been published in the last few years on the subject of RNA secondary
structure prediction [21-24]. However, these have tended to be aimed at bioinformaticians,
providing data on the performance of the algorithms rather than their biological application.
Reviews have also concentrated on the importance of RNA structure [25], common
structural motifs [26] or hairpin structures [27].

2.1 Assumptions for RNA Secondary Structure Prediction
In general, the difficulty of applying secondary structure prediction methods is that they are
based around certain assumptions about RNA structure, which may or may not be correct.
For example, most secondary structure prediction methods assume Watson-Crick base
pairing (including the G:U wobble pair) and ignore non-canonical base pairings, base triples,
G-quartets and pseudoknots. The structure of RNA in the predictions is also assumed to be
exclusively in the A-form, as described by thermodynamic models. While all current
methods assume that RNA folds independently of other RNA and proteins in the cell, the
more sophisticated approaches do take into account that RNA structures are dynamic and
may form several conformations in vivo.

2.2 Representations of RNA Secondary Structure
The most intuitive method of representing an RNA secondary structure is as an image
representing bases as single letter codes. Adjacent bases in the sequence are linked by a
single line and base pairings are usually represented by coloured lines or circles (Figure 1A).
However, there are other representations such as the connect (ct), dot-bracket and RNA
markup language (rnaml) format. The connect format contains columns storing sequence
and base pairing indices for the secondary structure. This is the format utilized by Mfold and
it is from this format that the structure image and dot-plots are generated (Figure 1B). The
dot-bracket notation shows paired bases as matching brackets, and non-paired bases as full
stops. RNAfold utilizes this format for its secondary structure predictions and is particularly
suited to RNA bioinformatics as it is easily manipulated and stored by computer programs
(Figure 1C). The rnaml format is a universal method of encoding RNA secondary structure
developed by the RNA structure prediction community [28]. However, the rnaml format is
not suitable for reading by humans as it is designed to be read by computer programs.

2.3 Predicting the Secondary Structure of Individual RNA Sequences
Computational predictions of RNA secondary structure maximize the number of base pairs
within a structure, thus minimizing the free energy in the molecule. The complexity in the
methods is related to the scoring schemes and the development of more accurate methods of
evaluating RNA free energy values. Despite improvements in the methods, the RNA energy
models should only be regarded as approximations of the secondary structure. Secondary
structure predictions depend on dynamic programming algorithms that start by predicting
the optimal substructures of the whole sequence. These are then built up into a matrix, where
the dynamic programming algorithm backtracks to find the lowest energy structure for the
sequence as a whole. The use of dynamic programming algorithms in the prediction
methods always gives the “correct” prediction, but scoring schemes can lead to inaccuracies.
When a prediction with minimum free energy (MFE) is made, the structure with the lowest
energy (termed optimal) is returned. Some programs also return a number of similar
structures with energies close to the lowest energy structure (termed sub-optimal). Sean
Eddy has written an excellent review of MFE prediction methods [21].

Hamilton and Davis Page 4

Semin Cell Dev Biol. Author manuscript; available in PMC 2011 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The most commonly used MFE method is arguably Mfold [29], but there are a wide variety
of methods including RNAfold [30] and its sister version RNALfold [31] designed for
performing predictions on a genomic scale. Locally stable structures of a defined length are
given by folding an entire genome in overlapping windows set at the defined length,
progressing along the genome, one nucleotide at a time. Mfold and RNAfold were both
developed from the same Zuker-Steigler algorithm, so differences in their prediction
accuracies are not significant. Figure 2A shows the MFE based methods in context with
other secondary structure prediction methods.

2.4 Accuracy of Secondary Structure Prediction Methods
To calculate the accuracy of a secondary structure prediction method, a reference set of
experimentally determined structures is used and are typically from distinct types of RNA
(e.g. tRNA, rRNA). Therefore, the choice of data set greatly influences the accuracy of the
algorithms, so that a single figure for accuracy can be misleading without providing the
reference set used for the test. One of the most important factors in selecting a prediction
algorithm is the length of the candidate RNA because some algorithms only perform well
with RNAs under certain lengths. Accuracies quoted in the literature vary considerably and
reflect the use of different reference sets and techniques for calculating accuracies. Mathews
et al.[32] found the accuracy of Mfold to be 73% for a large database of known structures of
700nt or less. Doshi et al. [33] found an accuracy of 41% for Mfold for a reference set of
16S and 23S RNA. Dowell and Eddy [34] report accuracies of 56% (Mfold), 55%
(RNAfold), 50% (pknots), and 39% (Pfold) for a reference set of RNase P, SRP and
tmRNAs.

2.5 Pseudoknots Structure Prediction
There has been great interest in the development of algorithms to predict the secondary
structures of RNAs containing pseudoknots, as these cannot be predicted using standard
MFE methods. One such program is Pknots [35], based on standard RNA thermodynamic
models, a modified dynamic programming algorithm and thermodynamic models for
pseudoknots. However, pknots is only able to process small structures due to the complexity
and time requirements of the algorithm. Other programs for predicting pseudoknots include,
ILM [36] and HotKnots [37]. Figure 2C shows pseudoknot-capable prediction programs in
context of the other classes of prediction software, using a kissing-loop as an example. The
KH2 domain of the Fragile-X mental retardation protein (FMRP) competitively binds a
kissing loop with brain polyribosomes [38]. It will be interesting to know whether kissing
loops have a role in the binding of trans-acting factors to mRNA localization signals.

2.6 Comparative / Consensus Structure Prediction and Motif Finding
Single sequence secondary structure prediction methods can only take into consideration the
information held within that one sequence. No inference can be made to the importance of
each of the bases in the structure for the function of the RNA. However, if several highly
similar sequences are available from related species, then a consensus structure can be
determined.

RNAcast [39] (part of the RNAShapes package [40]) takes the approach of calculating the
structure for each of a set of sequences independently, then calculates the structure common
to all sequences. This does not require any alignment of the sequences unlike Pfold [41],
which uses SCFGs to predict the secondary structure of a set of homologous RNAs,
assuming a single common structure for the sequences. Sequences must be pre-aligned with
programs such as Muscle [42], before Pfold can predict their common structure. More
computationally intensive approaches simultaneously predict the MFE structures and
perform a structural alignment. Dynalign [43] predicts the structures common to a maximum
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of two unaligned sequences. Foldalign [44] predicts structures common to two or more
sequences and can highlight areas where there is a high degree of sequence similarity. To
reduce the computational complexity, both methods implement restrictions such as limiting
distances between paired bases and restrictions on the alignments. A further caveat for these
methods is the requirement that the sequences be of similar length and adopt similar
structures. This is of particular use when validating the prediction of an unknown structure
against a known one. Figure 2B shows the consensus methods in context with the other
secondary structure prediction methods.

2.7 Statistical Structure Prediction
One of the weaknesses of the MFE methods is that the correct structure is not guaranteed to
be the one with the lowest energy, but is likely to be within the sub-optimal structures. A
further complication is that RNA is likely to exist in a number of alternative structures in
vivo due to the dynamic nature of RNA and the proteins that bind to it. Determining
ensembles (families) of secondary structures is one of the focuses of statistical approaches to
structure prediction.

Sfold [45] statistically samples representative secondary structures from a Boltzman
probability distribution of structures. The statistical sampling provides probabilities for
secondary structure motifs. Sfold then clusters the sampled structures by structural
similarity, resulting in ensembles of similar structures. The MFE structure is not guaranteed
to be within the sample, typically 1000 structures, but can be added artificially to the
sample. The output consists of a ranked list, in terms of free energy, of ensembles
representing the most likely conformations in vivo. Sfold is particularly suited to
determining whether interaction sites remain accessible with variations in the conformation
of the structures. The accuracy of the Sfold method was found to be similar to that of the
MFE methods (Mfold and RNAfold) [46]. Statistical folding algorithms have been described
in more detail in a recent review [47] and are put into context with other prediction methods
in Figure 2D.

2.8 2D Structure Comparisons and Searching
RNA signals can be recognized at the structural level, with no known requirement for
conservation of sequence. The evolutionary pressure is therefore applied to the maintenance
of the structure and not the sequence. In these cases, sequence comparison and alignment
methods will fail, and secondary structure comparisons are required. There are two main
methods for comparing or calculating the similarity between two independently predicted
structures. The first converts structures into a tree or forest representation, where the leaves
of the tree are unpaired bases and branches denote paired bases. Once the two structures are
in a tree format, the two trees can be compared using tree alignment distance algorithms.
Similarities are then quantified and given scores. RNAdistance [30] performs global
comparisons of RNA structures represented as trees. However, as the entire lengths of the
RNAs are being compared, the algorithm can often become trapped in unimportant fine
detail structure comparisons rather than the structures as a whole, leading to anomalous
results. In contrast, RNAforester [48] compares structures on a local scale, so can find
similarities between two substructures of the RNAs being compared. RNAforester has
recently been used in a large-scale classification of a eukaryotic common secondary
structure of the internal transcribed spacer 2 (ITS2) [49,50]. ITS2 is a fast evolving, nuclear
ribosomal DNA recently suggested as a marker for the taxonomic classification of new
species. The conserved core, as shown by RNAforester, consists of four helices forming the
loop of a larger stem-loop structure (average length of 212 nt). There are also sequence
constraints; a UGGU motif in helix III, a U:U mismatch in helix II. The second method of
secondary structure comparison determines whether a structure matches a user defined
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search motif. RNAMotif [51] converts user defined structure motifs into tree
representations. A recursive algorithm then determines whether a sequence, with its
structure determined, matches the motif. The smallest structure elements of the motif are
searched for first, followed by the larger elements. RNAMotif can be accompanied by a
scoring function to quantify the similarity in addition to the pass or fail nature of the motif
match. Large numbers of predicted secondary structures can be passed though RNAMotif to
determine if any similar secondary structures can be found. The RNAMotif method is
extremely flexible and can encode non-canonical base-pairings, triples, quadruplexes and
pseudoknots. Another approach is that of ERPIN [52], which performs pattern searching
using a set of similar RNAs to produce a template for searching sequence database. The set
of RNAs are aligned by sequence, and common secondary structure features determined.

If the interaction sites of the RNA are known then this can be incorporated into the
prediction of secondary structure. RNAhybrid [53] models the hybridization of short RNA
sequences to longer target sequences, and is particularly useful in the fields of miRNA and
siRNA searching. Other successful methods for searching for miRNAs have been developed
by the Bartel lab [54,55].

3 Tertiary Structure
Currently the best methods of determining the tertiary structures of RNAs are NMR and X-
ray crystallography. However, considerable time and resources are required. The
computational modeling of tertiary structures of RNA is a field very much in its infancy, but
there have been significant advances allowing tertiary structures to be modeled, investigated
and searched for. RNA tertiary structure modeling is a more straightforward problem than
protein structure prediction, due to the strong constraints provided by base pairing.
Therefore, RNA structure predictions are tractable with reasonable computer power.
Tertiary structure models produced with currently available software may lack atomic
resolution of experimentally determined structures, but can give valuable insight into the
topology, the RNA and the nature of its binding to proteins. Tertiary structure modeling is
very useful for modeling mutations in an RNA whose wild type structure has been
determined experimentally. Experimentally determined RNA structures can be found in the
Nucleic Acid Database (NDB) [56] and are further organized by structure and function in
the Structural Classification of RNA database (SCOR) [57].

3.1 Ab initio Structure Prediction and Molecular Dynamics
Ab initio folding methods, are based on the physical properties of RNA molecules rather
than on previously determined structures (as is the case with threading approaches).
Typically force fields are used to describe the atoms within the RNA molecule, and then the
interactions of the atoms are simulated over a defined period of time to model the structure.
In a recent study, the structure prediction of a UUUU tetraloop was investigated and
compared to NMR models [58]. The computational modeling predicted by the Amber
molecular dynamics program [59] was found to be in good overall agreement with the NMR
model.

3.2 Threading Modeling / Partial Experimental Data
Threading is where a structural model for an RNA is built up one base at a time, by
comparing its sequence to a database of experimentally determined structures. Threading
methods rely heavily on structure databases and will improve as more structures are
determined. MC-SYM [60] is an example of a threading program and has great potential for
the refinement of threading based methods and model building.
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3.3 Tertiary Structure Searching
Ash1 mRNA from S. cerevisiae has been shown to have four different localization signals
[61-63]; three in coding regions (E1, E2A, E2B) and one in the 3′UTR (E3). Each of the
four elements is able to localize the Ash1 mRNA to the bud of the yeast cells. Initially, no
obvious consensus sequence was identified. However, a consensus of two cytosine bases
was identified by their orientation in the three dimensional structure of the localization
signals [64]. A stem of four or five bases is flanked by two internal loops each containing a
consensus cytosine on opposite strands. One of the cytosines forms a further CGA motif
within the structure, however this is not absolutely required. These cytosines are separated
by six nucleotides despite the variations in the secondary structure. MC-SEARCH was then
used to determine whether the four signals can form similar tertiary structures with the
cytosines orientated in the same manner. MC-SEARCH was able to search existing 3D RNA
databases using secondary structure definitions of the four localization signals. The search
revealed numerous structures containing the four cytosine motifs, and that they consistently
span 28Å, indicating that different secondary structures can still form similar tertiary
structures. RNAMotif was then used to search for further localization signals in S.
cerevisiae. Two mRNAs containing the motif and were found to localize to the yeast bud.
Figure 3D shows this search strategy in context with the other search methods described in
this review.

4 Conclusion
While current bioinformatics methods are most successful when based upon previously
identified localization signals, genome wide searches may also aid in the elucidation of a
sequence and/or secondary structure consensus for localization. One of the most obvious
weaknesses of these kinds of approaches is that the folding algorithms do not take into
account the binding of other RNAs and proteins. The development of folding methods that
include interacting molecules will have a big impact on the field of RNA localization
through the structural prediction of localization signals. Furthermore, improvements in
tertiary structure prediction in the coming years are likely to have the most significant
impact on the success of such searches. Tertiary structure prediction of localization signals
and the structures of mutations in the signals will provide invaluable insight into the nature
of the recognition of the RNA by the localization machinery.
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Fig. 1.
Commonly used representations of RNA secondary structure for the Drosophila gurken
localization signal. (A) Image format as produced by Mfold. (B) Connect Format, showing
columns denoting paired bases and to which base they are paired. (C) Dot-bracket notation,
where matching brackets correspond to base pairs, and dots to unpaired bases. This notation
is usually accompanied by the RNA sequence to aid interpreting the notation.
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Fig. 2.
Approaches for predicting RNA secondary structure. (A) For a single sequence (for GLS in
the example), the most appropriate methods to use are the MFE based programs (e.g. Mfold,
RNAfold). (B) If several similar sequences are available, the most accurate secondary
structure predictions are achieved through covariance methods such as RNACast and Pfold.
The example shows the GLS from several Drosophilids. (C) Pseudoknot structure
prediction, appropriate if experimental evidence points to pseudoknots. Pknots, Hotknots
and ICM are all able to predict the secondary structure of pseudoknot-containing structures.
The example shown is a kissing loop pseudoknot. (D) Alternate approaches. Programs such
as Sfold take into consideration the dynamic nature of RNA and predict ensembles of
structures to determine the most likely structures in vivo. ENS denotes an ensemble
prediction by Sfold, compared to the MFE prediction: example shows the GLS.
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Fig. 3.
Search strategies for finding similar RNAs based on sequence and/or structure. Example
applications are given for each of the methods. (A) If there are sequence constraints. (B)
Finding homologous RNAs with sequence and secondary structure similarity. (C) Low
sequence similarity with secondary structure similarity. (D) Tertiary structure constraints,
where there are no obvious sequence or secondary structure similarities.
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