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Abstract Semi-terrestrial tardigrades exhibit a remarkable
tolerance to desiccation by entering a state called anhy-
drobiosis. In this state, they show a strong resistance against
several kinds of physical extremes. Because of the probable
importance of stress proteins during the phases of dehydra-
tion and rehydration, the relative abundance of transcripts
coding for two α-crystallin heat-shock proteins (Mt-
sHsp17.2 and Mt-sHsp19.5), as well for the heat-shock
proteins Mt-sHsp10, Mt-Hsp60, Mt-Hsp70 and Mt-Hsp90,
were analysed in active and anhydrobiotic tardigrades of
the species Milnesium tardigradum. They were also
analysed in the transitional stage (I) of dehydration, the
transitional stage (II) of rehydration and in heat-shocked

specimens. A variable pattern of expression was detected,
with most candidates being downregulated. Gene tran-
scripts of one Mt-hsp70 isoform in the transitional stage I
and Mt-hsp90 in the anhydrobiotic stage were significantly
upregulated. A high gene expression (778.6-fold) was
found for the small α-crystallin heat-shock protein gene
Mt-sHsp17.2 after heat shock. We discuss the limited role
of the stress-gene expression in the transitional stages
between the active and anhydrobiotic tardigrades and other
mechanisms which allow tardigrades to survive desiccation.
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Introduction

Along with nematodes and rotifers, semi-terrestrial tardi-
grades exhibit a remarkable tolerance against almost
complete desiccation by entering a state known as anhydro-
biosis (Keilin 1959) in all developmental stages (Schill and
Fritz 2008). To survive drought, which occurs frequently
in the habitat of moss-dwelling tardigrades, they enter a
so-called tun state (Baumann 1922) and show strong
resistance to physical extremes, including high and low
temperatures (Ramløv and Westh 1992; Sømme 1996;
Ramløv and Westh 2001; Hengherr et al. 2009), high
pressure (Seki and Toyoshima 1998), vacuum and ionising
irradiation (Horikawa et al. 2006; Jönsson et al. 2008). In
the anhydrobiotic state, their metabolism is barely mea-
surable (Pigoń and Węglarska 1955). The longer the
animals spend in this state of suspended animation, the
longer their lifespan (Hengherr et al. 2008a). The animals
resume activity after successful rehydration.
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Due to the remarkable ability of tardigrades to survive
extreme desiccation, few studies on stress proteins (Schill et
al. 2004; Jönsson and Schill 2007) have been carried out to
investigate the molecular mechanisms of anhydrobiosis.
One isoform of a heat-inducible heat-shock protein (Hsp70)
has been described by Schill et al. (2004) as upregulated in
the transition phase from the active to the anhydrobiotic
state in Milnesium tardigradum.

Additionally, in the species Richtersius coronifer, a
higher protein level of Hsp70 was detected during the
transition from the anhydrobiotic to the active state
(Jönsson and Schill 2007), whereas a decreased level of
Hsp70 was found in anhydrobiotic animals. The investiga-
tion of transcripts and encoded stress proteins is based on
their well-known function as molecular chaperones
(Gething and Sambrook 1992; Georgopoulos and Welch
1993; Jakob et al. 1993). Results derived from several other
organisms that tolerate dehydration or suspended animation
like nematodes (Chen et al. 2006), crustaceans (Liang et al.
1997b; MacRae 2003), insects (Tammariello et al. 1999;
Hayward et al. 2004; Bahrndorff et al. 2008; Lopez-
Martinez et al. 2009) and plants (Alamillo et al. 1995;
Ingram and Bartels 1996) suggest a versatile role for the
stress response in dormant stages.

The present study examines whether an hsp stress
response in anhydrobiotic tardigrades operates during
dehydration and rehydration. Therefore the expression of
several hsp transcripts belonging to different Hsp groups
was analysed in the eutardigrade M. tardigradum. The
sequences were taken from our expressed sequence tag
(EST) library based on mRNA originating from specimens
of M. tardigradum from our tardigrade culture. Transcripts
of the chaperonin Mt-shsp10 gene, two α-crystallin small
heat-shock protein genes (Mt-sHsp17.2 and Mt-sHsp19.5),
one Mt-hsp60 gene, three Mt-hsp70 genes, as well as one
Mt-hsp90 gene, were examined to cover a broad range of
heat-shock protein genes.

Materials and methods

Tardigrade culture

The study was carried out on the cosmopolitan eutardigrade
speciesM. tardigradum Doyère 1849 (Apochela, Milnesidae).
Tardigrades were and reared on petri dishes (ø 9.4 cm) filled
with a small layer of agarose (3%; peqGOLD Universal
Agarose, peqLAB, Erlangen, Germany) and covered with
spring water (Volvic™ water, Danone Waters Deutschland,
Wiesbaden, Germany) at 21°C and a light/dark cycle of 12 h.
Rotifers (Philodina citrina) and nematodes (Panagrellus sp.)
were provided as a food source, and juvenile tardigrades
were also fed with the green alga Chlorogonium elongatum.

For all experiments, adult animals in good physical condition
were taken directly from the culture and starved for 3 days to
avoid extraction of additional RNA from incompletely
digested food in the intestinal system.

Experimental design

To investigate differences in the expression of stress genes
during anhydrobiosis, four different groups of tardigrades
were set up. Expression of stress transcripts was analysed
during the transition from the active to the anhydrobiotic
animals (transition stage I), both during the anhydrobiotic
stage and during the transition from the anhydrobiotic to
the active state (transition stage II). Active animals were
used as a control group. An additional group of animals
was analysed, in which the animals were exposed to
thermal stress for 1 h at 37°C in a heating block
(Thermomixer 5436, Eppendorf, Hamburg, Germany).
The transition stages were defined as described earlier by
Schill et al. (2004) as transitional stage I, in which animals
had started tun formation by contracting their legs, and
transitional stage II, in which animals showed distinct move-
ments and had stretched their legs. To achieve desiccation,
they were put in open microlitre tubes (Sarstedt, Nümbrecht,
Germany) and into small plastic chambers with 85% relative
humidity (RH) for 2 days. Subsequently, the tubes were
transferred for seven days into chambers with 33% RH to
desiccate the animals. The humidity levels described above
were achieved by sustaining a constant saturation vapour
pressure over a saturated salt solution of KCl and MgCl2,
respectively. The boxes had transparent tops to monitor the
processes without changing the humidities.

RNA preparation and quantitative real-time PCR

Each experimental group described above consisted of
50 animals, which were subdivided into groups of ten
animals. Before RNA isolation, the animals of the “active”
and “transition I” group were washed three times in spring
water (Volvic water™, Danone). “Anhydrobiotic” and
“transition II” animals were washed before desiccation.
The tardigrades were homogenised in lysis buffer using a
bead mill (FastPrep 24, MP Biomedicals, Heidelberg,
Germany). Total RNA was prepared with the RNeasy®

Micro Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. DNA was digested during the
preparation with the included DNAse I. The RNAwas eluted
in RNAse-free water, and quantity and quality were checked
with a NanoDrop® ND-1000 spectrophotometer (peqLab,
Erlangen). Subsequently, cDNA was prepared with the
cDNA Synthesis Kit from Bioline (Luckenwalde, Germany).

To measure relative expression of the transcripts of the
experimental groups compared to the control group,
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quantitative real-time PCR was performed with a MyiQ
Single Color Real-Time PCR Detection System (Bio-Rad
Laboratories GmbH, München, Germany), and 0.5 µL of
the first strand cDNA synthesis reaction mixture was used
as template in a total reaction mix of 25 µL (ImmoMix™,
Bioline) with 2.0 mM MgCl2. Due to the fact that
ribosomal proteins represent adequate housekeeping genes
in quantitative real-time PCR (qrtPCR) in general (de Jonge
et al. 2007), a partial sequence of the ribosomal protein S13
gene (rps13) was used as reference gene in this study. The
efficiency of the PCR reactions was calculated from the
slope of the standard curve, which was derived from a
dilution series (1:2, 1:20, 1:200 and 1:2,000). Every PCR
reaction was performed in triplicate. Threshold cycles (Ct

values) were calculated by the MyiQ 2.0 software and
analysed with the freely available Relative Expression
Software Tool (REST©; Pfaffl et al. 2002), which allows
for a determination of significant differences between the
expression ratios and the estimation of the standard errors. The
log2 expression ratios of the experimental groups were plotted
to compare with the control group; error bars represent the
log2 values of the standard error. Significantly different
expression between experimental groups and control groups
was accepted for P<0.05 (Pair Wise Fixed Reallocation
Randomisation Test©, implemented in REST©).

The following programme was routinely used to conduct
the qrtPCRs: initial denaturation step (95°C for 10 min)
followed by 40 cycles of denaturation (10 s), annealing (20 s)
and elongation (20 s). A melt curve analysis was added (95°C
to 55°C in steps of 0.5°C every 30 s), and the product size was
subsequently examined by gel electrophoresis.

Primers were designed by using the free internet tools
“Primer3” (Rozen and Skaletsky 2000) and “NCBI/Primer
BLAST” (based on Primer3) with target sequences from M.
tardigradum EST libraries. Computational sequence analy-
sis of the deduced EST sequences was performed using the
Basic Local Alignment Search Tool (Altschul et al. 1990) at
the web pages of the National Center for Biotechnical
information (NCBI). Sequences with the highest homology
were aligned with ClustalW implemented in the software
MEGA4 (Tamura et al. 2007), and ESTs were named after
GenBank entries with the highest homologies: Mt-shsp10,
Mt-Hsp17.2, Mt-Hsp19.5, Mt-hsp60 and Mt-hsp90. Three
different ESTs resulted in significant alignments with proteins
of the Hsp70 family and were named Mt-hsp70-1, Mt-hsp70-
2 and Mt-hsp70-3. Primers were designed for the coding
sequences, without considering 3′ and 5′ untranslated regions.

Results

Analyses of two stress-gene sequences in our EST library
resulted in the complete open reading frames for putative

proteins with a high homology to small heat-shock/α-
crystallin proteins. Alignment of the two sequences (Fig. 1),
termed Mt-shsp17.2 and Mt-shsp19.5 after their calculated
size of 17.2 and 19.5 kDa, respectively, display consider-
able differences between the two sequences and similarities
to other α-crystallin/sHsp proteins (Fig. 1). Heat-shock
treatment resulted in a 778.6-fold higher transcription level
of Mt-shsp17.2 in animals compared to the control group
(Fig. 2), indicating that it codes for an inducible α-
crystallin/sHsp protein. In contrast, Mt-shsp19.5 was not
regulated during heat shock. Both α-crystallin/sHsp
sequences were not significantly regulated during the
process of anhydrobiosis, with one exception; Mt-shsp17.2
was downregulated in the transitional stage II.

In general, most of the genes under investigation were
downregulated or regulated at all in the two transitional
stages and the anhydrobiotic stage.

Significant down regulation was found for Mt-hsp60
(P=0.031) and Mt-hsp70-1 (P=0.025) in the transitional
stage I, whereas Mt-hsp70-2 (P=0.019) was upregulated. In
the anhydrobiotic stage, the gene Mt-hsp90 (P=0.002) was
significantly upregulated, and all other stress genes showed
no significant regulation. However, in the transitional stage
II, Mt-shsp10 (P=0.002), Mt-hsp60 (P=0.009), Mt-
shsp19.5 (P<0.001), Mt-hsp70-1 (P=0.002) and Mt-
hsp70-2 (P<0.001) were significantly downregulated. All
genes, except the upregulated Mt-shsp17.2 (P=0.008),
showed no significant heat-inducible stress response in
heat-shocked animals.

The two small heat-shock/α-crystallin protein sequences,
Mt-shsp17.2 (with a strong induction of expression under
heat shock) and Mt-shsp 19.5 (longer isoform with no
induction), were analysed bioinformatically to obtain
further insights into their function and difference in
induction (Fig. 3). The domain analysis (Fig. 3a, b) shows
that both proteins contain an alpha-crystallin domain and
have a dimer interface. The sHsps are generally active as
large oligomers consisting of multiple subunits and are
believed to be ATP-independent chaperones that prevent
aggregation and are important in refolding in combination
with other Hsps. The potential for multimerization is
confirmed for these two sequences by corresponding motifs.
However, the longer form leads to a different protein and is
no longer in the COG0071/IbpA gene family. Furthermore,
the N-terminus (first 60 amino acids) of Mt-shsp 19.5 is
tardigrade specific and has no relatives in other organisms.
Prosite motifs support the Hsp signature for both proteins
and include only often occurring modification motifs. The
longer sHsp protein has several potential phosphorylation
modification sites predicted in the N-terminus.

To obtain more insight into the differential behaviour of
both proteins, potential interaction partners were predicted
using the interaction database STRING (von Mering et al.
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2005). Using the hsp homolog forMt-shsp 17.2 known from
Drosophila melanogaster (protein CG14207-PB, isoform
B), it appears that there is a tight interaction network in
which the Mt-shsp 17.2 homolog is involved. The protein
Mef2 (Myocyte enhancing factor 2) is critical for the
regulation of this network and one of the proteins regulated
by it is glyceraldehyde 3-phosphate dehydrogenase.

In addition to their developmental function, a number of
Mef2 target genes are involved in muscle energy produc-
tion or storage and were identified in Drosophila. As it
would be interesting to identify a similar adaptation in
tardigrades, we searched by iterative sequence alignment
techniques for tardigrade homologues of both proteins.
Interestingly, we found the regulatory protein in the
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Fig. 2 Relative expression of
analysed stress-gene transcripts
of M. tardigradum in different
stages of anhydrobiosis and heat
shock. The asterisks (P≤0.05)
indicate different expression of
transcripts compared with
control specimens, which
underwent no treatment
(displayed by the base line)

Fig. 1 Alignment of two α-crystallin/small heat-shock proteins from M.
tardigradum with α-crystallin/small heat-shock proteins from Ixodes
scapularis (EEC06453), Acyrthosiphon pisum (XP_001949446), Bombyx

mori (NP_001036985), Drosophila ananassae (XP_001963454) and
Locusta migratoria (ABC84493). Black high homology, grey weak
homology, blank no homology
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eutardigrade species Hypsibius dujardini. Furthermore, a
putative regulatory protein, which could be involved in the
network in M. tardigradum, has a predicted dual specificity
kinase function. Glyceraldehyde 3-phosphate dehydroge-
nase is found in M. tardigradum. In contrast, it turns out
that the longer form Mt-shsp19.5 is not predicted to be
involved in this adaptive network. There are no interactions
predicted by the STRING database, and furthermore, this is
in accordance with our experimental observation that no
induction in expression is observed.

Both small heat-shock protein genes were also investigated
for regulatory motifs. They contain a number of insignificant
motifs in the corresponding untranslated regions. Such patterns
with a high probability of occurrence (and which have a high
chance of false-positive predictions) include SeCys insertion
sequences and GAIT (gamma interferon activated inhibitor of
coeruloplasmin mRNA) elements. However, it cannot be ruled
out that some type of similar regulation occurs in both of them.
Furthermore, the long shsp mRNA contains an iron-
responsive element structure at position 1188 (see Electronic
supplementary material). Here, the chance of occurrence is
sufficiently low to suggest functional significance. How-
ever, as nothing is known about iron-responsive element-
binding proteins in tardigrades and the structure may also
be targeted by other proteins, this merely suggests a
stability prolonging regulatory element in this region,
compatible with the stable, unchanging level of this heat-
shock protein mRNA.

Discussion

In this study, the stress response of the eutardigrade M.
tardigradum was analysed during anhydrobiosis by inves-
tigating the expression changes of stress-gene coding
sequences for different classes of heat-shock proteins.
Sequences were found with significant homologies to
several proteins of stress response in EST libraries for M.
tardigradum. Among them are complete coding sequences
for a chaperonin Hsp10 and two α-crystallin/small heat-
shock proteins of 17.2 kDa (150 amino acids) and 19.5 kDa
(174 amino acids).

Small Hsps prevent protein aggregation and act as
molecular chaperones during several kinds of stress
(Haslbeck 2002). Studies on sHsp regulation in dormancies
of different organisms revealed heterogenous patterns
(Bonato et al. 1987; Yocum et al. 1991; Denlinger et al.
1992; Liang et al. 1997a; Yocum et al. 1998; Tammariello
et al. 1999; Cherkasova et al. 2000; Goto and Kimura 2004;
Rinehart et al. 2007; Gkouvitsas et al. 2008), indicating a
diverse array of functions. An essential upregulation of shsp
has been suggested for cold hardiness in the flesh fly
Sarcophaga crassipalpis (Rinehart et al. 2007). One of the
two M. tardigradum shsp sequences, Mt-shsp17.2, is
strongly inducible by heat-shock treatment, but not
regulated during anhydrobiosis. On the contrary, Mt-
shsp19.5 is not inducible by heat and is downregulated
in animals in the transition from the anhydrobiotic to the

Fig. 3 a Domain analysis of Mt-shsp 17.2 shows that it contains an
alpha-crystallin domain (residues 34–113) from the Hsps-p23-like
superfamily. There is a putative dimer interface predicted, and residues
1 to 127 belong to COG0071/IbpA, molecular chaperon COG.
Compared to other known metazoan proteins, this is a small single
domain protein (most others have multidomain context). The closest
neighbour by sequence comparison is the heat-shock protein 20.6
(putative) from I. scapularis (e-value 4e−13) but there are also the
well-characterised ones, e.g. from B. mori similar over most of the
sequence (13–131) with an e-value of 2e−12. b Domain analysis of
Mt-shsp 19.5 Domain analysis shows that also this protein contains an

alpha-crystallin domain (residues 76–154) from the Hsps-p23-like
superfamily. At the N-terminal end of the domain, there is again a
dimer interface predicted but somewhat weaker. There is highest
similarity (1e−33 to heat-shock protein 20.6 isoform 2 from Nasonia
vitripennis; residues 42–173) but again also to the B. mori version
(residues 60–156) with 7e−33. Compared to other known metazoan
proteins, this is again a small domain protein (most others have
multidomain context). However, compared to the shorter version Mt-
shsp 17.2, we have here a tardigrade-specific N-terminus (first 75
residues) not occurring in other organisms
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active state. This leads to the assumptions that both shsps
feature different functions. Due to the low expression
changes, their role in the anhydrobiosis of tardigrades is
questionable, although it is not yet known if there is a
sufficient basal level of sHsp proteins in M. tardigradum, so
that upregulation is not necessary. However, the importance
of small heat-shock proteins is clearly demonstrated in
Artemia franciscana. A massive accumulation of the sHsp
p26 occurs in diapausing embryos of this brine shrimp
(Liang et al. 1997a; Liang et al. 1997b). The protein p26 is
able to move into the nucleus (Clegg et al. 1995) and is
thought to protect and/or chaperone, in cooperation with
Hsp70, the nuclear matrix proteins (Willsie and Clegg 2002).

This study provides additional data towards the under-
standing of hsp70 expression during the anhydrobiosis of
tardigrades. Schill et al. (2004) described three isoforms of
inducible hsp70 from M. tardigradum. The isoform 1 and
the isoform 3 did not have a specific function for
cryptobiosis. By contrast, transcription of isoform 2 was
significantly induced in the transitional stage II between the
anhydrobiotic and active stage in M. tardigradum. Assum-
ing that a higher mRNA amount may lead to a higher
protein content, a functional role of Hsp70 during anhy-
drobiosis can be suggested, either during anhydrobiosis or
as part of a general stress-response mechanism. Since that
assumption might not hold, an alternative role might be to
prevent protein unfolding and aggregation resulting from
the loss of cellular water that takes place during the entry to
anhydrobiosis, or in the establishment of a system with
refolding capacity to provide functional proteins during and
after rehydration.

The lower expression of Mt-hsp70-1 and Mt-hsp70-2
during the transition to the active state supports the
hypothesis that preceding the actual anhydrobiotic state
there is preparation for the time of rehydration. In the
eutardigrade species R. coronifer, a lower level of Hsp70
protein was found in desiccated animals when compared
with active ones (Jönsson and Schill 2007). Assuming that
M. tardigradum and R. coronifer share the same character-
istics during desiccation, the upregulated Mt-hsp70-3
transcript belongs to Hsp70 proteins, which contribute only
a small part of the Hsp70 contingent in the cell. Because the
antibody used by Jönsson and Schill (2007) was broadly
reactive to a wide range of Hsp70 family members, a more
prominent Hsp70 isoform might have a higher impact on
the overall protein content. However, we note that the low
expression of hsp70 genes and low levels of proteins in
tardigrades are similar to data derived from dehydration
experiments with yeast containing different amounts of
Hsp70 (Guzhova et al. 2008).

Research on Hsp90 revealed many different functions in
cells. It acts as a controller of critical hubs in homoeostatic
signal transduction, as a regulator of chromatin structure,

gene expression, development and morphological evolution
and is also involved in the secretory pathway (McClellan et
al. 2007; Pearl et al. 2008). Focusing on the role of Hsp90
as a molecular chaperone (Richter and Buchner 2001), the
expression changes of a partial putative Mt-hsp90 sequence
were analysed. Mt-hsp90 was the only sequence investigat-
ed in our study that was more abundant in the anhydro-
biotic state. However, an increase in its expression was not
detected in transitional stage I. In the anhydrobiotic stage,
no translation took place, due to the reduced metabolic
activity (Pigoń and Węglarska 1955), but a significantly
higher level of mRNA was observed, which subsequently
decreased after rehydration. If or to what extent the Mt-
hsp90 mRNA was stored for translation into protein during
and after rehydration is not known, nor do we know the
level required to be effective.

During the whole process of anhydrobiosis, no increased
expression was detected for transcripts with high homology
to hsp10 and hsp60 sequences. Additionally, neither was
induced by heat shock at 37°C. Hence, these stress genes,
whose proteins are capable of binding and folding non-
native proteins (Horwich et al. 2007), which may occur
during desiccation, seem to play no relevant role in
anhydrobiosis in M. tardigradum.

Our investigation of the stress-gene responses in M.
tardigradum at the transcriptional level clearly shows that
most mRNAs are less abundant during anhydrobiosis than in
active animals, which may lead to a lower protein level.
However, as already mentioned, the levels of stress protein
needed for protection or repair in the tardigrade M.
tardigradum are not known. Focusing on the expression of
stress genes, our study suggests a minor role for stabilising
and refolding stress proteins, leading to the assumption that
denaturation of proteins due to drastic changes during
desiccation is not a significant problem for M. tardigradum.

The question then arises as to what confers desiccation
tolerance on M. tardigradum since trehalose (Hengherr et
al. 2008b), and stress proteins do not seem to be directly
involved. Recent studies showed the existence of other
carbohydrates, for example sucrose, sorbitol, inositol and
glycerol, have been found in M. tardigradum (unpublished
results). Those molecules are able to form biological
glasses, which may protect cellular structures according to
the vitrification hypothesis (Crowe 2002; Crowe et al.
1998). Another important factor might be the presence of
late-embryogenesis abundant proteins, which have been
detected in M. tardigradum (Schill et al. 2004, 2005;
McGee et al. 2005; Schokraie et al., submitted) and which
are present in many organisms that survive desiccation
(e.g. Wise and Tunnacliffe 2004; Goyal et al. 2005;
Chakrabortee et al. 2007). A combination of proteins and
carbohydrates may also play an important cellular protec-
tion role during desiccation in tardigrades.
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