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Abstract
A spectrum of brain-related disorders are nowadays known to manifest themselves in degradation
of the integrity and connectivity of neural tracts in the white matter of the brain. Such damage
tends to affect the pattern of water diffusion in the white matter – the information which can be
quantified by means of diffusion MRI (dMRI). Unfortunately, practical implementation of dMRI
still poses a number of challenges which hamper its wide-spread integration into regular clinical
practice. Chief among these is the problem of long scanning times. In particular, in the case of
High Angular Resolution Diffusion Imaging (HARDI), the scanning times are known to increase
linearly with the number of diffusion-encoding gradients. In this research, we use the theory of
compressive sampling (aka compressed sensing) to substantially reduce the number of the
diffusion gradients without compromising the informational content of HARDI signals. The
experimental part of our study compares the proposed method with a number of alternative
approaches, and shows that the former results in more accurate estimation of HARDI data in terms
of the mean squared error.

1 Introduction
The human brain consists of about 1011 nerve cells which can be further sub-divided into
about 1000 different cell types, a complexity that far exceeds that of other organs of the
body. An additional complexity is evident in the way in which the component cells of the
brain interconnect and function. In contrast to other types of the cells, each neuron
communicates with many target cells by means of its peculiar protoplasmatic protrusion,
called axon. Moreover, axons with similar destinations tend to form bundles, known as
neural fiber tracts. Taken together, these fibers play a pivotal role in the determination of
brain connectivity, which is presently far from being completely understood. Consequently,
by reconstructing the pattern of connectivity of the neural tracts in both healthy and diseased
subjects, it is possible to obtain an abundance of valuable diagnostic information that could
be used for early diagnostics of brain-related disorders, for assessing the damage caused to
the brain by stroke, tumors or injuries, as well as for planning and monitoring of
neurosurgeries [1],[2]. In this regard, diffusion MRI (dMRI) appears to be an unparalleled
tool of diagnosis imaging of the brain, as it is the only imaging modality which can “sense”
the local orientation of neural fibers tracts.

Diffusion tensor imaging (DTI) is the most widespread type of dMRI, which describes the
local diffusion of water molecules using a unimodal Gaussian model [3],[4],[5].
Unfortunately, the performance of DTI is known to deteriorate considerably at the spatial
locations where neural tracts cross, touch upon each other, or diverge [6],[7],[8],[9]. To
overcome this intrinsic limitation of DTI, the High Angular Resolution Diffusion Imaging
(HARDI) technique has been proposed [10],[8],[11],[12] which is capable of capturing
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multi-modal diffusion patterns through sampling the corresponding diffusion signals over a
spherical shell in k-space.

The superiority of HARDI over DTI suggests the possibility of further improvement of the
diagnostic value of dMRI [13]. Unfortunately, this superiority comes at a significant price:
HARDI requires using a substantially larger number of diffusion-encoding gradients N, with
a typical N being in the range between 60 and 100 (as compared to N ∈ [25, 30] in the case
of DTI). As the total scanning time increases linearly with N, HARDI-based analysis is
currently deemed to be “too slow” to be used in clinical applications involving children or
patients with dementia.

The above deficiency of HARDI can be overcome using the theory of compressive sampling
(aka compressed sensing) (CS) [14],[15],[16], which provides a framework to recover
HARDI signals from a much smaller number of measurements as compared to the standard
range of N. Formalizing such a reconstruction approach constitutes the main contribution of
this work. It should be noted that there already exists a body of works in which the theory of
CS has been used for reconstruction of grayscale MR images from their sub-critical samples
in k-space [17],[18],[19]. The proposed method, on the other hand, is different in that it
applies the tools of CS in the diffusion domain (rather than in the spatial domain), as is
detailed in the sections that follow.

2 Compressed Sensing
A continuum of all possible orientations in IR3 can be identified with the points of the unit
sphere 2 := {u ∈ IR3 | ‖u‖2 = 1}. Let p = (x, y, z) be the spatial coordinate of an arbitrary
voxel within a volume of interest. Then, the diffusion signal S(u) at p can be formally
described as a real-valued function defined over 2. In practical settings, the signal S(u) can
only be measured along N discrete orientations  . The most fundamental question in
this regard has always been: what is the minimum number of diffusion directions N required
to unambiguously represent the signal S in terms of its discrete values Sk?

A particularly important answer to the above question is offered by the theory of CS. To
summarize some fundamental results of the theory, we consider S to be a member of a
Hilbert space, endowed with a standard inner product. Since diffusion measurements are
linear, the discrete measurements Sk := S(uk) can be expressed in the form of inner products
Sk = 〈S, φjk〉, with  being a subset of a sampling basis {φi}i∈ℐ. Moreover, let {ψj}j∈
be another basis in the signal space, such that any S can be expressed according to

(1)

where denotes the set of indices over which the basis functions ψj are counted. Note that,
in a more general setup, the set {ψj}j∈  may be overcomplete, in which case it becomes a
frame. However, independently of whether it is a basis or a frame, in what follows, the set
{ψj}j∈  is assumed to be finite, with the total number of its elements being equal to M.

Using the above definitions, we make the following two assumptions:

a. S is assumed to be sparsely representable by {ψj}j∈ , which implies that the
number K of non-zero coefficients cj in (1) is significantly less than M.
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b. The bases {φi}i∈ℐ and {ψj}j∈  are assumed to be incoherent, implying that the
value of μ = supi,j |〈φi(u), ψj(u)〉| is relatively small.

On Conditions (a) and (b), the theory of CS proves that an accurate approximation of S is
possible from only (μ2 log(M)K) of its measurements, as opposed to M) in the case of
standard sampling theory. Moreover, this approximation is computable through solution of a
convex optimization problem [14],[15],[16].

The above considerations suggest that the applicability of CS to HARDI depends on the
availability of a basis/frame {ψj}j∈  for which the assumptions (a) and (b) above would be
valid. Such a basis has been recently introduced in [20], where it is called a basis of
spherical ridgelets – the functions which have been specifically designed to provide sparse
representation of HARDI signals. Moreover, as the energy of spherical ridgelets is
distributed alongside the great circles of 2, the ridgelets appear to be very incoherent with
respect to the Dirac sampling basis. All this makes spherical ridgelets an ideal candidate to
be used for CS-based recovery of HARDI signals, as it is demonstrated next.

3 Spherical Ridgelets
Spherical ridgelets are constructed using the fundamental principles of wavelet theory. Let
κρ(x) = exp{−ρ x (x + 1)}, where 0 < ρ < 1 and x > 0. Also, let κj(x) = κρ(2−jx) be a scaled
version of κρ, where j ∈ IN. Then, the Gaussian-Weierstrass scaling function Kj,v : 2 → IR
at resolution j ∈ IN and orientation v ∈ 2 is given by

(2)

where Pn denotes the Legendre polynomial of order n and the dot stands for the Euclidean
inner product in IR3. Consequently, following [20], the semi-discrete frame IF of spherical
ridgelets can be defined as

(3)

where

(4)

with ℛ standing for the Funk-Radon transform (FRT) [21]. Note that, for an arbitrary j ∈ IN
∪ {−1} and v ∈ 2, the FRT of Kj,v(u) can be computed as

(5)

where

(6)
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The set IF in (3) is infinite-dimensional, and hence is not suitable for practical computations.
To define a discrete counterpart of IF, one has first to restrict the values of the resolution
index j to a finite set {−1, 0, 1,…, J}, where J defines the highest level of “detectable”
signal details. Additionally, the set of all possible orientations v ∈ 2 of spherical ridgelets
needs to be discretized as well. To find a proper discretization scheme, we first note that the
construction in (4) is dyadic, which suggests that the bandwidth of spherical ridgelets
increases proportionally to 2j. Owing to the fact that the dimension of the space of spherical
harmonics of degree n is equal to (n + 1)2, it is reasonable to define the number of discrete
orientations to be a function of j. Specifically, let m0 be the smallest spherical order resulting
in κ0(m0) ≤ ε for some predefined 0 < ε ≪ 1 (e.g. ε = 10−6). Then, one can define the
number of ridgelet orientations at resolution j to be equal to Mj = (2j+1m0 + 1)2.

Subsequently, for each Mj, let  be a set of Mj distinct points on 2. A finite-
dimensional set of spherical ridgelets can then be defined as

(7)

where the subscript d stands for “discrete”. It should be emphasized that the set IFd is finite,

as it consists of a total of  spherical ridgelets.

Given a measurement set of N diffusion-encoding orientations  , one can use (4)
and (5) to compute the values of the spherical ridgelets in IFd over UN. The resulting vales
can be then stored into an N × M matrix  Subsequently, if c ∈ IRM is defined to be a
(column) vector of ridgelet coefficients and y := [S(u1), S(u2),…, S(uN)]T, then the
measurement model can be formally expressed as c = y + e, where e is an error vector that
accounts for both measurement and model noises.

Assuming that ‖e‖2 ≤ η, an optimal estimate c should satisfy ‖ c−y‖2 ≤ η. Unfortunately,
since N < M, the above condition by itself falls short to define an optimal c. However, if the
coefficients c are known to be sparse w.r.t. IFd, then the theory of CS states that a useful
estimate of the representation coefficients can be found by solving

(8)

Note that (8) is a convex optimization problem, whose solution can be found using standard
tools of optimization theory. In the present work, the problem has been solved using the ℓ1-
magic software freely available at http://www.acm.caltech.edu/l1magic/.

For the sake of comparison, we also estimate the representation coefficients c by computing
the minimum ℓ2-norm solution satisfying ‖ c − y‖2 ≤ η. It is important to point out that
such solutions are typically not sparse, in which case there are no a priori guarantees of
optimality of resulting estimates. It will be shown however that, in the case of spherical
ridgelet analysis, the ℓ2-solutions appear to be quite informative. Note that the ℓ2-estimates
are attractive for they admit a close form expression, which is

(9)
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4 Results
To test the performance of the proposed method, HARDI data acquired from an dMRI
phantom [?] were used. Specifically, the data were acquired using 3 mm isotropic
acquisition over a square field-of-view of size 19.2 cm, b = 2000 s=mm2, and 128 diffusion
orientations, uniformly distributed over the sphere. (For more details on the data acquisition
setup see www.lnao.fr/spip.php?article107.) The acquired HARDI signals were low-pass
filtered using the regularized estimation approach of [22] to suppress the effect of
measurement noise. The signals thus obtained were regarded as the original HARDI signals
against which their CS-based estimates were compared. In this work, normalized mean
squared error (NMSE) has been used to assess the performance of different reconstruction
methods.

To simulate CS acquisition, the full set of 128 diffusion directions was reduced to subsets of
N = 16, 18, 20,…, 32 spherical points. These subsets were chosen in such a way that their
points covered 2 in a quasi-uniform manner (similarly to the original coverage by 128
points). For each value of N, its associated sensing matrix was constructed with J = 1, ρ =
0.5 and m0 = 4. Subsequently, the optimal ridgelet coefficients were computed using two
different approaches, namely by solving the minimum ℓ1-norm problem (8) and using (9).
(These two estimates will be referred to below as SR-L1 and SR-L2, respectively.) Note
that, in the case of SR-L1, the value of η = 0:12 in (8) was found by trials and errors to result
in the most accurate reconstruction in terms of NMSE. Finally, the estimated ridgelet
coefficients were used to evaluate their associated HARDI signals at the points of the
original data set according to (1), followed by the computation of NMSE.

As an alternative to spherical ridgelets, the applicability of spherical harmonics (SHs) to the
problem of CS-based reconstruction of HARDI signals has been investigated as well [12],
[23]. To this end, the orthogonal set of SHs of orders up to n = 8 inclusive was used to
define the sensing matrix  Note that, since the diffusion signals are symmetric and real-
valued, only the even-ordered SHs have been employed. Analogously to the case of
spherical ridgelets, the SH-based reconstruction was carried out twice, viz. using both (8)
and (9). The respective estimates will be referred to below as SH-L1 and SH-L2,
correspondingly.

Table 1 summarizes the values of NMSE (± one standard deviation) obtained in the above
experiments. Note that each value in the table has been computed by averaging the results of
500 independent estimations. One can clearly see that the ridgelets-based ℓ1-reconstruction
(SR-L1) performs incomparably better than SH-L1. Moreover, the SH-based approach is
also outperformed by SR-L2, which performs surprisingly well in the case of spherical
ridgelet analysis (despite the inability of ℓ2-norm minimization to take advantage of the
sparse nature of the ridgelet coefficients). The results of Table 1 are also supported by Fig. 1
which depicts a subset of the original HARDI signals together with their estimates computed
by the compared algorithms for different values of N.

5 Discussion and Conclusions
Central to the theory of compressed sensing is the notion of sparse representation. In
particular, if a signal of interest is known to have a sparse representation in the domain of a
linear transform, then it can be accurately reconstructed from a much smaller number of its
discrete measurements, as it is required by the classical sampling theory. In the case of
HARDI data analysis, the most frequently used representation basis is that of spherical
harmonics (SHs). Unfortunately, SHs do not provide sparse representation of HARDI
signals, which makes them inappropriate for the use in CS-based estimation. The basis of
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spherical ridgelets, on the other hand, can represent HARDI signals using a relatively small
number of representation coefficients. As demonstrated by Table 1, the above fact allows
one to reconstruct HARDI signals from as few as 20 of their measurements with the
reconstruction error being about 1%. This result suggests that the CS-based acquisition of
HARDI signals has a potential of substantially shortening the scanning times in dMRI,
which is known to be a major bottleneck in clinical applications of this important tool of
diagnostic imaging.
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Fig. 1.
HARDI signals recovered by different reconstruction algorithms.
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Table 1

NMSE (±σ) obtained by different reconstruction methods.

Spherical Ridgelets (SR) Spherical Harmonics (SH)

N ℓ1-minimization ℓ2-minimization ℓ1-minimization ℓ2-minimization

16 0.0148 ± 0.0045 0.0176 ± 0.0047 0.0883 ± 0.0329 0.5145 ± 0.0211

18 0.0116 ± 0.0042 0.0147 ± 0.0039 0.0646 ± 0.0304 0.4011 ± 0.0257

20 0.0107 ± 0.0032 0.0127 ± 0.0034 0.0440 ± 0.0183 0.2774 ± 0.0319

22 0.0085 ± 0.0031 0.0120 ± 0.0031 0.0326 ± 0.0138 0.1976 ± 0.0257

24 0.0083 ± 0.0030 0.0118 ± 0.0028 0.0257 ± 0.0097 0.1411 ± 0.0252

26 0.0077 ± 0.0023 0.0115 ± 0.0026 0.0195 ± 0.0071 0.1130 ± 0.0246

28 0.0069 ± 0.0018 0.0113 ± 0.0024 0.0158 ± 0.0045 0.0790 ± 0.0230

30 0.0067 ± 0.0016 0.0112 ± 0.0020 0.0146 ± 0.0037 0.0651 ± 0.0145

32 0.0066 ± 0.0015 0.0109 ± 0.0019 0.0121 ± 0.0033 0.0566 ± 0.0140
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