
Collective Irrationality and Positive Feedback
Stamatios C. Nicolis1*, Natalia Zabzina1, Tanya Latty2, David J. T. Sumpter1

1 Mathematics Department, Uppsala University, Uppsala, Sweden, 2 School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia

Abstract

Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when
presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide
range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic,
experimentally validated model of positive feedback between group members to show that the probability of taking the
best of n options depends crucially on the strength of feedback. We show how the probability of choosing the best option
can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of
options, so that when we change the number of options the preference of the group changes, producing apparent
‘‘irrationalities’’. We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary
consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and
accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular
experimental conditions.
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Introduction

Several recent studies have begun to investigate the collective

rationality of distributed biological systems [1,2]. A striking result is

that acellular slime mould Physarum polycephalum makes irrational

decisions, in the sense that its preference for food items of varying

quality changes when its choice set is expanded [1]. These results are

reminiscent of choice patterns seen in humans participating in

decision-making tasks, where the relative attractiveness of two

options often depends on the presence or absence of a third option

[3,4]. Such preference changes violate independence from irrelevant

alternatives (IIA), because a new option of lesser value apparently

alters the value of the two superior options, and can thus be classified

as ‘irrational’ [5]. In addition to slime moulds, rationality has been

studied in house-hunting Temnothorax ants. Unlike slime moulds,

Temnothorax ants are, in some situations, collectively immune to

irrationality and do not violate IIA [2,6].

Several authors have pointed out that rationality cannot be

studied in isolation from mechanisms [4,7]. Gigerenzer emphasises

the importance of heuristics, which are fast methods for making

decisions on the basis of only small amounts of available information

[8,9]. The key questions to ask in such a framework are ‘‘In what

environments will a given heuristic work? Where will it fail?’’ [9].

For collective decision-making, the key heuristic is positive feedback,

whereby commitment to a particular option increases as a function

of the number of individuals already committed to it [10–12]. In the

light of the new experiments classifying ants and slime mould as

‘‘rational’’ or ‘‘irrational’’, it is important to link these outcomes to

the positive feedback heuristic: in what environments do we expect

positive feedback to produce accurate decisions and in what

circumstances do we expect it to fail?

For Physarum and Temnothorax ants, the feedback mechanisms by

which these systems reach decisions are relatively well understood.

For Physarum, positive feedback is mediated through the growth of

tubes as a result of protoplasmic flow [13]. Positive feedback in

Temnothorax ants is in the form of tandem running which recruits

nestmates to good quality nests with a switch to a rapid transport

of nestmates after a quorum threshold is reached [14]. In this

paper, we consider the problem of choosing between multiple

options in a general model of positive feedback supported by

experimental evidence, namely the Deneubourg model of

collective decision-making [15]. The model describes two or more

competing positive feedback loops, each of which measures how

the build up of commitment to a particular option evolves in time.

We assume that each option has an associated quality encoded

by the variable i. We also assume that commitment decays at a

constant rate n for each option. The evolution of the commitments

xi to option i can thus be cast in the form [10]

dxi

dt
~w ifi x1,:::xnð Þ{nxi i~1,::nð Þ ð1Þ

where the flux w determines the overall strength of positive

feedback. Note that for animal groups w can be thought of the

number of individuals per time step making a decision, or as

proportional to the size of the population.

The choice function fi (f1§0) expresses how future commitment

to i is affected by the current commitment both to i and its

competitors j=i. fi is chosen to provide a quorum-like response, so

that above a threshold the rate of increase in commitment

becomes significantly larger. The detailed mechanisms behind the

resulting positive feedback and the specific forms of fi depend on
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the system at hand. In Physarum fi is a nonlinear saturating function

modeling the increase in flow as a function of tube thickness [16].

Other mechanisms generating quorum-like positive feedbacks

are trails formation [10,17], following behavior by fish [18],

interactions between individuals in connection with aggregation

like processes [19–21] and imitation by primates [22]. Imitation is

also the dominant feedback mechanism in the context of decision-

making phenomena involving human populations. The situation

for Temnothorax ants is more complicated. For these ants fi can be

considered linear, since tandem running recruits ants in propor-

tion to the number of ants already recruiting, but there is a

quorum switch to transporting of nestmates above a certain

threshold [14]. In what follows we will use a form of fi, inspired by

theoretical and experimental work on food recruitment in social

insects by Deneubourg and co-workers [17,23,24], written as

fi~
1zxið ÞmPn

j~1 1zxj

� �m ð2Þ

The parameter m measures the sensitivity of the particular

choice. The larger the m the sharper the choice and, at the same

time, the higher the nonlinearity involved in the process. In this

paper, we will study the reference case where m~2 corresponding

to the minimal setting of co-operativity, and subsequently see if the

conclusions persist for different values of this parameter.

Results and Discussion

Figure 1 shows the bifurcation diagrams of the steady state

solution of eqs.(1)–(2), i.e., how the steady state level of

commitment for the best option changes with the flux w for

n~2, n~3 and n~4. As the flux increases the system switches

from having one stable state with a small majority committed to

the option with the highest value of i to having multiple steady

states with stronger commitment to one of the options. In this

latter situation, there is one steady state corresponding to a high

level of commitment to the highest quality option, but there also

exist alternative stable states corresponding to commitment to one

or more of the lower quality options. Here, the chosen option

depends on initial conditions. For example, in figure 1a the arrows

show how different initial commitment levels will evolve. If

commitment is initially strong for the lower quality option then the

system moves towards choosing this option. We do not label such a

situation as ‘irrational’ since it is common to see humans and other

animals having a range of possible choices depending on their

initial preferences. Indeed, it may well be optimal to choose the

option closer to an initial preference.

We can however show that it is this multi-stability that can lead

to irrationality when the number of choices available to a decision-

maker is changed. The first point to note is how the bifurcation

diagrams in figure 1 depend on the number of options. In

particular, the bifurcation point where more than one steady state

appears increases with the number of options. For n~2 this

bifurcation point is w�~0:267, for n~3 it is w�~0:3175, and for

n~4 it is w�~0:3665. We note also that the stable branch

corresponding to a majority commitment to the higher quality

option moves to the right as the number of choices increases. In

other words, the preferences change with the number of options.

The quality of a decision does not simply depend on whether or

not the best option is chosen by more individuals than any of the

other options. The size of the level of commitment is also

important. For example, in figure 1b when w~0:01 only a very

small 36% choose the best option, while 32% choose each of the

two poorer options. This is to be compared to w~0:6 where 96%

choose the best option. Thus the quality of decision can be defined

as a combination of (a) the proportion of individuals committed to

the better option and (b) the proportion of cases where this option

is selected over the less favorable one. This latter quantity depends

on initial conditions and/or random factors and cannot be

calculated from eqs.(1) – (2) alone. We therefore use our Monte

Carlo simulation to calculate (b) for n~2,3 and 4 (see materials

and methods).

Figure 2a presents the proportion of individuals x1=
P

jxj

� �
selecting the higher quality option, averaged over many Monte

Carlo realizations. This plot corresponds to the upper branch of

Figure 1a. Figure 2b provides the number of cases in which the

higher quality option is preferred over the total number of Monte

Carlo realizations (i.e., cases in which x1wx2,x3,::: at steady state).

Figure 2c multiplies these curves pointwise to provide an overall

measure of how quality of decision depends on flow rate w for

different numbers of options. In all cases, the strongest bias to the

highest quality option occurs near to the bifurcation point, w�,
where the system goes from one to more than one steady state.

This result can be contrasted to Condorcet’s theorem, which states

that large groups are able to make better decisions [25–27]. More

Figure 1. Bifurcation diagrams of x1=
Pn

j~1 xj corresponding to the steady state level of commitment for the better option (eqs. (3) –
(6))with respect to the flow rate w. (a) case n~2, (b) n~3 and (c) n~4. Full and dashed lines correspond to stable and unstable solutions
respectively. The stability has been checked numerically by integrating the full eqs. (1) – (2). The arrows indicate the evolution of initial conditions on
the two sides of a threshold value corresponding to the intermediate unstable state. Parameter values are 1~0:11, ~0:1, m~2 and n~0:01s{1 .
doi:10.1371/journal.pone.0018901.g001
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recently the effect of the presence of an expert has also been

considered [28]. Here we have shown that the quality of decision is

not just a matter of population size (in our model captured by the

flow parameter w) but is affected by the strength of the positive

feedbacks along with the number of options presented.

Decision-making is often associated with a speed-accuracy

trade-off, where a more accurate decision requires more time to

reach [12,29,30]. Recent theoretical and experimental work has

shown that such a tradeoff does not always hold. For example,

Katsikopoulos et al. [7] show using computer simulations that a

‘take the best’ heuristic method can make better decisions using

less computational effort without suffering an accuracy loss.

Predator avoidance experiments on fish have shown that larger

groups make decisions more rapidly and more accurately than

smaller groups or solitary fish [31]. To address this question in our

system, we consider the rate at which a decision is reached as we

increase the flow parameter w. This rate is determined by the

largest eigenvalue, which we will denote l, for the steady state

corresponding to the better option. The time taken to reach a

decision is proportional to the inverse of the magnitude of l (l is

always negative). As we increase w, the magnitude of l increases

and thus the time to reach a decision decreases. Conversely,

reducing the flow parameter to a level below w� (i.e. the point at

which accuracy is maximized) will lead to a slower, as well as a less

accurate decision. In short, there is no trade-off between speed and

accuracy here, rather there is an optimal parameter where both

are maximised.

Our results hold for any number of options. Figure 3a gives this

quality measure for a complete parameter scan of the model for

multiple options and a full range of flows w. Again, the maximal

decision quality occurs near the bifurcation point, w�. The position

of the bifurcation point increases linearly with the number of

options. For m~3 (see Figure 3b), the situation resembles to our

canonical case m~2 except that the transition from one to more

than one steady state is sharper, which is not very surprising as m
can be viewed as a parameter controlling the accuracy of the

decision. Our results appear robust provided mw1. This is exactly

the conditions for a quorum-like response in the positive feedback.

The exception, where there is no quorum-like response, is m~1
(figure 3c) and we discuss this case further below.

Until now, we assumed that the best option was slightly higher

in its quality than the other one ( 1~0:11, i=1~0:1). In Figure 4

we show the combined effect of an increasing option quality and

an increasing flow rate on the quality of decision for three different

numbers of options. The region where the quality of decision is

near maximal becomes wider as 1 increases. On the other hand

when the number of options increases the maximum is shifted

towards higher values of the flow rate and of the quality of the

better option.

For any given number of options the decision-making outcome

is different. In particular, the flow level at which the highest quality

option is chosen most often depends on this particular number. In

a situation where it is optimal to pick the highest quality option

irrespective of initial conditions, then we can see that a value of w�

Figure 2. Quantitative view of the quality of decision as a function of the flow rate w as obtained by Monte Carlo simulations. (a)
Mean level of commitment for the better option 1 , (b) Probability of selection of the better option and (c) Quality of decision for three different
numbers of options. Parameter values as in Fig. 1, number of realizations is 5000.
doi:10.1371/journal.pone.0018901.g002

Figure 3. Decision quality as a function of the flow rate of individuals w and of the number of options n as obtained by Monte Carlo
simulations. (a) case m~2, (b) m~3 and (c) m~1. Other parameter values as in Fig. 1, number of realizations is 5000.
doi:10.1371/journal.pone.0018901.g003
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which is optimal for choosing between, for example, two options is

not optimized for choosing between three or more options.

Likewise, a flow level which might make good decisions between

four options can perform poorly when faced with a decision

between two. This result is highly counterintuitve, since we would

not expect a system to make a worse decision when confronted

with a smaller number of options. Indeed, it is here that we can

talk about a system behaving irrationally. Alternative dummy

choices adjust the outcome of choice experiments, and in such a

way that an obviously better option is chosen less often.

Experiments testing the effect of additional choices in decision-

making do not start from the premise that one option is always

optimal, independent of initial conditions. For house hunting ants

or foraging slime mould there is a cost to be paid in switching

between options if there is already an established commitment for

one particular option. Indeed, when offered two options of similar

although not identical quality over multiple trials, ants and slime

mould do not aggregate at the same option in every trial [1,2].

Instead they choose the one which elicits the greatest initial build-

up of commitment [16,32]. Our model shows that introducing a

third option in such situations will always change the expressed

preferences. In figure 2 we introduce a third option of equal

quality to the second, but the results are not contingent on these

two options being the same. Rather, the introduction of additional

options always has the potential to reveal ‘irrationality’ in

experimental situations.

Species differences can, through our model, explain differences

in the outcome of rationality experiments. Positive feedback is very

strong in slime moulds, suggesting mw1. Tube connections

between food sources build rapidly, the slime mould will usually

choose only one of many identical food sources [16] and the tubes

remain stable even when conditions change [33]. This may

explain why the choice patterns of slime mould depend so strongly

on the number of options presented. The situation is reversed for

ants. Here tandem running provides a weak positive feedback and

when the number of choices is increased the ants preferences

remain stable [2]. Roughly speaking, weak feedback corresponds

to setting m~1, although see Pratt et al. [14,34] for a more

detailed model of Temnotorax emigration. Figure 3c shows that the

parameter scan looks very different than m~2. Here, there is only

one solution to equations (1) – (2). This corresponds to the better

option being selected 100% of the cases, but with a relatively low

level of commitment. In this case, the proportion of commitment

increases linearly with the flux for a particular number of options,

and decreases again smoothly with the number of options for a

particular value of the flux.

Many of the standard models of decision-making assume that

choice is a linear process [8,35]. For example, Busemeyer and

Townsend use a linear stochastic difference equation for the

change of the preference state in the course of time [4]. This

equation (cf. eq. (7) of ref. [4]) features in turn quantities indicating

the propensity to choose the different options which bear some

resemblance with our choice functions fi, eq.(2), the main

difference being the absence of cooperativity. In order to

reproduce violations of independence of irrelevant alternatives,

these models include updating rules in which comparison between

options influence the strength by which various options are

preferred. Here, we have shown that IIA violating outcomes can

arise naturally from the underlying dynamics without varying

comparison schemes, provided we have a non-linear choice

function with mw1. There is strong experimental evidence in

amoeba and social insects that such non-linear feedbacks are

present, and they may well be present in behavioral science and

particularly in psychology as well. Indeed, in terms of our criteria

(a) and (b) for the quality of decision-making (cf our earlier

comments in connection with figure 2), mw1 is superior to m~1
and could thus be expected to be a widely used heuristic.

Models of decision-making in the visual cortex and other areas

of the brain usually assume feedbacks between groups of neurons,

with each group accumulating evidence for a particular option

[36,37]. There are strong parallels between the positive feedback

system described by Deneubourg’s and other models of social

insect decision-making and these neuronal models, although in the

latter case the focus is usually on cross-inhibition [38]. As a

consequence some functions of the human brain are likely to be

subject to the same constraints resulting from the model presented

here. In particular, if we change the number of options in a

decision-making situation, we expect the corresponding stability of

steady states to change and as a result choice preferences will also

change. This is exactly what is observed in choice experiments on

individual humans and animals [3,39,40]. So called "irrationality"

could again be a here a consequence of the mechanisms employed

within the brain. More work is certainly needed to test this idea.

One of the interests of our approach has been to raise the issue of

rationality in the context of cellular and population biology where

quantitative experiments can be carried out in detail and modeling

and simulation approaches calibrated by experimental data can be

developed.

In summary, we have shown here that concepts such as

increasing accuracy with group size, speed-accuracy tradeoffs and

"irrational" decisions are strongly correlated to the coexistence of

multiple stable steady states. In the context of systems based on

Figure 4. Decision quality as a function of the flow rate of individuals w and of the quality of the better option 1 ( i=1~1) as
obtained by Monte Carlo simulations. (a) case n~2, (b) n~4 and (c) n~8. Other parameter values as in Fig. 1, number of realizations is 5000.
doi:10.1371/journal.pone.0018901.g004
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positive feedback, "rationality" and "irrationality" appear in some

respects to be terms for describing the possibility that decisions can

have different outcomes dependent on initial conditions. In

particular, "irrationality" can be created in such systems simply

by conducting an experiment in which the positive feedback is

sufficiently high to generate multiple steady states. The question is

not then whether a system is "irrational" or not, but rather why it

uses strong positive feedback?

Materials and Methods

We study the above model in two ways, both as a system of

differential equations as defined by eqs.(1) – (2) and as a Monte

Carlo simulation. In the latter case, decision-making is modeled as

a stochastic process of transitions towards states whose probabil-

ities, given by fi are being continuously updated as the process is

advancing in time. More specifically, the simulation starts with the

number of individuals on each option equal to zero. The first

decision concerns the individuals to choose or not to choose, given

by a probability equal to w. The second decision is the actual

choice of one option, governed by eq.(2). During time evolution,

when an individual chooses an option i, it reinforces the

probability fi to choose in the future that option but at the same

time there is a fixed rate at which individuals abandon the option

(parameter n). The process is repeated for a number of steps

sufficient to reach the stationary state.

We focus on the situation in which one option is better than all

the other ones considered to be of equal quality ( iw j=i~ ). The

mean field equations (1) – (2) yield then in the steady state explicit

expressions for the xi’s. One has successively,

2

1
2 n{1ð Þz1

� �
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being understood that in eqs.(5) – (6) the population splits into two

groups choosing respectively j options such that x2~ � � �~xjz1~x2

and n{j{1 options such that xjz2~ � � �~xn~1=x2, the better

option 1 still being chosen by x1.

A typical way to summarize the behavior of the solutions of

eqs.(3) – (6) is to draw bifurcation diagrams as in Fig. 1 in which

the value of the relevant variable at the steady state is plotted

against one of the parameters present in the problem.
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