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Abstract

There is a paradox offered up by the cancer stem cell hypothesis. How are the mixed populations that are characteristic of
heterogeneous solid tumors maintained at constant proportion, given their high, and different, mitotic indices? In this
study, we evaluate a well-characterized mouse model of human basaloid tumors (induced by the oncogene Wnt1), which
comprise mixed populations of mammary epithelial cells resembling their normal basal and luminal counterparts. We show
that these cell types are substantially inter-dependent, since the MMTV LTR drives expression of Wnt1 ligand in luminal cells,
whereas the functional Wnt1-responsive receptor (Lrp5) is expressed by basal cells, and both molecules are necessary for
tumor growth. There is a robust tumor initiating activity (tumor stem cell) in the basal cell population, which is associated
with the ability to differentiate into luminal and basal cells, to regenerate the oncogenic paracrine signaling cell pair.
However, we found an additional tumor stem cell activity in the luminal cell population. Knowing that tumors depend upon
Wnt1-Lrp5, we hypothesized that this stem cell must express Lrp5, and found that indeed, all the stem cell activity could be
retrieved from the Lrp5-positive cell population. Interestingly, this reflects post-transcriptional acquisition of Lrp5 protein
expression in luminal cells. Furthermore, this plasticity of molecular expression is reflected in plasticity of cell fate
determination. Thus, in vitro, Wnt1-expressing luminal cells retro-differentiate to basal cell types, and in vivo, tumors
initiated with pure luminal cells reconstitute a robust basal cell subpopulation that is indistinguishable from the populations
initiated by pure basal cells. We propose this is an important proof of concept, demonstrating that bipotential tumor stem
cells are essential in tumors where oncogenic ligand-receptor pairs are separated into different cell types, and suggesting
that Wnt-induced molecular and fate plasticity can close paracrine loops that are usually separated into distinct cell types.
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Introduction

There are various potential explanations for the cellular

heterogeneity that exists in some tumors. Heterogeneity could

reflect random allocation to different cell fates, or be the result of

uncontrolled growth of a tumor stem cell, if that tumor stem cell is

a normal stem cell ‘‘gone bad’’ [1]. In this scenario (given

differentiation is not suppressed), the diversity of cell types existing

in the tissue of origin could be recapitulated in the tumor. This

could imply that differentiation is a passive process that has little

functional significance for tumor growth. However, using a mouse

model of basaloid tumors, we have noticed that differentiation to

basal and luminal cell fates is important to the establishment of an

oncogenic paracrine cell pair, and propose that this may be true

also for human breast cancer patients.

Human and mouse basaloid breast tumors are characterized by

the over-representation of mRNA species typically associated with

basal cells in transcriptional profiles (for example, cytokeratins 5/

6/14/17, TRIM29 and collagen type XVII). This often, but not

always, correlates with the so-called ‘‘triple negative’’ status (ERa-,

PR- and erbB2-negative) [2,3,4]. This is important from a

therapeutic viewpoint, since these tumors are not good candidates

for treatment with anti-ER or anti-erbB2 strategies. However,

their molecular etiology is not well understood, and probably

includes a number of distinct origins. Human basaloid breast

tumors are aggressive, have high mitotic indices, and at least a

proportion of this group of tumors maintains their cellular

diversity during the entire disease course [5,6]. They contain

mammary epithelial cell types that resemble their basal and

luminal cell counterparts in normal mammary gland, and are

illustrated in tumor sections using immunohistochemistry [7].

Several classes of breast tumors that develop in mouse models

cluster into a basaloid sub-class, including tumors that develop in

response to the proto-oncogene, Wnt1 [8]. In preneoplastic

mammary glands from [MMTV-LTR-Wnt1] transgenic mice,

stem cells accumulate (defined by a functional assay of fat pad

colonization at limiting dilutions) [9,10]. The solitary tumors that

arise in these hyperplastic glands comprise mixed populations of

basal and luminal cells; when transferred at limiting cell dilutions,

tumor cell populations robustly regenerate mixed populations

[11,12]. The formation and maintenance of these tumors depends

upon the expression of Wnt1 ligand; thus, in mice that

conditionally express Wnt1, tumors regress upon withdrawal of

Wnt1 ligand expression [13]. Wnt signaling is complex, and
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various responses are mediated by a number of cell surface

receptor species. However the principle tumorigenic Wnt signaling

pathway is the so-called canonical pathway, mediated by the

interaction of Frizzled-Lrp cell surface co-receptors [14]. We have

previously shown that Lrp5 is necessary for tumor development in

response to Wnt1 [15], despite the co-expression of functional

Lrp6 in basal mammary epithelial cells [16]. Wnt signaling (via

Lrp5 and Wnt1) is therefore necessary and sufficient for cell

growth and tumor maintenance.

For mouse mammary gland, normal stem cells co-purify with

basal cells (using flow cytometry with various cell surface markers)

[17,18]. When these cells are transferred in vivo to fat pads, they

can recreate normal ductal trees, comprising both luminal and

basal cells, and they show the same bipotentiality in vitro. Normal

mammary stem cells are maintained by Wnt signaling, and depend

upon Lrp5, together with an as yet unidentified Wnt ligand

[16,19].

Using this model system, we present a model to explain the co-

existing cell populations, We propose that the distinct cell types

interact to propagate the tumor, and that differentiation is

required to promote the expression of the ligand. Bipotential stem

cells are required to create optimal proportions of basal and

luminal cells, to promote the growth of tumors that depend upon

a paracrine interaction. This is a proof of concept that we

propose could offer a discovery platform for therapeutic

development, assuming that co-mingling of basal and luminal

cell types could also have functional significance for human

basaloid tumors. Specifically, we show that the Wnt1 ligand is

expressed in luminal cells and the cognate receptor, Lrp5, is

expressed by basal cells. Tumor initiating cells exist in the basal

population, which can differentiate to regenerate the basal-

luminal cell pair that drives growth. Since we also observe

luminal cells that can serve as tumor-initiating cells, we tested the

hypothesis that these cells might also express Lrp5 protein. Flow

cytometric analysis showed the acquisition of low levels of cell

surface Lrp5 by a luminal subpopulation, and indeed all the

tumor stem cell activity co-purified with the Lrp5-positive cell

population. Wnt1-expressing luminal cells not only showed

molecular plasticity, they showed plasticity of cell fate in vitro,

and in vivo. Thus, when used to seed a new tumor, they divide and

differentiate to recreate typical basal-luminal tumor cell popula-

tions. We suggest this illustrates the selection pressure that

maintains these heterogeneous tumors.

Results

Separation of luminal and basal cells from MMTV-Wnt1
tumors

Wnt1-induced tumors are known to comprise cell variants

related to the two mammary lineages, basal and luminal [9,10],

illustrated in Fig. 1A (stained with lineage-specific keratin markers,

luminal marker K8 and basal marker K5). We used the relative

expression of the cell surface molecules, EpCAM and CD49f (a6

integrin), to separate these cell types from Wnt1-induced

mammary glands (Fig. S1), either the pre-neoplastic (so-called

hyperplastic; hyper) glands or the tumors that develop later (shown

in Fig. 1B and S2). Luminal cells were EpCAM+/CD49flow and

basal cells were EpCAM+/CD49fhigh. The proportion of basal

cells increased in Wnt1-induced hyperplastic populations, as

observed before using a modified cell separation protocol (Fig.

S2 [10]). Staining of cells after sorting showed that these fractions

were substantially pure; 99% of luminal cells expressed K8 (4% co-

expressed K5) and the basal cell fraction was $95% K5+K8-

negative (Fig. S3).

Expression patterns of Wnt1 ligand and the Wnt reporter,
axin2

To investigate the molecular expression of the receptor-ligand

pair that comprise the essential paracrine signaling pathway

sustaining these Wnt1-induced cell populations, we assayed

mRNA expression for Wnt1 ligand, Lrp5 receptor and axin2, a

Wnt reporter, in the separated cell types. Wnt1 ligand is not

endogenously expressed, but was highly expressed in transgenic

MECs, and super-induced in Wnt1 tumors (Fig. 1C). The

MMTV-LTR directs expression to the luminal cells [20,21].

The Wnt reporter, axin2, showed a pattern of induction that

corresponded to the Wnt1 ligand expression in total MEC

populations (Fig. 1C, D). In normal tissues, axin2 mRNA

expression was restricted to basal cells. However, in luminal and

basal cells extracted from Wnt1-induced MECs, axin2 mRNA was

as highly expressed in luminal cells as basal cells.

Basal tumor cells are enriched in tumor initiating cells,
but luminal tumor cells can also serve as tumor stem cells

Interestingly, when we tested the tumor initiating cell activity of

purified basal and luminal cells, the appearance of tumor stem cell

activity correlated with the expression of Wnt reporter activity.

Thus the frequency of tumor initiating cells (TICs) was

approximately 1/1000 of the total tumor cell population. Though

TIC activity was highly enriched in basal cells (106), and relatively

depleted in luminal cells (0.66), the fact that luminal cells comprise

the majority (61%) of the tumor cell population meant that

approximately half the total TIC activity co-purified with luminal

cells (Table 1). This led us to propose that the appearance of Wnt

signaling activity in luminal cells was linked to their functional

activation as tumor stem cells.

Lrp5 protein becomes expressed in Wnt1-expressing
luminal tumor cells, explaining the expression of the Wnt
reporter

Knowing that Lrp5 is singularly responsible for Wnt1-

mediated effects in mammary glands [15], we evaluated the

expression of Lrp5 in luminal and basal cells, to find out

whether we could explain the appearance of axin2 mRNA

expression. Analysis using qPCR showed that Lrp5 mRNA was

expressed by both basal and luminal cells (Fig. 2A) in normal

and Wnt1-induced MEC populations. Joshi et al. [23] have also

observed the expression of Lrp5 mRNA in both basal and

luminal cells (from normal glands, separated using a different

protocol). This fact surprised us, given that we have previously

observed a highly basal cell-specific pattern of Lrp5 protein

expression in normal MECs (Fig. 2C and [16]). From this, we

conclude that expression of Lrp5 protein is restricted to cells in

the basal lineage based on a post-transcriptional mechanism.

(Lrp6 showed a similar trend; cell surface Lrp6 protein was

specific to basal cells, whilst the mRNA was expressed in both

luminal and basal cells; Fig. S4). To evaluate whether we could

account for the expression of axin2, we tested basal and luminal

cells for their expression of Lrp5 by flow cytometry (Fig. 2B). All

Lrp5-negative cells are luminal, but unlike normal MECs, some

Wnt1-induced luminal cells were Lrp5-positive, though the

relative amount of cell surface Lrp5 was 106 lower than basal

cells (Fig. 2C). To find out which cells responded to the

mitogenic Wnt1 signal, we evaluated the mitotic index of

luminal and basal cells in Wnt1-induced mammary glands

(Fig. 2D; compared to normal adult virgin glands that are not

known to be Wnt-induced). Both basal and luminal cells were

induced to divide, consistent with the idea that the mitogenic

Paracrine Cell Pairs That Maintain Basaloid Tumors
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signal might be perceived by both cell types. To corroborate the

qPCR results for axin2 expression in the luminal and basal cell

populations defined by flow cytometry, we evaluated axin2

expression in situ, using the relative location of axin2-positive

cells (together with subtype-specific counter-stains). Thus an

Axin2lacZ knock-in reporter strain (see Methods) was crossed to

MMTV-Wnt1 mice, and samples stained with K5 and K8

(Fig. 2E). As reported in other studies [21,22], basal cells showed

high expression of Axin2lacZ in Wnt1-induced hyperplastic

glands. We found that luminal cells could also be positive, and

that the pattern of staining was heterogeneous, including many

lightly staining cells, and some focalized areas of dark staining

(Fig. 2E). We conclude that luminal cells show low but

significant Lrp5 protein expression, which is reflected in the

expression of the axin2lacZki allele in luminal cells. Note that the

amount of endogenous axin2 mRNA was approximately equal

Figure 1. Despite lineage-specific expression of Wnt1 by purified basal and luminal cell subpopulations, both cell types express
Axin2, and both serve as tumor initiating cells. (A) A representative MMTV-Wnt-1-induced tumor paraffin-embedded section stained with
lineage-specific markers, keratin-8 (K8; luminal; red) and keratin-5 (K5; basal; blue), together with Ki67, a marker of cycling cells (green). Scale
bar = 50 mm. (B) Flow cytometric separation of luminal and basal cells from an MMTV-Wnt1 induced tumor, based on their expression of EpCAM and
CD49f (results are similar for at least 3 primary tumors; a representative gating tree is shown in Fig. S1). The purity of these fractions is shown in Fig.
S3. (C, D) mRNA extracted from purified cell fractions was analyzed for relative expression of Wnt1 and the Wnt reporter, Axin2, by quantitative RT-
PCR analysis (n = 2, triplicates). MG, mammary gland; Hyper, Wnt1-induced hyperplastic glands; BAS, basal cells; LUM, luminal cells; Lin2, CD452,
CD312 (lineage-negative) live cells (total un-separated cells, run through the cell sorter).
doi:10.1371/journal.pone.0019310.g001

Table 1. Assay of Tumor Initiating Cell (TIC) frequencies for basal and luminal cell subpopulations from Wnt-induced tumors.

Cell fraction % cells infraction
# of cells
transferred Take rate

Frequency of TICs
(95% CI) (pGOF)

TICs per 106 total
cells (Lin2) Fold enrichment

Total (Lin2) 100 4000 4/4 1/935 1070 1

1000 3/4 (1/390–1/2240) (0.39)

500 1/4

Luminal 60.8 4000 4/4 1/1506* 404 0.6

2000 3/4 (1/697–1/3260) (0.25)

600 1/4

200 0/4

Basal 4.3 200 4/4 1/87** 480 10.7

100 2/4 (1/38–1/199) (0.81)

20 1/4

Cell fractions purified by flow cytometry were assayed by isograft to mammary fat pads at limiting dilutions. We assume that if the significance of the goodness of fit
calculation is .0.05, TIC frequencies can be calculated from limiting cell dilutions (the pGOF are shown below the TIC frequency; the goodness of fit calculation is done
according to the limdil software, see Methods). Pairwise comparison of the sub-fractions of cells shows that the TIC frequency in the luminal and basal cells is significantly
different (* p = 1.0661025), as was the TIC frequency for basal and total (Lin2) cells (** p = 2.761024). To determine the absolute number of TICs in each fraction, the number
of TICs per million total cells was calculated as the product of the number of cells in that subfraction, and the calculated TIC frequency. Fold enrichment is shown as the
frequency of TICs in basal or luminal cells/frequency of TICs in the total population.
doi:10.1371/journal.pone.0019310.t001
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in luminal and basal cells (Fig. 1D), whereas the expression of

the axin2lacZki allele appeared to be lower in luminal cells. This

might be because whole mount samples are incubated with x-

gal, and the substrate diffuses through the outer layer of basal

cells before being available to the luminal cells (this problem of

x-gal ‘‘exhaustion’’ was also described by Baker et al. [22]).

Alternatively it might be because the stability of the lacZ protein

in basal and luminal cell context may be different.

Lrp5-positive cells account for the tumor initiating
activity

If Lrp5 expression is required to close a paracrine Wnt1-

signaling loop that determines cell survival and tumor initiating

activity, then Lrp5-positive cells should include most of the tumor

stem cells. Indeed, Lrp5-positive cells contained more than 90% of

TIC activity (Table 2). A previous study showed that the majority

of tumor initiating cell activity for tumors arising in this mouse

model were CD61-positive [11]; we found that Lrp5-positive cells

also express CD61 (Fig. 2F and S5), so these two cell surface

markers are co-expressed. This suggests that the aberrant

expression of Lrp5 in luminal cells also could apply to CD61

(and probably other proteins), and identified cells that had

acquired stem cell function.

Luminal tumor stem cells regenerate tumors with a
similar basal subpopulation

No matter what type of cell was used at limiting dilution to

initiate tumor growth, tumors grew back at the same speed (3–4

weeks, data not shown) and recapitulated the primary tumor

phenotype (Fig. S6). This robust pattern of intermingled

differentiated cells is consistent with our suggestion that these

cells are functionally inter-dependent. Not only that, but luminal

cells regenerated tumors that comprise the same proportion of

basal cells (Fig. 3), both by immunofluorescent assay and flow

cytometry.

Plasticity of cell differentiation in Wnt1-induced luminal
cells

In the simplest scenario, the acquisition of Lrp5 by luminal cells

might be expected to result in monotypic luminal-type tumors

upon transplantation. The fact that basal cells re-appear suggests

instead that the post-transcriptional induction of Lrp5 may not be

sufficient to maintain robust tumor growth. Consistent with this,

we observed that purified Wnt1-expressing luminal cells did not

show the pattern of mono-lineal expansion in vitro that is associated

with normal cells (Fig. 4). Instead, Wnt1-induced luminal cells

‘‘retro-differentiated’’ to basal cells (reversing the usual basal-

luminal pattern of differentiation). We propose that this same

pattern of growth exists in vivo, to account for the appearance of

basal cells in tumors initiated from luminal cell antecedents.

Discussion

Using a well-established mouse basaloid breast tumor model, we

show that two differentiated cell types that comprise this tumor are

interactive. Thus, the differentiation of luminal and basal

mammary epithelial cells from a common progenitor is associated

with the expression of oncogenic Wnt1 ligand by the luminal cells

(under the control of the MMTV-LTR), and the expression of its

cognate functional receptor, Lrp5, predominantly on the surfaces

of the basal cells (see scheme presented in Fig. 5B). Thus

differentiation, or (more broadly) fate specification, is required to

maintain the expression of the oncogenic signaling pathway, and is

likely to drive the retention of both cell types in this basaloid tumor

type. In the tumors we describe, there are more luminal cells than

basal cells, and this proportion is robust and constant (upon

transplantation). Similar selective pressures could operate to

maintain the corresponding cell types in human basaloid breast

tumors (and presumably in other tumor types that show evident

heterotypic differentiation), and these are likely to exploit the

interactive paracrine reactions that usually control development

and morphogenesis. Indeed, recent data extracted from transcrip-

tional arrays of basal and luminal cells show reciprocal expression

of several ligand-receptor pairs [23,24]. Furthermore, the

heterogeneous cell populations that comprise several cultured

breast cancer cell lines have been shown to be inter-dependent,

and survive via a paracrine CXCR1/IL8 pair, the receptor

expressed on the ALDH+ tumor initiating cell compartment and

the ligand by the tumor bulk cells [25]. Quite analogously, recent

data has shown that estrogen-treatment of MCF cell cultures

induces the expression of Fgf by the ERa-positive majority,

maintaining an FGFR/Tbx3 positive tumor initiating cell

minority [26].

For a tumor that depends upon cooperation between two cell

types, we predict that any cell that can differentiate to generate

both types of cell (to close the mitogenic loop) will have tumor

initiating activity in vivo. If we compare these Wnt1-induced

basaloid tumors with basaloid tumors induced by carcinogen

administration (Kim, Roopra and Alexander, submitted), they

look remarkably similar (by histopathology, flow cytometric

immunophenotypes, and relative proportion of basal and

luminal cells). However, in carcinogen-induced tumors, only

basal tumor cells have stem cell activity. This is predictable,

since it recapitulates the normal bi-potential activity of the basal

cell compartment. In contrast, Wnt1-induced tumors contain

novel luminal stem cells, and the expression of Lrp5 protein by

these cells supports their exceptional stem cell activity (see

scheme of Fig. 5C, D). Though acquisition of Lrp5 expression

by luminal cells (together with the ability to express Wnt1, to

close the essential loop) might be predicted to be sufficient to

drive the formation of homotypic, luminal tumors, this is not

what we observed in vivo. Instead, tumors initiated by luminal

cells comprise the same mixture of cell types as tumors initiated

by basal cells. This might be due to the molecular mechanism

underlying this phenomenon; thus Wnt1 expression induces the

cell surface presentation of Lrp5 (at low but functionally

significant amounts) from an mRNA not usually translated in

luminal cells. This change may not be sufficiently durable to

maintain tumor growth. It is becoming increasingly evident that

the regulation of translation of key mRNA species governs

differentiation; for example, a group of mRNAs (comprising 2%

of total transcripts) was shown to be specifically translated

during differentiation of embryonic stem cells, including Wnt1

[27]. One obvious mechanism that could explain selective

translation is the lineage-specific expression of miRNAs, already

known to regulate growth and differentiation of mammary gland

[28].

To maintain tumor growth, we propose that a second property

of Wnt-induced luminal cells is important. We demonstrated that

unlike the usually lineage-committed luminal cells from normal

glands, purified Wnt1-expressing luminal cells differentiate

spontaneously to basal cells in culture. In this context, ‘‘luminal

cells’’ are defined as cells that co-purify according to their flow

cytometric profile (EpCAMhi, CD49fmed). (Note that 4% of Wnt1-

induced luminal cells co-express cytokeratins 5 and 8; this may be

a marker of plasticity/stem-ness). We propose that plasticity of

luminal cell phenotype in the presence of Wnt1 could explain why

Paracrine Cell Pairs That Maintain Basaloid Tumors
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tumors can be reconstituted from purified luminal cell fractions,

because it allows the optimal accumulation of basal cells to

promote population growth. These observations propose a distinct

and novel function for Wnt signaling during oncogenesis, as a

collaborator for paracrine cell pairs, when plasticity will enable

their efficient differentiation.

Figure 2. Lrp5 expression (acquired post-transcriptionally) correlates with the appearance of Axin2 in luminal cells. (A) mRNA
extracted from purified cell fractions was analyzed for relative expression of Lrp5 by quantitative RT-PCR analysis as described for Fig. 1. (Lrp6 mRNA
expression is broadly similar to Lrp5, shown in Fig. S4) (B) Tumor cells were incubated with anti-Lrp5 antibody, and analyzed by flow cytometry, using
an isotype-matched negative control to define Lrp5+ cells. These samples were also stained with EpCAM and CD49f antibodies, and the cell surface
phenotypes combined to show the luminal (L) or basal (B) cell identity of Lrp5+ and Lrp52 cells. (C) Another example of this assay is shown in
histogram form, to reveal the overall level of expression for Lrp5 in luminal and basal cells in normal and tumor cells. (D) Paraffin sections from normal
and Wnt-induced mammary glands were stained to illustrate the relative rates of division (green, Ki67) of basal (blue, K5) and luminal (red, K8) cells.
Note that the green color stain in the lumens is a common artifact associated with non-specific binding to sticky luminal proteins. Scale bar = 50 mm.
(E) Axin2lacZ [MMTV-Wnt1] (and control Wnt1) glands were stained in whole mounts for the lacZ reporter, followed by embedding, sectioning and
immunocytochemical assay of basal (K5+) and luminal (K8+) cells. The panel on the LHS shows there was no background when the Axin2lacZ reporter
was not present. The samples were incubated in x-gal substrate (B, basal; L, luminal; as indicated). The pattern of staining of AxinlacZ was
heterogeneous, in some areas, stain was basal-specific, in others, there was also light staining throughout the luminal population, in others, focalized
clusters of luminal cells showed high expression. (F) Lrp5+ cells were assayed for their expression of CD61, because CD61+ cells have been shown to
be enriched for TIC activity in this tumor model (Vaillant et al 2008). These markers showed high co-expression.
doi:10.1371/journal.pone.0019310.g002
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Many solid tumors have been analyzed for the presence of

tumor stem cells by prospective flow cytometric analysis, using

relatively arbitrary cell surface markers. Though this has been

successful, the discrimination of tumor initiating cells into one

fraction or another tends to be a matter of chance. On the other

hand, if a cell surface marker that is functionally important to

stem-ness can be applied, this process could become rationalized.

In this study, we show that tumor-initiating cells are enriched in

the Lrp5-positive fraction, regardless of other phenotypes.

However, we do not claim this as a general breast tumor stem

cell marker, but only when Wnt signaling is necessary and

sufficient for tumor growth. In general terms, expression of the

receptor of an oncogenic paracrine signaling pathway is likely to

mark the tumor stem cell community.

The Wnt1-induced mouse mammary model is significant to our

understanding of tumor stem cells, for at least two reasons. Firstly,

since the preneoplastic mammary gland was shown to accumulate

mammary stem cells, it has been generally assumed that stem cells

dominate tumor initiation [9,10]. Secondly, tumors arising in this

model comprise basal and luminal cell equivalents, a feature also

characteristic of basaloid human breast tumors [5,6,29]. Note that

we make no claim that the [MMTV-Wnt1] model described in

this manuscript is an accurate one for basaloid tumors. Although

several Wnt ligands and inhibitors are expressed in normal breast

Table 2. Assay of TIC frequencies for Lrp5+ and Lrp2 cell subpopulations from Wnt-induced tumors.

Cell fraction % cells in fraction
# of cells
transferred Take rate

Frequency of TICs
(95% CI) (pGOF)

TICs per 106 total
cells (Lin2) Fold enrichment

Lrp5+ 36.7 2000 4/4 1/386* 951 2.4

1000 2/2 (1/178–1/838) (0.87)

500 4/6

100 1/4

Lrp52 38.4 3000 3/4 1/4426* 87 0.2

2000 1/4 (1/1862–1/10530) (0.106)

1500 1/2

1000 0/4

500 0/4

Lrp5+ and Lrp52 (Lin2) cell fractions were purified by flow cytometry, assayed by isograft to mammary fat pads at limiting dilutions, and results were reported as for
Table 1. Pairwise comparison of the Lrp+ and Lrp2 cells shows that the TIC frequency is significantly different (* p = 2.3461025).
doi:10.1371/journal.pone.0019310.t002

Figure 3. Functional evaluation of Wnt1-induced basal and luminal populations in vivo. Tumors regenerated from limiting dilutions of
different cell fractions (Lin2 total population, luminal or basal cells) were compared with samples of parental tumors immunostained for constituent
cell types with K5 (blue), K8 (red), and Ki67 (green). Scale bar = 50 mm. These tumors were also analyzed by flow cytometry (using EpCAM and CD49f
expression) to confirm the relative fate allocation of tumor subpopulations.
doi:10.1371/journal.pone.0019310.g003

Paracrine Cell Pairs That Maintain Basaloid Tumors
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and breast tumors, the functional significance of Wnt signaling in

basaloid (or indeed luminal) breast tumors has not yet been

directly tested. However, in support of Wnt signaling as an

etiology for breast cancer is the oncogenicity of ectopic Wnt

signaling in mouse models [10,30], functional data from basaloid

breast cancer cell lines (for example, [31], and reports of

heterogeneous nuclear staining of b-catenin (which may indicate

active Wnt signaling) in tumors in vivo [32].

Models of this aggressive tumor type are especially valuable

since little is understood about their heterogeneous molecular and

cellular etiology. Recently, basaloid human tumors from BRCA1-

mutant women provided evidence for a different type of tumor

stem cell, derived from a luminal cell-of-origin [33,34]. Similarly,

p53 deficiency produces aggressive basaloid tumors in mice [8,35].

For both of these tumor types, it is not clear whether there are two

distinct and cell fate-specified subpopulations. It may instead be

true that these tumor cells co-express growth-promoting pathways

that are usually separated between basal and luminal progenitors.

Indeed, when p53 null alleles are crossed into the [MMTV-Wnt1]

transgenic model, tumors arise earlier and show little evidence of

differentiation [36].

Wnt1-induced tumors require continuous expression of Wnt1

[13]. Prior analysis of these tumors using functional assays of

tumor initiating potential have showed that the tumor-generating

cells had a predominantly basal character, and they were enriched

in a Thy1+/CD24+ cell sub-population (1% of total Lin2 cells,

showing 356 enrichment of functional activity) [12]. Another

study observed that stem cells and tumor initiating activity could

be retrieved from Wnt-induced mammary epithelial cell popula-

tions using the cell surface marker CD61 (b3 integrin) [11]. In this

study, stem cell activity retrieved from a luminal-enriched

subpopulation constituted less than 10% of total. Note that only

our study has systematically reported the basal/luminal fate

allocation of separate populations isolated by flow cytometry, so it

is difficult to directly compare data sets.

Our results lead us to these conclusions: (1) By comparing the

proteome of constituent cell types of a heterogeneous tumor, it

should be possible to list candidate paracrine receptor-ligand pairs

that could be responsible for maintaining the tumor. This could

provide a discovery mechanism for highly druggable pathways. (2)

It will be important to know which cells show plasticity, since these

are key chemotherapeutic targets to produce durable chemother-

apeutic responses.

Materials and Methods

Ethics Statement
All experiments that included the use of mice were approved by

the University of Wisconsin IACUC (protocol number MO1422;

Institutional assurance number for University of Wisconsin-

Madison A-3368-01). For the studies we describe, there are no

suitable alternative approaches, and care is taken to minimize

animal distress.

Mouse Strains and Tumor Dissociation
The source and characteristics of MMTV-Wnt1 (C57BL/6)

mice have been described previously [37]. Wnt reporter mice with

a heterozygous Conductin+/lz lacZ allele (Axin2lacZki) were

provided by Walter Birchmeier [38], and we thank R. Nusse

(Stanford) for their distribution. The Institutional Animal Care

and Use Committee at the University of Wisconsin-Madison

approved all experimental protocols. Primary mammary epithelial

Figure 4. Functional evaluation of Wnt1-induced luminal cells in culture. To evaluate the differentiation potential of luminal cells from
Wnt1-induced mammary glands, flow sorted luminal cells were placed into culture, and stained 4 days later for markers of cell fate (K5, SMA and K8),
together with a nuclear counter-stain. Under these conditions, purified luminal cells (,1% K5-positive) from normal glands continue to express K8,
and were 98.9% K5-negative after 4 days. However, purified luminal cells from MMTV-Wnt1 hyperplastic glands (also ,1% K5-positive) show mixed
fates after transfer to tissue culture, including 24% K5-positive cells. Similarly, cultures of purified luminal cells from MMTV-Wnt1-induced tumors
develop a similar proportion (21%) of K5-positive cells (n = 2, triplicates). Note that some cells are K5-positive, some are SMA-positive and most are
positive for both. For BALB/c MECs, this is typical of the basal/myoepithelial lineage (in vivo and directly after isolation), and probably reflects an
evolution of phenotype during differentiation (cells expressing SMA alone are most differentiated; data not shown). The corresponding cultures of
basal cells from all three types of MEC population are shown in Fig. S7. Scale bar = 50 mm.
doi:10.1371/journal.pone.0019310.g004

Paracrine Cell Pairs That Maintain Basaloid Tumors

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e19310



cell suspensions from wild-type or transgenic mice were prepared

as described [16]. Tumors from transgenic mice were dissociated

as described in Kim, Roopra and Alexander (submitted).

Cell Sorting and Transplantation
Prior to flow cytometry, dissociated cells were stained with the

following antibodies: APC-conjugated anti-CD45 (Cat.# 559864;

clone number 30-F11; 1 mg/ml), APC-conjugated rat anti-mouse

CD31 (Cat.# 551262; clone number MEC13.3; 1 mg/ml), FITC-

conjugated CD49f (Cat.# 555735; clone number GoH3; 30 ml/

ml) all from BD Biosciences, and PE-conjugated EpCAM (Cat.#
118206; clone number G8.8; 0.5 mg/ml) and FITC-conjugated

CD61 (Cat.# 104305; 10 mg/ml) from BioLegend (San Diego,

CA). To overlay the expression of Lrp5 or CD61 onto the

EpCAM / CD49f profile, cells were pre-stained with CD31/45,

CD49f, and EpCAM as described (Kim, Roopra and Alexander

submitted) and then 2 ml of Lrp5 (41–130 Ascites fluid, Cat.#
H00004041-M01A AbNova, Taipei City, Taiwan) or 2 ml of

biotin-conjugated anti-mouse/rat CD61 (Cat. # 13-0611-81;

clone number 2C9.G3; 10 mg/ml; eBiosciences) was added (106

cells in 100 ml) for another 30 mins/4uC. The cells were washed

and incubated with anti-mouse IgG-Alexa 405 (Cat.# A31553) or

streptavidin-conjugated Pacific Blue (Cat.# S11222) from Molec-

ular Probes (Eugene, OR) for 30 minutes on ice, and analyzed on

a FACS Vantage cell sorter equipped with DiVa software (Becton

Dickson, Franklin Lakes, NJ). Typical gating trees for tumor cell

populations are shown in Fig. S1. Populations of tumor cells sorted

by flow cytometry were transplanted at limiting dilutions, and

tumor initiating cell frequency was calculated using limdil software

(http://bioinf.wehi.edu.au/software/limdil). Results are typically

displayed as dot plots for cells isolated from single tumors (results

were replicated at least twice), or for pooled mammary epithelial

cell preparations from $15 control mice or $5 MMTV-Wnt1

induced transgenic mice. This report follows the recommendations

made by Alexander et al. [39].

Immunofluorescent staining protocols
Methods for staining tumor tissue sections and sorted cells on

slides were as described [16]. Primary antibodies used for

immunofluorescence were: rabbit anti-keratin 5 (Covance, Madi-

son, WI), rat anti-keratin 8 (Troma-I) (Developmental Studies

Hybridoma Bank, University of Iowa), FITC conjugated mouse

anti-a smooth muscle actin (Sigma, St. Louis, MO), and mouse

anti-Ki67 (BD Biosciences). Secondary antibodies were: Pacific

Blue goat anti-rabbit IgG, Alexa Fluor 546 goat anti-rabbit or rat

IgG, and Alexa Fluor 488 goat anti-rat or mouse IgG from

Molecular Probes (Eugene, OR). TO-PRO-3 (Molecular Probes)

was used for nuclear DNA counterstaining and immunofluores-

cent stains were visualized on a confocal microscope (BioRad

MRC1024).

Immunoperoxidase and lacZ staining of paraffin sections
from Axin2lacZki mammary glands

Inguinal mammary glands were fixed in 4% paraformaldehyde

for 1 h at room temperature and washed in lacZ wash buffer

(0.01% sodium deoxycholate, 0.02% NP-40 and 0.02% IGEPAL

in PBS) for 15 mins. Glands were compressed between microscope

slides, incubated overnight in the wash buffer at 4uC to facilitate

penetration of the staining solution, rinsed and stained (overnight)

in X-gal staining solution (1 mg/ml 5-bromo-4-chloro-3-indolyl-b-

D-galactopyranoside, 5 mM potassium ferrocyanide, 5 mM po-

tassium ferricyanide, 2 mM MgCl2 in PBS). After paraffin

embedding, sections were incubated with hydrogen peroxide to

quench endogenous peroxidase activity, processed using citric acid

antigen retrieval and stained using the primary antibodies

described above, followed by biotinylated anti-rabbit or anti-rat

IgG (Vector Laboratories, California), and the HRP/DAB

detection kit (according to manufacturer’s instructions, Abcam,

Cambridge, MA).

Primary culture of purified cell fractions
To culture primary epithelial cells, 8 well-chamber slides (Nalge

Nunc International, Naperville, IL) were coated with Matrigel and

sorted cells were plated at 10 000 cells per well in DMEM/F12

(Invitrogen, Carlsbad, CA) plus 2% FBS (Harlan Laboratories,

Indianapolis, IN), 10 mg/ml insulin (Sigma), 100 U/ml Penicillin/

Streptomycin (Invitrogen, Carlsbad, CA), and 20 ng/ml EGF

(R&D System, Minneapolis, MN). Cells were cultured for 4 days

and then stained with K8, SMA, and K5 as described above.

Quantitative RT-PCR
Total RNA was collected using the PicoPure RNA Isolation Kit

(Arcturus, Mountain View, CA) according to manufacturer

instructions and processed as described [16]. Each sample was

Figure 5. Summary diagram. (A) In normal mammary epithelium,
the Wnt source that maintains Lrp5+ mammary stem cells is indicated
by a red-colored nucleus in a non-epithelial cell type, inferred from [40].
(B) For Wnt1-induced mammary tumors, we have illustrated a paracrine
signaling network that depends upon interactive basal and luminal
cells. Wnt1 ligand and Lrp5 receptor are necessary and sufficient to
maintain tumors (Lindvall et al., 2006). Wnt1, under the control of the
MMTV-LTR sequence, is expressed by luminal cells (this cis sequence is
only upregulated in luminal cells). Lrp5 protein is typically expressed by
basal cells. (C) Cells that comprise the tumor cell community include
(Lrp5+) basal cells that can differentiate to luminal cells to provide a
ligand-expressing luminal partner. We have shown that some of these
luminal cells also express Lrp5. (D) All cells with stem cell activity
express Lrp5 and are able to regenerate robust mixtures of basal and
luminal cells that support tumor growth by paracrine interactions. Thus,
basal cells are predictable stem cells, since they differentiate to Wnt1-
expressing luminal cells, whereas luminal cells are novel, Wnt-induced
stem cells that express sufficient Lrp5 to enable their survival, but also
show fate plasticity, to enable retro-differentiation to basal cells.
doi:10.1371/journal.pone.0019310.g005
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analyzed in duplicate with an ABI 7900-HT (Applied Biosystems,

Foster City, CA) as follows: 1 cycle of 50uC/2 mins, 95uC/2 mins,

followed by 40 cycles of 95uC/15 seconds, 55uC/30 seconds and

72uC/30 seconds, followed by a melt-curve analysis. The data

were analyzed using the SDS2.2.2 software (Applied Biosystems)

and the reference genes, YWHAZ and hypoxanthine-guanine

phosphoribosyltransferase (HPRT) were used for normalization of

data by the DDCt method. Primer sequences are listed in File S1

(sequences are listed 59 to 39; primers are designed to span intron-

exon boundaries). Results reported describe triplicate technical

analyses, representative of at least two separate experiments, as

indicated.

Supporting Information

Fig. S1 Representative gating procedures for luminal
and basal cells from MMTV-Wnt1 tumors. Antibody

staining and flow cytometric analyses were performed as described

in Materials and Methods and Alexander et al. [39].

(DOCX)

Fig. S2 Representative separations of luminal and
basal cells from normal and MMTV-Wnt1 hyperplastic
glands. Comparison of flow cytometric profiles of basal and

luminal cells from non-neoplastic (hyperplastic) populations, for

comparison with Fig. 1B.

(DOCX)

Fig. S3 Evaluation of purity of luminal and basal sub-
populations of flow-sorted tumor cells. (A) Cytosplats of

cells purified by flow cytometry were evaluated for expression of

luminal (K8) and basal (K5 and SMA) markers by immunocyto-

chemistry (with a DNA counterstain to reveal total cell numbers).

(B) Basal and luminal cell fractions were analyzed by qPCR for the

relative expression of K5 and K8. Immunostaining and qPCR

analysis of lineage-specific markers of basal and luminal cell sub-

populations, to justify their separate analysis (throughout).

(DOCX)

Fig. S4 Analysis of relative Lrp6 mRNA expression in
basal and luminal sub-populations. For comparison with

Fig. 2A (Lrp5 mRNA expression), Lrp6 mRNA was analyzed by

qPCR.

(DOCX)

Fig. S5 Flow cytometric analysis of CD61 expression
together with EpCAM/CD49f. This analysis is for comparison

with Fig. 3A, which shows the co-expression of CD61 and Lrp5.

The two panels to the left show the gating procedure for CD61-

positive and CD61-negative cells, followed by overlay onto the

EpCAM/CD49f staining for resolution of the basal and luminal

cell populations (identified as for Fig. 3A).

(DOCX)

Fig. S6 Morphology of tumors regenerated from basal
or luminal tumor initiating cells. H&E stained paraffin

sections of a representative primary tumor, and tumors regener-

ated from total Lin2, basal or luminal cell fractions. (These

histological assays are for comparison with the samples stained for

their expression of lineage specific markers shown in Fig. 3C).

(DOCX)

Fig. S7 Differentiation of basal cell-derived cultures
from normal and Wnt1-induced cell populations. Basal

cell cultures prepared according to the methods described for

Fig. 3C (showing the differentiation of the luminal cell fractions

from corresponding mice) were assayed for the expression of

lineage-specific markers (K5 and SMA, basal cell markers; K8

luminal cell marker). For C57Bl6 mammary epithelial cells, the

majority of basal cells express K5, but only some (co-)express SMA

(our data suggests that SMA is a marker of terminally

differentiated myoepithelial cells).

(DOCX)

File S1 Primer sequences for Quantitative RT-PCR.

(DOC)
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