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Abstract

Background: Humans and other animals change the way they perceive the world due to experience. This process has been
labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process
sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently
analyzed.

Methodology/Principal Findings: We studied the neural mechanisms of human perceptual learning by combining
electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during
training in a visual search task. All participants improved their perceptual performance as reflected by an increase in
sensitivity (d’) and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing
amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc
and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be
reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of
oscillatory brain activity in gamma (30–60 Hz) and alpha (8–14 Hz) frequency bands may suggest the existence of two
phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.

Conclusions/Significance: We conclude that there are reorganizations in several neural processes that contribute differently
to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby
perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.
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Introduction

The human brain can change its activity in order to learn novel

sensory configurations thus ensuring adaptive behavior throughout

life. This kind of experience-dependent modification in perception

has been labeled perceptual learning [1], and its neural

mechanisms have been the object of increasing interest and

research. In the visual modality, one possible approach to study

the neural basis of human perceptual learning is based on scalp

recordings of event-related potentials (ERPs). For instance,

training-dependent perceptual improvements during Vernier-like

stimuli discrimination are accompanied by increases in scalp

global field potential at different times after stimulus presentation

[2]. Amplitude modulations have also been found in both early

and late components of the visual ERP for different forms of

perceptual training: for example, orientation discrimination of

simple or complex stimuli yielded N1 and N2 decrements over

posterior sites, together with P2 or P3 increments distributed more

centro-parietally [3]. Although the absence of modifications in the

P1 component is usually interpreted as a top-down modulation of

stimulus processing at early stages of the neural pathway [4,5], a

recent study carefully designed to obtain C1 -the earliest

component of the visual ERP- after training in a texture

discrimination, found stronger amplitude for trained when

compared to not-trained subjects. This suggests reorganization of

neural activity at the level of early visual cortices such as V1 [6].

Despite the wealth of knowledge such studies have produced,

electrophysiological studies of human perceptual learning have

usually focused on the difference in neural activity between trained

and untrained conditions, or with how neural responses to stimuli

change after a given practice period. As informative as this

approach can be regarding the final consequences of expertise on

brain activity, it cannot reveal how neural activity is dynamically

reorganized to improve perceptual performance. In order to do so

it is necessary to track changes in brain activity that follow

improvement in perceptual performance throughout the entire

training process.

On the other hand, a rapidly growing approach is the spectral

analysis of the EEG signal, by which oscillatory activity at different

frequency bands can be described in terms of phase and

amplitude. High frequency oscillatory activity in the gamma band

(.40 Hz) has been found to be critical for the temporal
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organization of neural activity in terms of spike synchrony and cell

assembly formation [7–9]. However, while its involvement in

several cognitively relevant conditions such as visual grouping

[10,11], object representation [12], attention [13], and short term

memory [14], among others [15], is well documented, the role of

neural oscillations in human perceptual learning remains unknown

and unexplored.

Here we undertake the study of the neural mechanisms of

human perceptual learning during the actual training process of

subjects practicing a visual search task (Figure 1). Although

perceptual learning has been studied mainly by training subjects to

discriminate basic features of fine-grained stimuli [16], a

considerable number of investigations [4,5,17–27] have used

visual search tasks. The increase in ecological validity and the

potential for revealing interactions between different levels of

hierarchical processing suggest that such paradigm is well suited

for elucidating the mechanisms of perceptual learning in the

human brain. In order to follow dynamical changes in brain

activity, we combined psychophysical measures and electrophys-

iological recordings (ERPs and oscillatory activity) during the

entire processes.

Our results indicate that there is stimulus (specific) and task

(unspecific) related neural activity reorganization that can be

observed in amplitude changes of the N2pc and P3 ERP

components, which follow a similar temporal profile as perceptual

performance. On the other hand, changes in the amplitude of

oscillatory activity in the gamma and alpha bands of the EEG

followed a ‘‘bell’’ and ‘‘U’’ shaped pattern respectively, suggesting

that the acquisition process is composed by at least two phases with

distinctive optimization mechanisms for stimulus processing.

Materials and Methods

Ethics Statement
The Bioethical Committee of Research of the Pontificia

Universidad Católica de Chile approved all experimental

procedures. Research was conducted according to the principles

expressed in the Declaration of Helsinki and the experiments were

undertaken with the understanding and written consent of each

participant. All experiments were performed at the Cognitive

Neuroscience Laboratory of the Psychiatry Department of the

University.

Participants
Ten healthy human subjects (four females, six males, age range

22–35) participated voluntarily in the study. All subjects were

right-handed and had normal or corrected-to-normal vision.

Participants were trained in a visual search task during five sessions

in five consecutive days. Each training session was also an EEG

recording session and was composed of eight blocks of 150 trials.

Each block lasted approximately 8 minutes. There was a five

minute resting period between each block and a longer one of 15

minutes between the fourth and fifth block. Each subject was

therefore exposed to 6000 trials during a training period of five

consecutive days.

Task
The visual search task used here is a modification of one used by

Sigman and Gilbert [23]. All recording/training sessions took

place in a dimly illuminated silent room. Stimuli were presented

on a computer monitor with a 100 Hz refresh rate placed 57 cm

Figure 1. Schematic presentation of the task and electrode coverage over the scalp. The left portion of the figure depicts the visual search
task’s main sequence of events. At the beginning of each block a fixation cross was presented during 1000 ms, then S1 (target present) or S2 (target
absent) are presented pseudo-randomly for 300 ms. Subjects then had 1200, 1500 or 1800 ms to respond by pressing either the left or right button
of a mouse if the target was present or absent from the search array respectively. This was followed by a random duration ITI that could be 900, 1200
or 1500 ms long. The bottom left panel depicts an example of the target used during the control session. The right portion of the figure shows the
electrode sites spanning frontal, central, temporal, parietal and occipital areas and the identified ROIs for ERPs and neural oscillatory activity analysis.
doi:10.1371/journal.pone.0019221.g001
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in front of the subject’s eyes. Each trial consisted in the

presentation of a 300 ms search array including (S1) or not

including (S2) a target, followed by a variable inter-trial interval

(ITI) of 900, 1200 or 1500 ms (Figure 1A). Subjects were required

to press the left or right button of a mouse in trials where they did

or did not find the target respectively (two-alternative forced

choice). The array subtended 4.2u64.2u and consisted of 24

equilateral triangles and a central fixation cross. Triangles were

279 long and had a separation of 549 between their centers. The

target triangle was defined that which presented one of the four

possible orthogonal positions of their basis, and held constant

across all sessions and subjects. In contrast, distractor triangles

could have any of the remaining three orientations. The target was

randomly presented in 50% of the trials at any of the 24 possible

locations. However, since the stimuli array can be divided into two

main visual eccentricities (inner and outer), 25% of the trials the

target was forced to appear at one of the two possible

eccentricities. Target-absent search arrays were presented in the

remaining 50% of the trials. We used black triangles on a gray

background in order to minimize the formation of afterimages due

to the offset of a high-contrast image. Stimuli presentation and

behavioral response acquisition were controlled by Presentation

Package (Neurobehavioral System, Inc.). After an explanation of

the task, subjects were presented with an example of both types of

arrays, namely S1 and S2 and the target orientation was indicated.

All subjects were instructed to respond as fast as possible, to reduce

blinking and avoid eye movements during execution of the task. In

order to cancel lateralized motor-related neural activity and the

development of a specific neuro-motor training of one hand over

the other, the response hand was alternated between successive

blocks.

Electrophysiological data
The EEG was recorded from 80 non-polarizable Ag/AgCl

electrodes mounted on an elastic cap (Quick-Cap, Compumedics

Neuroscan Inc.) spanning bilateral frontal, central, temporal,

parietal and occipital positions as shown in Figure 1B. All sites

were recorded respect to a CPZ reference electrode (here

denoted as ZP2) and re-referenced off-line either to the algebraic

average of the left and right mastoids (M1, M2) for ERP

acquisition, or to an average of all electrodes for time-frequency

analysis. Blinking, vertical and horizontal eye movements were

monitored with three electrooculogram electrodes, two bellow

and above the left eye and one on the external canthus of the

right eye. Electrode impedance was kept bellow 10 KOhm and

all the recordings were performed in a Faraday cage to reduce

electromagnetic contamination. The EEG signal was acquired at

a sampling rate of 1000 Hz, amplified and band-pass filtered

between 1–200 Hz (NuAmps, Compumedics Neuroscan Inc.).

Trials containing excessive blinking or eye movements were

rejected, while other sources of signal contamination, such as

myographic activity were corrected using ICA decomposition

[28] and visual inspection of the data. ERPs were obtained for

each condition and type of behavioral response (see bellow) by

averaging over trials for each session and low-pass filtered at

30 Hz using MATLAB (Mathworks, Natick, MA, USA) toolbox

EEGLAB [28]. ERP waves or components were identified on the

basis of their polarity, latency and distinctive topographical

properties. All ERPs were corrected respect to a 2300 to

250 ms pre-stimulus baseline and the amplitude of each

component or wave was calculated as the mean potential in

the following time windows (ms): P1, 75-135; N1, 80-180; N2pc,

200-350; P3, 320-550. The N2pc wave, which has been

consistently shown to be involved in visual search tasks, was

obtained as the difference between posterior electrodes ipsi and

contralateral to target position in the search array [29,30].

Oscillatory brain activity was analyzed by means of a time-

frequency (TF) representation using a Morlet wavelet transform of

the signal obtained from each single trial:

s(t) : E(t, f 0)~w(t, f 0) � s(t 2̂)v, ð1Þ

where time-varying energy E(t, f 0) of signal s(t) in a frequency

around f 0 band is the result of convolving its square norm with a

complex wavelet w (t, f 0). The wavelet family was defined with a

ratio of f0/sf = 7 ranging from 2 to 90 Hz. TF-representations

acquired in this way were averaged across trials according to each

condition and divided into four frequency bands, namely: theta (4–

8 Hz), alpha (8–14 Hz), beta (20–30 Hz) and gamma (30–60 Hz).

The mean power for each frequency band was normalized as

amplitude z-scores relative to the baseline (2300 to 250 ms): in

order to present brain oscillatory activity as power variations

(activations or deactivations) related to stimulus presentation.

z�score (Pj)~(Pj�mj)=sj, ð2Þ

with Pj, m j and s j, representing power, mean and standard

deviation of electrode J, respectively. TF-analysis was performed

with the software package for electrophysiological analysis Elan-

Pack, developed at INSERM U821 (http://u821.lyon.inserm.fr/).

Psychophysical assessment
We used signal detection theory indexes applied to psycho-

physics to measure the perceptual learning process. All behavioral

data analysis was performed using custom designed routines in

MATLAB. Responses were classified in four types: yes to S1 (hit),

no to S1 (miss), yes to S2 (false alarm) and no to S2 (correct

rejection). Hit and false alarm rates were calculated as:

H = P(‘‘yes’’/S1) and FA = P(‘‘yes’’/S2). In order to assess

perceptual improvement in visual search performance, the

sensitivity index to the target was measured as:

d 0~z(H){z(FA), ð3Þ

where z(H) and z(FA) correspond to the inverse of the normal

distribution transform of H and FA respectively. Values of H = 1

and FA = 0 were corrected to H = 0.99 and FA = 0.01 to avoid

infinite values of d’.

With the purpose of measuring bias as the tendency to respond

‘‘yes’’, a criterion index was obtained as:

c~�0:5 � ½z(H)zz(FA)�: ð4Þ

In this manner, if FA is equal to the miss rate, c = 0, if FA is

higher or lower than the miss rate, c has negative or positive values

respectively. Reaction times (RT) were computed as the time

between search array onset and response execution.

Statistical analysis
Because we were interested in analyzing changes related to the

actual learning-acquisition process, a repeated-measures ANOVA

was used to analyze the effect of training as a five-level factor
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(training session) on dependent variables: d’, RT, c, ERP-wave

amplitude and oscillatory activity band amplitude.

Subject-level, Wilcoxon signed-rank test was performed to

identify significant increases of energy in the above-mentioned

frequency bands of oscillatory activity, and false discovery rate

(FDR) was used to control for multiple comparisons [31]. Group

level, paired samples t-student test was used: 1) To test the

significance of the difference-wave for obtaining N2pc; 2) To

decide whether to use absolute or relative values for P3 amplitude;

3) As planned pair-wise comparisons between training sessions

where we expected gradual change in performance indexes; and 4)

To examine if changing target orientation during the control session

had an effect on psychophysical performance and brain activity.

Finally, Pearson correlation coefficient was obtained in order to

test the level of dependency between psychophysical and

electrophysiological data. Due to the binary nature of the task

(target detected or missed) it is not possible to extract a trial-by-

trial correlation leading to a block-by-block design for ERPs-

psychophysics and a session-by-session design for oscillatory

activity-psychophysics. All of these procedures were implemented

using the statistical computational package SPSS Statistics (IBMH).

Results

Psychophysical data
Psychophysical results confirmed that the improvement of

subject’s performance in the task was the result of perceptual

learning. We observed a significant effect of training on sensitivity

index d’ (F4,45 = 50.861, P,0.001; Figure 2A) with planned pair-

wise comparisons, revealing a steady increase of sensitivity,

particularly between first-second (t9 = 25.224, P,0.01), second-

third (t9 = 25.544, P,0.001) and third-fourth (t9 = 26.586,

P,0.001) training session. This trend did not continue between

the fourth and last training session (t9 = 1.413, P = 0.191)

suggesting that subjects reached a performance plateau. Impor-

tantly, we found that performance improvement was specific for

the trained stimuli as shown by the significant decrease in

sensitivity when subjects were tested using a different target

orientation in a subsequent control session (t9 = 6.403, P,0.001).

Sensitivity improvement did not occur at the expense of the speed

of response: there was a significant effect of training over mean RT

(F4,45 = 95.495, P,0.001; Figure 2B), with responses getting faster

along sessions. Planned pair-wise comparisons indicated a

significant steady decrease in mean RT, between first-second

(t9 = 4.944, P,0.01), second-third (t9 = 7.864, P,0.001), and third-

fourth (t9 = 5.722, P,0.001), but not between the fourth and last

training session (t9 = 20.39, P = 0.706). As with sensitivity, mean

RT changes were specific for the trained orientation and did not

transfer to other targets as shown by the slower responses obtained

during the control session (t9 = 27.375, P,0.001). Sensitivity (d’)

and response speed (RT) measures showed a negative correlation

(R = 20.93, P,0.001; Figure 2C), allowing us to use both

measures jointly as an indication of perceptual learning.

Figure 2. Psychophysical assessment of perceptual learning. A) Increase of mean sensitivity along training. B) Decrease of mean RT along
training. C) Block-level correlation showing a dependence between sensitivity and RT. D) Response criterion along training. All significant changes
between sessions are indicated by asterisks. Control sessions are indicated by a red marker.
doi:10.1371/journal.pone.0019221.g002
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Despite the fact that we did not find an effect of training on

response criterion (F4,45 = 0.615, P = 0.655; Figure 2D), we did

find a drop in c when comparing first and last training session

(t9 = 3.832, P,0.005). Nevertheless, no changes were observed in

false alarms (F4,45 = 0.794, P = 0.537; Figure S1) suggesting that

the improvement in perceptual performance is most likely not

related to extra-perceptual factors (e.g. decision-making or

response strategy). Moreover, in contrast with sensitivity and

RT, we did not find a clear trend among subjects for this index

(Figure S1).

Electrophysiological data: ERP waves
Visual ERPs to search array presentation were obtained for

each subject and condition (hit, correct-rejection, miss). Because

perceptual learning without transfer to novel stimuli has

traditionally been interpreted as involving changes in early visual

areas [1,5,16], we initially studied the effect of training on early

components of the visual evoked response during hits. P1 and N1

waves were therefore identified over occipital electrodes peaking

between 75–135 and 80–180 ms after stimulus presentation

respectively. However, we did not find significant effect of training

either over P1 (F4,45 = 1.821, P = 0.141) or N1 (F4,45 = 1.118,

P = 0.36) amplitude.

Late ERP waves P3 and N2pc were processed in a slightly

different fashion due to the high sensitivity they show to target

presence:

A P3b-like (from now on P3 for simplicity) component was

identified by a rather distributed scalp topography, which

appeared more clearly over central and parietal sites, showing

no significant differences between target and no-target trials

(supplementary Figure S2). We analyzed the absolute value of P3

amplitude throughout the perceptual learning process, and found

a significant effect of training as measured over left (F4,45 = 123.42,

P,0.001; Figure 3A), right (F4,45 = 39.631, P,0.001; Figure 3B)

and central (F4,45 = 105.841, P,0.001; Figure 3C) posterior

electrodes. Planned pair-wise comparisons revealed that this main

effect could be described as a tendency of P3 amplitude to increase

over the course of learning. More specifically, in left electrodes, the

amplitude increment was significant between first-second

(t9 = 26.74, P,0.001) and fourth-fifth (t9 = 213.185, P,0.001)

training sessions. In right-hemisphere electrodes, significant

differences were found between sessions second-third

(t9 = 28.068, P,0.001), third-fourth (t9 = 24.893, P,0.001) and

fourth-fifth (t9 = 24.519, P,0.01). Finally, in the case of central

electrodes, significant differences were found between sessions

first-second (t9 = 20.2638, P,0.05) and fourth-fifth (t9 = 210.392,

P,0.001). In contrast to behavioral indexes, however, the

increment in P3 amplitude was not specific for target orientation

as revealed by the absence of significant differences between the

last and control sessions, where target orientation had been

modified (left: t9 = 20.321, P = 0.756; right: t9 = 0.369, P = 0.721;

and central: t9 = 1.985, P = 0.078).

The N2pc component has been widely involved in visual search

tasks such as the one used in the present study, and has been

targeted as a neurophysiological marker for selective processing of

stimuli that are embedded in sets of distractors [29,30]. However,

despite the fact that visual search tasks have been frequently used

to explore visual perceptual learning [4,5,17–27], there have not

been, to our knowledge, any reports analyzing the relationship

between N2pc and this process. In order to isolate the N2pc

component, we obtained the difference wave between ipsi and

contralateral-to-target potentials (see Methods). We found a

significant difference waveform in the 200 to 350 ms post-stimulus

time-window, for all sessions in both left and right posterior

electrodes (lower P value,0.05; supplementary Figure S3).

There was a clear effect of training on N2pc amplitude spanning

left (F4,45 = 107.629, P,0.001; Figure 4A) and right hemisphere

(F4,45 = 68.98, P,0.001; Figure 4C) electrodes. Planned pair-wise

comparisons showed a progressive amplitude increment of this

component. In the case of the left hemisphere, significant

differences were found between first-second (t9 = 22.72,

P,0.05), second-third (t9 = 24.427, P,0.005), third-fourth

(t9 = 25.995, P,0.001), but not fourth-fifth (t9 = 0.92, P = 0.381)

training sessions, while for right sites the significant differences

were found between second-third (t9 = 28.319, P,0.001), third-

fourth (t9 = 26.085, P,0.001), but not for first-second

(t9 = 20.667, P = 0.522), nor forth-fifth (t9 = 20.452, P = 0.662)

sessions. Importantly, N2pc amplitude increase was found to be

highly specific for the trained target orientation as evidenced by

the significant drop in amplitude during the control session

(t9 = 16.036, P,0.001; t9 = 9.45, P,0.001, for left and right sites

respectively).

Electrophysiological data: Time-frequency analysis
TF-representations were obtained trial-by-trial for each condi-

tion, normalized by subject and then averaged across epochs to

construct theta (4–6 Hz), alpha (8–14 Hz), beta (20–30 Hz) and

gamma (30–60 Hz) profiles of band-limited power variations.

From a subject-level statistics point of view, there were significant

changes in power relative to baseline activity in the alpha and

gamma, but not in the theta or beta frequency bands for all

subjects and training sessions in all the regions of interest (ROIs,

See Methods). Accordingly, in the following we limit our analysis

to the former frequency ranges only.

At the group-level, we found a significant effect of training on

amplitude of gamma band activity (GBA, Figure 5) over posterior

left (F4,45 = 515.851, P,0.01), central (F4,45 = 248.533, P,0.01)

and right (F4,45 = 612.081, P,0.01) electrodes. Planned pair-wise

comparisons showed a significant amplitude increment between

first-second and second-third training sessions, and a significant

drop between third-fourth and fourth-fifth sessions over all

analyzed regions (all P,0.01), revealing a complex bell-shaped

amplitude profile of GBA throughout the learning process. We did

not find significant GBA amplitude differences between the last

and control sessions for any of the ROIs (lowest P value .0,08).

The second main group-level result concerning oscillatory brain

activity was the significant effect of training on the amplitude of

alpha band activity (ABA; Figure 6) over posterior left

(F4,45 = 40174.531, P,0.01), central (F4,45 = 60133.456, P,0.01)

and right (F4,45 = 38796.946, P,0.01) electrodes. Planned pair-

wise comparisons showed a significant amplitude decrement

between first-second (P,0.005) and second-third (P,0.01) train-

ing sessions, and a significant increment between third-fourth

(P,0.01) and fourth-fifth (P,0.001) sessions in all the analyzed

regions (P,0.05). Compared to the case of GBA, ABA also

showed a complex amplitude modulation pattern along training,

although this time as a mirror U-shaped profile. We did not

observe significant amplitude differences between the last and

control sessions for none of the assessed ROIs for ABA either.

Interestingly, we found a strong inverse correlation (e.g. ROI-2:

R = 20.993, P,0.001) between GBA and ABA amplitudes

(supplementary Figure S4).

Relationship between neural activity reorganizations and
perceptual learning

In order to analyze the level of dependency between perceptual

learning and observed changes in brain activity, we calculated the
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Pearson correlation coefficient between both sensitivity and mean

RT, versus neural activity measures (ERP wave amplitude and

oscillatory activity).

We found a significant positive correlation between P3

amplitude and sensitivity (Figure 7A) over left (R = 0.69,

P,0.001), central (R = 0.68, P,0.001) and right (R = 0.5,

P,0.001) electrodes. Furthermore, there was a significant negative

correlation between P3 amplitude and mean RT (Figure 7B) over

left (R = 20.75, P,0.001), central (R = 20.69, P,0.001) and right

(R = 20.56, P,0.001) electrodes. In the case of N2pc amplitude,

there was an even stronger positive correlation with sensitivity

(Figure 7C) over left (R = 0.807, P,0.001) and right (R = 0.828,

P,0.001) electrodes, and also a clear negative correlation with

mean RT (Figure 7D) over left (R = 20.822, P,0.001) and right

(R = 20.828, P,0.001) electrodes.

Summarizing, as sensitivity increased and mean RT decreased

throughout the training process we observed a clear trend of

increase in P3 and N2pc amplitudes. On the other hand, and as

was expected from the amplitude profiles of oscillatory neural

activity throughout training, we found no significant correlations

between either GBA or ABA amplitude and sensitivity or mean

RT.

Discussion

Taken together, the present results show that training in a visual

search task produces specific and measurable changes in neural

activity associated with the process of perceptual learning. It

seems, however, that the relation between perceptual learning and

changes in brain activity is not straightforward. Indeed, while

amplitude changes found in late components of the visual ERP

point to a reorganization of neural networks involved in target

detection and other context-related processes, modifications in

alpha and gamma band oscillatory activity indicate the presence of

two phases in learning acquisition. In other words, the observed

relationship between psychophysical and electrophysiological

results is inconsistent with a single neurophysiological process that

could account for perceptual learning, but rather suggests a more

complex scenario of dynamically interacting neural reorganiza-

tions. In the following we discuss the main results and propose a

neurophysiological model to account for our findings.

Our behavioral results confirm the occurrence of perceptual

learning in the visual search task as evidenced by an improvement

in sensitivity and a reduction in RT throughout training (see

Figure 2A,B). This improvement was found to be significant from

first to fourth, but not between fourth and fifth sessions, suggesting

that perceptual performance reached an asymptotic level towards

the end of training. When analyzing the subject’s response

criterion, on the other hand, we did not find a significant effect

of training as revealed by the ANOVA design, suggesting that the

training process did not modify the tendency of the subjects to

indicate the presence or absence of the target. However, an

apparent drop was observable in the overall pre-post comparison.

A possible explanation for this would be that, albeit minimally,

subjects increased FAs as they progressed through the task due to

increased confidence. However, as shown in the supplementary

Figure S1b, FAs maintained a constant level, thus ruling out that

subjects became more prone to signal the presence of the target.

Because c is calculated as the negative average of the z-scores of HR

and FA (see Eq. 4), this could explain the progressive but non-

significant drop of c seen in Figure 2a, given that HR

systematically increases with training (see supplementary Figure

S1a), while FAs stay unchanged. Finally, the behavioral improve-

ments we observed were specific for the trained target orientation

as can be seen from the drop in sensitivity and increase in RT

when testing with a non-trained orientation in the control session.

This is in agreement with results from the original version of this

visual search paradigm, whereby practice-related enhancements in

performance were shown to be specific for the trained object and

orientation [23].

Our ERP results show training-dependent changes in the

amplitude of ERP waves P3 and N2pc, but not for P1/N1. Such

lack of modulation in early components may seem in contradiction

with previous studies suggesting a link between low degree of

learning generalization of learned stimuli and changes in early

stages of the visual path. However, such studies have used fine-

grained stimuli, presented always at the same location and with the

relevant dimension consisting of a single basic feature, such as line

orientation or position. In contrast, we trained subjects to find a

simple shape in an array of distractors, a task that is unlikely to

produce modifications in early visual areas because of the small

receptive fields of its neurons [32]. Additionally, because targets

could appear at different locations within the array it is possible

that the resulting potentials cancelled out in the averages. Finally,

and in agreement with fMRI studies of perceptual learning [33],

triangles orientation may have been perceptually easy to

determine, therefore leading to little or no reorganization in early

stages of visual processing yet inducing more pronounced changes

in later ones [5].

Although practice had a consistent effect on P3 amplitude, it

turned out to be non-specific for the trained target, as revealed by

the results of the control session (see Figure 3). This change cannot

be attributed to habituation [34] or attention [35], since, on one

hand, repetitive stimuli presentation leads to a decrease rather

than an increase of P3 amplitude, while, on the other, an increase

in RTs as the one observed during the control session (Figure 2b)

would be incompatible with a general target-independent

attentional facilitation. Previous studies have found training-

dependent increments in the amplitude of the P3 wave, but they

did not evaluate the level of specificity by testing subjects’

performance with untrained stimuli [3]. If the amplitude

increment of P3 is correlated with performance, but not

specifically related to the trained stimulus, the underlying changes

in neural activity could be responsible for some other relevant

aspect of task execution. We propose that modulation in P3 could

reflect an unspecific task- or process-based learning [36] that is

boosting performance through diffuse reinforcement signals [37].

This kind of task-based learning interpretation for P3 amplitude

modulation is consistent with early (and most widely accepted)

theories for the functional role of the P3 wave, according to which

the rather heterogeneous cognitive conditions that affect P3

amplitude can be grouped under the concept of context update

[38]. This would imply a process-based learning that is enhancing

performance through the optimization of activity related to

context update (i.e. updating of information regarding stimulus

and general environmental conditions), but not to the specific

identity of the target. Optimization of unspecific task-based

processes is also consistent with previous behavioral evidence

Figure 3. Effect of training over mean P3 amplitude. Grand average ERPs obtained from session 1, 3 and 5 (sessions 2 and 4 are omitted for
clarity) and from electrodes: A) LP2, left parietal; B) RP2, right parietal; C) ZP3, central mid-line. D) Average topographic distribution of scalp potential
peak in the P3 time window for the corresponding sessions.
doi:10.1371/journal.pone.0019221.g003
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[39,40] and recent models of guided search comprising not only

selective, but also non-selective pathways for target identification

depending on its context [41].

The present results show for the first time that sustained practice

in a visual search task leads to amplitude increments in the N2pc

wave that are strongly correlated with psychophysical performance

and highly specific for trained stimulus orientation. N2pc is

involved in selective processing of targets embedded in complex

visual arrays [29,30]. Accordingly, training-dependent amplitude

increments of this component could represent a neurophysiolog-

ical correlate of an improvement in this capability. The specificity

level exhibited by this activity modification, however, argues

against a purely attentional-related effect and suggests that

performance improvements should be at least partially dependent

upon visual cortices capable of responding to specific stimuli

features (e.g. orientation, shape). Changes in N2pc amplitude

could therefore be the result of the dynamical interaction between

sensory cortices and upstream attentional networks, accounting

both for specificity and for classical N2pc results in visual search

tasks. Indeed, Ahissar and Hochstein [4,5] have proposed a

mechanism for such interaction in which attention constrains the

stimuli attributes upon which learning takes place. Furthermore, to

account for performance improvements outside the focus of

attention [42], the original model was extended by proposing that

perceptual learning occurs thanks to the coincidence of diffusive

reinforcement signals related to task execution (also in agreement

with our P3 results) and signals induced by target presentation

[43]. In this context, attention would work as a gate mechanism,

selecting which aspects of the task will be learned with a lower or

higher degree of generalization [37].

Our ERP results fit well in the framework provided by Ahissar

and Hochstein’s model, but suggest several relevant lines of

development. We propose that unspecific, context-related effects

of practice can be seen through a P3 amplitude increment, while

both unspecific and specific attention-related effects are associated

with changes in the N2pc profile. Indeed, Hopf and collaborators

have shown that the N2pc component has its origins in both parietal

and occipito-temporal cortices [44]. This would be compatible with

an interaction between fronto-parietal attentional networks [45]

and sensory cortices resulting in attentional re-weighting that

encompasses an increase in the amount of attention paid to

perceptual dimensions and important features, and/or a withdrawal

of attention from irrelevant aspects of the stimulus [46].

In addition to behavioral and ERP results, we found novel

evidence of the effects of sustained training on posterior oscillatory

brain activity for both gamma and alpha frequency bands.

Interestingly, their temporal profiles were not monotonic but

showed complex amplitude patterns better described as bell- and

U-shaped respectively. Previous investigations regarding human

perceptual learning and GBA have found a decrease in the case of

priming [47], and an increase in the case of associative [48] and

rapid perceptual learning [49]. However, these studies compared

GBA either pre- vs post-training or trained vs non-trained, without

assessing the entire course of learning acquisition. Moreover, such

studies did not focus on perceptual learning as the result of

extensive practice in a sensory task.

Figure 4. Effect of training over mean N2pc amplitude. A) Grand average ERPs contralateral-to-target and difference -waves (contra minus
ipsilateral) obtained from sessions 1, 3 and 5 and from electrode: A) LO2 left occipital; B) Average topographic distribution of scalp potential peakin
the N2pc time window for the corresponding sessions and for targets appearing at the right side of the array; C) RO2, right occipital; D) Same as in B
but for targets appearing at the left side of the array.
doi:10.1371/journal.pone.0019221.g004

Figure 5. Effect of training on mean GBA amplitude over ROI-2 or right hemisphere sites. The left side of the figure depicts TF charts
obtained for each of the five training sessions. The right side of the figure depicts, from top to bottom, the TF chart obtained for the control session,
head plot showing the approximate position of electrodes identified for ROI-2 and quantification of the amplitude profile along training (1-5) and
during control (6) session.
doi:10.1371/journal.pone.0019221.g005
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Figure 6. Effect of training on mean ABA amplitude over ROI-1 or left hemisphere sites. The left side of the figure depicts TF charts
obtained for each of the five training sessions. The right side of the figure depicts, from top to bottom, the TF chart obtained for the control session,
head plot showing the approximate position of electrodes identified for ROI-1 and quantification of the amplitude profile along training (1-5) and
during control (6) session.
doi:10.1371/journal.pone.0019221.g006

Figure 7. Relationship between ERP waves amplitude and perceptual learning. Top left panel shows the block-level correlation between
P3 amplitude and sensitivity. Top right panel shows the block-level correlation between P3 amplitude and RT. Bottom left panel shows the block-
level correlation between N2pc amplitude and sensitivity. Bottom right panel shows the block-level correlation between N2pc amplitude and RT.
doi:10.1371/journal.pone.0019221.g007
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We have also ruled out the possibility that there could be an

oculomotor explanation for our GBA results (see supplementary

Text S1 and supplementary Figure S5), as it has been recently

suggested to be the case of most scalp EEG studies [50]. Indeed,

we believe that GBA as the one measured here is a relevant

neurophysiological phenomena related to local and/or large-scale

neuronal synchrony and cell assembly conformation [7,8]. If brain

oscillations are related to neural assemblies formation by affecting

the probability of temporal coincidence of unitary spikes relative to

the phase of each oscillation cycle [9], then it is possible to link

training-dependent GBA amplitude modifications to changes in

the conformation of functional cell ensembles. This has long been

considered as one of the most probable neural mechanisms for

learning [51]. In the specific case of our paradigm, the progressive

increment of GBA from the first to the third training session could

reflect an increase in the strength and/or the number of synaptic

connections, promoting a better signal-to-noise ratio and therefore

improving perceptual performance. The following progressive

decrease in GBA, on the other hand, is compatible with a second

form of boosting target detection by means of an overall synaptic

downscalling leading to the establishment of a sparse code. Here,

only neurons with the most strong and/or selective response would

remain as part of the responsive cell assembly, thus increasing

coding efficiency. In this context, it is important to note that,

although this is the first report on the role of oscillatory neural

activity in perceptual learning, the finding of an increase-followed-

by-a-decrease pattern of amplitude in neural activity has been

previously found in fMRI studies that showed similar training

dependent modifications in V1 [52] and regions of the ventral

visual pathway [53]. Given the strong coupling between GBA and

BOLD signal [54,55], we believe the convergence between our

results regarding brain oscillatory activity and these previous fMRI

studies is quite significant.

Compared to GBA, ABA followed a mirror profile of

amplitude changes across training, dropping initially but then

increasing after the third session. Despite being the most

prominent EEG rhythm, the functional role of alpha is still

debated among the alternatives of cortical idling, inhibition or

active top-down control hypotheses [56,57]. For example,

regarding attentional orienting, a decrease in ABA has been

found over contralateral-to-shift parietal cortex [58], but also an

increase over parietal areas ipsilateral-to-shift when using a

behaviorally relevant no-shift condition as control [59]. A clearer

picture, however, may be drawn in the case of visual

discrimination, where it has been shown that higher levels of

pre-stimulus ABA correlates with lower performance in the task

[60]. Given the complexity of this rhythm, it is certainly possible

that ABA plays different roles depending on the task at hand [56].

In our study, subjects were trained to perform a visual search

that involved both attention and discrimination and we observed

an inverse correlation in the amplitude of ABA and GBA

throughout the process (supplementary Figure S3). Taking into

account the previous considerations regarding the putative roles of

GBA and ABA, this leads us to propose that the present results

may be revealing complementary properties of high neural

excitability-GBA and low neural excitability-ABA during learning

Figure 8. Neurophysiological model for visual perceptual learning. A) Schematic representation of the psychophysical results. B) Schematic
representation of ERPs results. C) Schematic representation of oscillatory neural activity results. D) Simplified cartoon representing neural activity
reorganizations proposed in the model as the neurophysiological basis of perceptual learning. Each panel represents putative neural networks placed
on different brain regions. Empty circles represent inactive neurons or neural populations, while filled circles represent active neurons or neural
populations. Arrows represent activity modulations among the different neural networks. For A, B and C, the blue lines mark the moment around
which perceptual performance becomes saturated.
doi:10.1371/journal.pone.0019221.g008
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acquisition. This would mean that while GBA is reflecting the

degree in which cells are spiking in a more packed way (thus

forming neural ensembles), ABA may be indicative of a similar,

but sparser organization of neural activity in time.

There is probably more than one mechanism [52,53] by which

different brain networks [27,33] reorganize their activity in order to

produce the characteristic psychophysical improvements of percep-

tual learning. The present results suggest that neural reorganization

due to perceptual learning is a multi-layered phenomenon involving

different mechanisms at different stages of acquisition. Figure 8

depicts a simplified model that aims at integrating previous accounts

of perceptual learning and the present results. In our model, both

specific and unspecific learning take place along the entire course of

training. The unspecific aspects are reflected in P3 amplitude, and

comprise the development of a cognitive configuration relative to

the task and its context, enhancing performance by facilitating non-

selective context updating processes [36,37,41]. Specific processes

are reflected in the N2pc amplitude, favoring detection and

identification of the trained target by means of a differential

weighting and re-weighting mechanism [46]. This would take place

at a mid-level stage of perceptual processing [52] where an

interaction between attentional neural networks and sensory

cortices can facilitate the selective treatment of the target among

distractors. Finally, oscillatory brain activity over posterior sites

would reflect underlying changes at an early-local network stage

[61]. This would enhance performance by augmenting the number

and/or strength of connections in a given cell ensemble during a

first phase and by selecting only the most strong and selective

neurons during the second one. Importantly, and in agreement with

our results, previous fMRI reports [52,53] also show that the second

phase starts around the same time that perceptual improvement

becomes asymptotic. Although the proposed orchestration of

neurophysiological processes is still probably an incomplete scheme

of experience-dependent changes in brain activity, we expect that

highlighting the dynamical modifications that take place during

training will suggest and open possible directions for future research.

Supporting Information

Figure S1 Single subject psychophysical profiles along
training. A) Hit rate, B) False alarm rate, C) Sensitivity or d’ D)

Response criterion or c.

(TIF)

Figure S2 Comparison of P3 amplitude between hit and
correct-rejection conditions. Grand-averaged ERPs obtained

from a left parietal site showing no significant differences in P3

amplitude for hit and omission trials in sessions: A) One, B) Two,

C) Three, D) Four, E) Five and F) Control.

(TIF)

Figure S3 N2pc calculation. Grand-averaged ERPs obtained

from an occipito-lateral site, specifically showing potentials

obtained from trials with ipsi (blue) and contralateral (red)

apparition of the target in sessions: A) One, B) Two, C) Three,

D) Four, E) Five and F) Six or ‘‘control’’. The N2pc component

amplitude is defined as the difference between posterior contra

and ipsilateral evoked potential (black).

(TIF)

Figure S4 Relationship between GBA and ABA ampli-
tude along training. There was a strong dependency between

GBA and ABA amplitude as revealed by a significant session-wise

negative correlation in A) ROI-1 (left sites), B) ROI-2 (right sites)

and C) ROI-3 (central sites).

(TIF)

Figure S5 Comparison between GBA amplitude ob-
tained in conditions hit and correct rejection. TF charts

constructed from the difference between hot- and correct-rejection

trials for training sessions and control. Original TF charts were

constructed from ROI-3 or central electrode sites.

(TIF)

Text S1

(DOC)
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